
Comments On Selecting Ephemeral Ports∗

Mark Allman
International Computer Science Institute

mallman@icir.org

ABSTRACT
Careless selection of the ephemeral port number portion of a
transport protocol’s connection identifier has been shown to
potentially degrade security by opening the connection up to
injection attacks from “blind” or “off path” attackers—or,
attackers that cannot directly observe the connection. This
short paper empirically explores a number of algorithms for
choosing the ephemeral port number that attempt to ob-
scure the choice from such attackers and hence make mount-
ing these blind attacks more difficult.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol verification; C.2.3
[Network Operations]: Network monitoring

General Terms
Measurement,Security,Experimentation

Keywords
TCP, port numbers

1. INTRODUCTION
Transport-layer connections1 are identified by a set of in-

formation that provides the specific rendezvous point for the
task at hand, which includes IP addresses, transport proto-
col number (e.g., 6 for TCP) and service port number (e.g.,
80 for web traffic). A final component of the identifier is the
ephemeral port number—which is chosen by the connection
originator as the source port and does not need to be well
established apriori to instantiate communication. The only
strong requirement for choosing an ephemeral port is that it
be able to disambiguate the connection from all other active
connections, as well as those from the recent past in some
transport protocols. However, previous work has shown that
poor choices for ephemeral port numbers can lead to security
vulnerabilities. [14] discusses the case of long-running BGP
sessions setup using port 179 for not only the service port,
but also as the ephemeral port for the transfer of routing
data. The attack calls for an attacker to use a map of the
network topology to predict two hosts that would plausibly
be exchanging BGP data. The attacker would then have

∗ACM Computer Communication Review, April 2009.
1We use the term “connection” loosely in this paper to in-
clude request/response transactions over a connectionless
protocols (e.g., UDP).

all the information needed to forge a seemingly valid reset
packet that would terminate BGP sessions and undermine
the Internet’s routing system.

Traditional end systems have chosen ephemeral port num-
bers by using a counter initialized to 1024 (just above the
reserved port range) and incrementing the counter each time
an ephemeral port number is allocated. While better than
simply hard-coding an ephemeral port into an application,
this provides for a predictable progression of ephemeral port
choices. For instance, if an attacker can get a glimpse of a
host’s current position in the port space—by traffic monitor-
ing or engaging with the host itself—then that information
could be leveraged to potentially impair subsequent connec-
tions. While this attack is clearly harder to successfully
mount than the previously described BGP attack, the well-
defined progression of ephemeral port allocations has led to
calls for more advanced ways to obfuscate the ephemeral
port choices to thwart attacks [6].

While a straightforward way to address a predictable pro-
gression of ephemeral port allocation is to choose randomly,
this introduces the possibility of collisions. In some trans-
port protocols (e.g., TCP [8]) one of the endpoints retains
state about terminated connections for a period of time such
that new connections cannot be established with the same
connection identifier. This serves to ensure that old pack-
ets are not considered part of a new connection. Since only
one of the endpoints keeps this state the other endpoint can
attempt to instantiate a new connection only to see that
attempt fail. At first glance the collision rate of a selection
algorithm can be readily calculated. For instance, given that
some connection chose port x there is a probability of 1

N
of

a subsequent connection randomly choosing port x from a
pool of size N . However, the collision rate also crucially de-

pends on the underlying traffic pattern. For instance, if at a
given time a host tries to make 100 connections to 100 dif-
ferent services there is no chance of collision. However, if
those connections are all made to the same remote service
then via birthday analysis the chance of experiencing a col-
lision is 7.4% (assuming a 63 KB ephemeral port pool). The
problem of collisions is suggested to be bad enough in some
cases that [6] discusses algorithms designed specifically to
minimize collisions and [10] proposes keeping state on both
endpoints involved in a connection to prevent collisions.

In this short paper we present an evaluation of various
port selection algorithms based on measurement data from
two networks. While these algorithms have been discussed,
conjectured about and anecdotally tested we are aware of
no systematic evaluation of how the techniques perform



in a general environment. Our goal is to provide empiri-
cally rooted guidance to implementers when they choose an
ephemeral port selection algorithm. In addition, we shed
light on the question as to whether extra state should be
kept to avoid collisions.

