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ABSTRACT

While residential broadband Internet access is popular amym
parts of the world, only a few studies have examined the