2. RELATED WORK
We are not aware of previous empirical evaluations of

ephemeral port selection schemes. However, our work does
relate to several other avenues explored in the community.
The impetus for carefully choosing ephemeral ports is in
mitigating the risk posed by blind attacks whereby the at-
tacker cannot observe a given flow but can inject traffic into
the flow if the connection identifier can be guessed. As dis-
cussed above, [14] sketches one concrete example of this kind
of attack. Meanwhile, [12] provides a general discussion of
blind attacks and mitigation strategies. In addition to port
obfuscation, [9] suggests a challenge/response technique for
control packets to increase the probability that the actual
peer meant to send the given control packet and not an off-
path attacker. An additional class of mechanisms have been
developed to ensure the integrity of the segments within a
connection using cryptographic mechanisms [5, 4, 13]. These
techniques rely on signing and/or encrypting packets at the
network or transport layer such that even if a blind attacker
can guess the ports involved in some connection the attacker
lacks the cryptographic material to craft legitimate packets
to inject into the stream and therefore any attempt to do
so will fail.2 We note that there is no widespread use of
these cryptographic techniques. However, for some traffic
there are anecdotes that suggest these cryptographic tech-
niques may be more heavily used (e.g., for BGP traffic).
Finally, [1] discusses vulnerabilities stemming from an at-
tacker predicting TCP’s initial sequence number and a mit-
igation strategy, which is similar in spirit to the selection of
an obscure ephemeral port number.

3. ALGORITHMS
We employ six port selection algorithms, as follows:

Algorithm 0: This algorithm represents the traditional be-
havior of many systems whereby the first ephemeral chosen
is the value of a counter that is initialized to 1024 (just above
the reserved port area), increased by one on each ephemeral
port allocation and wrapping back to 1024 after port 65,535
is used.3 In the case of a collision, the algorithm simply tries
the next value of the counter.
Algorithm 1 [6]: This algorithm picks an ephemeral port
at random from across the port space. In the case of a
collision, the chosen port is incremented by one until a non-
colliding port is found.
Algorithm 2 [6]: This algorithm picks an ephemeral port
at random from across the port space. In the case of a
collision, a new random port is chosen until a non-colliding
port is found.
Algorithm 3 [6]: This algorithm is much like Algorithm 0
in that it keeps a host-wide ephemeral port counter C that is

2These techniques additionally protect against injection
from on-path attackers who can see the connection end-
points and port numbers in use.
3We assume a 16-bit port field in the header, as this is com-
mon across many transport protocols and in particular it is
the size of TCP port numbers used in this study.

initialized to 1024 and incremented by one for each port allo-
cation. Additionally, each time an ephemeral port is needed
the host calculates an offset O using some hash function
across the source IP address, destination IP address, desti-
nation port number and some host-held secret. The port is
then chosen as (C + O) mod S where S is the size of the
ephemeral port space. In the case of a collision, the calcu-
lation is run again based on the updated value of C. Using
both a counter and a service-specific offset this algorithm
strives to both obfuscate port selections and maintain a low
collision rate. In our simulations we use MD5 [11] as the
hash function.
Algorithm 4 [6]: This algorithm builds on Algorithm 3.
However, rather than keeping one counter per host Algo-
rithm 4 uses a table of m counters, K1−m, which is initialized
with random numbers. O is calculated as in Algorithm 3.
Which counter to use, x, is then chosen as G(O) mod m (us-
ing some hash function G()). The ephemeral port is then
chosen as (Kx + O) mod S where S is again the size of
the ephemeral port space. Kx is then incremented by one.
In this way, all connections do not share the same counter
and therefore the resulting ephemeral port is more obscured.
When a collision occurs a new port is chosen based on the
updated value of Kx. As with Algorithm 3, [6] gives no
guidance on hash function and therefore we use MD5 for
both hash calculations. Further, [6] gives no guidance on
the magnitude of m and therefore we vary the table size in
our experiments.
Algorithm 5: We introduce a final algorithm that tracks
the last ephemeral port number allocated L on each host.
In our simulations we initialized L to 1024, but to aid obfus-
cation L could be initialized to any value in the port space.
When a new ephemeral port is needed an increment is ran-
domly chosen from the range [1, N ] and added to L (with
wrapping when L grows too large). N is a tunable host pa-
rameter. This algorithm is meant to ensure that a particular
connection cannot collide with previous connections started
in the recent past. For instance, if N is 1000 and the port
pool is 63 KB we would expect the average increment to
be 500 and therefore to be able to create 126 connections
before L wraps and the host has even a chance of a colli-
sion. The size of N therefore represents a tradeoff between
using smaller values to prevent collisions on the one hand
and using larger values to aid obfuscation. We vary N in
our simulations.

Algorithms are referred to in the remainder of the paper
as An where n is the number of the algorithm. For Algo-
rithm 4 we use the notation A4−m where m is the size of
the table employed. For Algorithm 5 we use the notation
A5−s where s is the maximum random increment used in
the given simulation.

4. DATA AND METHODOLOGY
To assess the set of algorithms described above we use

the connection patterns found in two datasets to drive a
simulation of the ephemeral port selection process. We step
through a log of TCP connections and when each connection
begins we allocate an ephemeral port on the client’s behalf
using one of the algorithms detailed above. This process
takes into account the past activity of the system (i.e., ac-
tive and recently active connections). Our goal is to assess
the ephemeral port collision rate. We divide collisions into
two functional categories. Local collisions are those whereby



an ephemeral port choice results in a 4-tuple that is identical
to either a currently active connection or a previous connec-
tion for which the host is holding TIME-WAIT state (and
therefore is readily detectable by the host itself). On the
other hand, a remote collision is an ephemeral port choice
that leads to a 4-tuple with no local connection state but
yet collides with a connection the peer is holding in TIME-
WAIT state. Remote collisions can be costly in terms of
time because the remote host ignores incoming packets be-
cause they are considered to be from an old connection. In
our simulations both kinds of collisions result in running
the given algorithm again. Because of the inexpensiveness
of detecting local collisions we only track remote collisions
in the following analysis. For ease of exposition we simply
refer to remote collisions as “collisions” in the remainder of
the paper.

Our analysis is conducted over logs that include a connec-
tion’s start time, duration, involved endpoints and service
port. We make two choices that likely make our results a
overestimate of reality. First, we assume the remote end-
point always holds the TIME-WAIT state and while there
are proposals for techniques the remote host could use to
shorten the TIME-WAIT state (e.g., [2, 3]) we assume these
are not in use. Second, our definition of a connection is
quite liberal in that not all “connections” are established
and/or accomplish useful work. For instance, a SYN that
elicits a reset from the server is considered a connection in
our analysis when in reality no state is likely instantiated
for such a “connection”. Our data includes enough history
and/or end state information to perhaps remove some of
these connections from the analysis. However, the data in-
cludes enough inherent ambiguity and we do not understand
how these connections will be treated by the end hosts and
therefore instead of trying to derive how the bogus connec-
tions will be treated (which likely varies) we simply assume
all connections create state.

(a) ICSI

Day Conns. Out. (%) Hosts 3-Tuples

1 372K 51.2 38K 84K

2 407K 50.7 40K 95K

3 376K 49.0 38K 76K

4 382K 49.1 42K 87K

5 352K 44.7 35K 69K

6 290K 36.7 31K 66K

7 271K 42.7 29K 54K

(b) LBNL

Day Conns. Out. (%) Hosts 3-Tuples

1 9.8M 28.5 325K 1.0M

2 15.7M 63.3 364K 1.9M

3 17.4M 56.8 356K 1.9M

Table 1: Data summary.

Our datasets come from the border of the International
Computer Science Institute (ICSI) from August 11–18 2008
and the Lawrence Berkeley National Laboratory (LBNL)
from September 14–16 2008. The data is split into day-long
connection logs. The LBNL logs are generated by the Bro
IDS system [7] as it monitors the network. The ICSI logs
are generated by tcpsum4 run across packet traces taken

4tcpsum is bundled with the tcptb library, available from
http://www.icir.org/mallman/software/tcptb/.

at the institute’s border. Table 1 shows high-level charac-
teristics of each dataset. The tables show (i) the overall
number of connections, (ii) the percentage of outgoing traf-
fic (which calibrates the NAT-based analysis in § 6), (iii)
the number of unique hosts observed and (iv) the number
of unique (source IP, destination IP, service port5) tuples
in each dataset. This last item shows the number of con-
nections that cannot experience collisions in our simulations
since the first connection involving some three-tuple cannot
collide using any algorithm.6

Finally, we make several notes about the simulations: (i)
we assume an ephemeral port space of 63 KB, (ii) the length
of the TIME-WAIT period varies in our experiments as, even
though the period is standardized (at 4 minutes), we have
anecdotally heard of a variety of times used in practice and
(iii) we run 10 simulations with each algorithm for each day
in our datasets with the exception of A0 and A3—neither of
which involves randomness.

5. STANDARD CONNECTIVITY
SIMULATIONS

The results in table 2 show the average7 percentage of
collisions experienced in simulations based on the ICSI and
LBNL datasets. These simulations were run for each algo-
rithm and parameter set we consider (rows) and for three
values of TIME-WAIT state retention (columns). We see
roughly an order of magnitude more collisions in the LBNL
data than in the ICSI data—owing to the size and therefore
heterogeneity disparity between the two institutions. The
trends are, however, similar across the data. A0, A3 and
A4 show no collisions8 in both datasets. In addition, the
prevalence of collisions in the remaining algorithms increase
with the length of the TIME-WAIT period. A1 and A2 show
similar collision rates, which is expected since the essence of
each algorithm is the same (i.e., a random port selection).
Small increments in A5 allow for random port choices with
lower collision rates than A1 or A2. As the length incre-
ment increases in A5 the collision rate approaches that of
A1 and A2. This is because the as the increment used by
A5 increases the protection against wrapping—and therefore
collisions—decreases to the point where instead of method-
ically stepping through the port space the choices become
essentially random. These results also serve to underscore
the point that while A5 can reduce the collision rate with a
small increment, the cost is less obfuscation of the resulting
choice.

Next we turn to assessing how many port selections a host
may have to make when trying to setup a connection. Table
3 shows the average daily maximum number of port selec-
tions required to setup a connection. This serves to illustrate
a bound on the problem of collisions. Again we see that the

5The service port is the destination port in the original SYN
packet.
6Note, each day is treated independently and clearly colli-
sions can happen in reality on the first connection observed
on a given day due to activity on the previous day. Given
that each log is 24 hours long we believe this “startup effect”
to be small.
7We report averages in this paper. The simulations do not
vary greatly, with the range being a small fraction of a per-
cent across all our simulations.
8Throughout the paper we indicate no collisions with a “—”
in the tables for readability.



(a) ICSI

Alg. 30 sec 120 sec 240 sec

A0 — — —

A1 0.006569 0.014639 0.025943

A2 0.006629 0.014632 0.025487

A3 — — —

A4−5 — — —

A4−10 — — —

A5−10 — — —

A5−100 0.000090 0.000144 0.000187

A5−500 0.000792 0.002722 0.005801

A5−1000 0.001649 0.004181 0.012758

(b) LBNL

Alg. 30 sec 120 sec 240 sec

A0 — — —

A1 0.058737 0.164135 0.299890

A2 0.058896 0.164355 0.299577

A3 — — —

A4−5 — — —

A4−10 — — —

A5−10 0.000065 0.000101 0.000092

A5−100 0.001945 0.024399 0.155937

A5−500 0.022260 0.112994 0.243165

A5−1000 0.035634 0.134483 0.268328

Table 2: Average percentage of collisions as a function of both port selection algorithm (rows) and the
assumed length of TIME-WAIT state retention (columns).

(a) ICSI

Alg. 30 sec 120 sec 240 sec

A0 — — —

A1 2.057143 2.171429 2.471429

A2 2.028571 2.071429 2.314286

A3 — — —

A4−5 — — —

A4−10 — — —

A5−10 — — —

A5−100 1.277778 1.421053 1.578947

A5−500 1.833333 1.947368 2.052632

A5−1000 2.000000 2.052632 2.210526

(b) LBNL

Alg. 30 sec 120 sec 240 sec

A0 — — —

A1 3.700000 4.633333 5.666667

A2 3.400000 4.133333 4.766667

A3 — — —

A4−5 — — —

A4−10 — — —

A5−10 1.966667 2.000000 2.000000

A5−100 3.000000 3.766667 4.500000

A5−500 3.200000 4.133333 4.800000

A5−1000 3.366667 4.166667 5.000000

Table 3: Average maximum number of ephemeral port choices required per day.

LBNL data shows a wider range of results—highlighting the
general notion that network data is heterogeneous and ob-
servations from more than one network are key in drawing
general conclusions. The data in these tables follows the in-
tuition developed above. A1 and A2 are the most prone to
many collisions. The worst case for A5 increases with the
increment. Finally, we see that the number of collisions in-
creases as the TIME-WAIT retention period is lengthened.
We stress that these tables show the worst case per day. In
both datasets when an initial connection attempt yields a
collision, one additional port selection suffices in over 95%
of the cases regardless of algorithm.9

Finally, we assess the percentage of hosts that experience
collisions. Table 4 shows the average percentage of hosts
that experience at least one collision across our simulations.
The general pattern is familiar and expected from the results
presented above. For instance, the number of hosts involved
increases with the TIME-WAIT period. Comparing these
tables with the overall prevalence of collisions (table 2) we
note that even though A5 trends towards an overall similar
number of collisions as A1 and A2 as the increment is in-
creased, the number of hosts impacted by A5 is less (by at
least a factor of 2) than that of A1 and A2. This shows that
stepping through the space avoids collisions on hosts with
low connection-initiation rates, but cannot avoid collisions
when the rate is aggressive such that wrapping is a routine
operation.

6. NATED CONNECTIVITY
SIMULATIONS

9We find only one exception to this in one simulation of
A5−1000 using the ICSI dataset where 10 collisions occurred
and only 8 were fixed by the second attempt.

A second situation we consider is that of an enterprise
network using a network address translator (NAT) at the
border. We run a second set of simulations in which we
replace the originator’s IP address with a single institution-
wide address for each locally-originated connection (at ICSI
or LBNL). This has the effect of removing a dimension of
the connection identifier and hence may make ephemeral
port selections more prone to collisions by using a single
port pool across multiple end hosts. Our simulations likely
represent an upper bound on the collisions a network would
experience because networks may have various proxying and
relaying services (e.g., for email and web transactions) and
therefore while we use a single external IP address we expect
many situations to have at least a few such IP addresses. Fi-
nally, in the simulations presented in this section we use a
TIME-WAIT period of 240 seconds to show a worst case.
We conducted simulations with shorter TIME-WAIT peri-
ods and the trends illustrated in the last section hold for
NATed connectivity.

Table 5 shows the results of our simulations involving a
NAT for the ICSI and LBNL traffic respectively. As with
the non-NAT case, the baseline algorithm A0 shows no col-
lisions in the ICSI simulations. However, we do observe a
negligible collision rate in the LBNL data. We find that
there are a small number of hosts that do connect to par-
ticular servers relatively frequently, as well as services that
are simply popular (e.g., Google). When all internal hosts
make connections through a NAT and the NAT simply cy-
cles through the port space the probability of collision in-
creases over all the machines independently cycling through
the port space. This happens with greater propensity at
LBNL than at ICSI simply because LBNL has more hosts,
users and traffic competing for the same size ephemeral port
pool. Across the entire 3 days of LBNL data we observe an



(a) ICSI

Alg. 30 sec 120 sec 240 sec

A0 — — —

A1 0.029100 0.044700 0.053600

A2 0.030300 0.043300 0.052600

A3 — — —

A4−5 — — —

A4−10 — — —

A5−10 — — —

A5−100 0.000700 0.001100 0.001600

A5−500 0.003000 0.006800 0.011400

A5−1000 0.006300 0.013100 0.020100

(b) LBNL

Alg. 30 sec 120 sec 240 sec

A0 — — —

A1 0.187200 0.271300 0.319900

A2 0.190500 0.272000 0.318800

A3 — — —

A4−5 — — —

A4−10 — — —

A5−10 0.000300 0.000300 0.000300

A5−100 0.001400 0.002900 0.005400

A5−500 0.019900 0.070000 0.091500

A5−1000 0.057100 0.103300 0.132800

Table 4: Percentage of hosts experiencing collisions.

(a) ICSI

Alg. Mean Avg. Max Hosts

A0 — — —

A1 0.026779 2.428571 0.000276

A2 0.025918 2.300000 0.000287

A3 — — —

A4−5 — — —

A4−10 — — —

A5−10 — — —

A5−100 0.001949 1.947368 0.000030

A5−500 0.017328 2.166667 0.000056

A5−1000 0.018825 2.210526 0.000075

(b) LBNL

Alg. Mean Avg. Max Hosts

A0 0.006795 13.333333 0.000003

A1 0.317740 5.666667 0.002172

A2 0.322352 5.000000 0.002203

A3 0.006795 13.333333 0.000003

A4−5 0.000059 1.875000 0.000002

A4−10 0.000002 1.250000 0.000001

A5−10 0.025706 4.266667 0.000003

A5−100 0.187828 4.800000 0.000035

A5−500 0.268561 4.933333 0.000673

A5−1000 0.291006 5.000000 0.000888

Table 5: Simulation results for NAT simulations.

average of 94 connections/second initiated from within the
lab. This means a NAT doing simple cycles would work
through the entire 63 KB ephemeral port space in roughly
11.5 minutes. With a 4 minute TIME-WAIT period it is
clearly possible that the frequency of accessing a particu-
lar service does not have to be significant to increase the
collision rate at this traffic level. While the chance of a col-
lision with A0 is overall low (< 0.01%), we note that when
a collision happens it can be problematic to find an avail-
able port. The highest average daily worst case is just over
13 attempts! This is directly attributable to high-rate ap-
plications and the sequential allocation strategy.

The collision rates for A1 and A2 are similar to that shown
in the non-NAT case. The NAT results for A1 and A2 show
that a relatively few “heavy hitters” are responsible for most
of the collisions since replacing the source IP address in traf-
fic originated by ICSI and LBNL does not dramatically in-
crease the overall collision rate. Further, we see a small
increase in the maximum number of collisions any one con-
nection experiences with the NAT, which shows that some
coalescing has occurred in certain cases. The number of
hosts involved in the collisions, however, decreased in the
NAT case. This is natural because we have coalesced all
local hosts into a single host—thereby reducing the number
of hosts in the simulation and also critically the number of
hosts experiencing collisions.

In the case of A3 we observe no collisions in the ICSI
experiments, just as for the non-NAT case. However, A3

shows a negligible number of collisions in the LBNL sim-
ulations (< 0.01%), in contrast to the non-NAT case. A3

shares the general cycling of the port space with A0, except
A3 uses an offset as discussed in § 3. This offset effectively
allows for a set of 63 KB different cycles to be happening
at the same time. This has the effect of spreading out the
use of the port space and therefore A3 shows fewer colli-

sions than A0 in the LBNL simulations. This is because
the port chosen effectively becomes more randomized and
all allocations are not dependent on the same cycling. We
see that for A3—just as for A0—when a collision happens
the worst case can be quite bad, with an average worst case
of 13 collisions over our simulations.

The collision rate observed for A4 is negligible in all cases
we tested—regardless of NAT or data source. When com-
pared with A3 we observe a reduction in the collision rate in
the LBNL simulations—even though in both cases the col-
lision rate is negligible. This shows that there is little gain
in complicating ephemeral port selection by using multiple
counters that independently cycle through the port space.
In addition, A4 shows the best worst case performance (with
averages of less than 2, which indicates that on some days
we experienced no collisions).

A5 shows behavior similar to the non-NAT case. As the
increment is increased the collision rate converges towards
that of A1 and A2 while involving less hosts in collisions. We
observe a small increase in the worst case number of colli-
sions experienced when establishing a connection through a
NAT due to the coalescing effect.

We again note that the worst case performance given in
table 5 is just that: the worst case. We find that across all
NAT simulations at least 92% of the cases when an initial
connection attempt experiences a collision the next attempt
is successful.10

7. SUMMARY
Across both datasets and standard and NATed connec-

tivity we observe that all the algorithms offer low collision
rates—at most 0.3%—and involve only a small number of

10There are two exceptions to this general finding. In both
simulations, 86% of initial collisions were fixed by one addi-
tional re-try.



hosts—again at most 0.3%. A0 shows nearly no collisions
in our study, but also offers the most predictable ephemeral
port choices. A1 and A2 show the largest collision rates and
perform quite similarly. A3 and A4 offer the lowest colli-
sion rates. Further, A4 does not require large tables to offer
low collision rates. However, larger tables may provide for a
higher level of obfuscation. We introduce A5, which we show
offers a middle ground between the algorithms that depend
on randomization (A1 and A2) and the deterministic algo-
rithms that offer obfuscation but no randomization (A3 and
A4). The size of the increment used in A5 allows for direct
control of the tradeoff between the level of obfuscation and
the collision rate.

Introducing a NAT into the network did not increase the
collision rate appreciably. This indicates that a fairly few
“heavy hitter” hosts and services are responsible for many
of the collisions experienced. This may indicate a need for
special handling of such hosts in some cases (e.g., by tracking
the TIME-WAIT state on the client as suggested in [10]).
We note that an institution-wide NAT or proxy naturally
obscures ephemeral port selections simply because to the
vast range of services such devices connect to and the overall
rate of the traffic. Together these make it difficult at best
for an off-path attacker to successfully guess a connection
identifier.

Finally, we reiterate that in all cases we needed to make
assumptions we chose the worst case (e.g., where TIME-
WAIT state is being held, length of TIME-WAIT retention,
the definition of a “connection”, the number of external ad-
dresses, etc.). Therefore, the results presented in this short
paper likely represent an upper bound on reality.

Acknowledgments
We thank Vern Paxson for the LBNL data, Joe Touch for
comments on an earlier version of the draft and the mem-
bers of the IETF’s Transport Working Group for useful dis-
cussions. This work was partially funded by NSF grants
0205519 and 0433702.

8. REFERENCES
[1] S. Bellovin. Defending Against Sequence Number

Attacks, May 1996. RFC 1948.

[2] R. Braden. TIME-WAIT Assassination Hazards in
TCP, May 1992. RFC 1337.

[3] F. Gont. On the Generation of TCP Timestamps,
Oct. 2008. Internet-Draft
draft-gont-tcpm-tcp-timestamps-00.txt (work in
progress).

[4] A. Heffernan. Protection of BGP Sessions via the
TCP MD5 Signature Option, Aug. 1998. RFC 2385.

[5] S. Kent and K. Seo. Security Architecture for the
Internet Protocol, Dec. 2005. RFC 4301.

[6] M. Larsen and F. Gont. Port Randomization, Aug.
2008. Internet-Draft
draft-ietf-tsvwg-port-randomization-02.txt (work in
progress).

[7] V. Paxson. Bro: a system for detecting network
intruders in real-time. Computer Networks, 31(23-24),
1999.

[8] J. Postel. Transmission Control Protocol, Sept. 1981.
RFC 793.

[9] A. Ramaiah, R. Stewart, and M. Dalal. Improving
TCP’s Robustness to Blind In-Window Attacks, Nov.
2008. Internet-Draft draft-ietf-tcpm-tcpsecure-11.txt
(work in progress).

[10] A. Ramaiah and P. Tate. Effects of Port
Randomization With TCP TIME-WAIT State, July
2008. Internet-Draft
draft-ananth-tsvwg-timewait-00.txt (work in progress).

[11] R. Rivest. The MD5 Message-Digest Algorithm, Apr.
1992. RFC 1321.

[12] J. Touch. Defending TCP Against Spoofing Attacks,
July 2007. RFC 4953.

[13] J. Touch, A. Mankin, and R. Bonica. The TCP
Authentication Option, Nov. 2008. Internet-Draft
draft-ietf-tcpm-tcp-auth-opt-02.txt (work in progress).

[14] P. Watson. Slipping in the Window: TCP Reset
Attacks. In CanSecWest, 2004.


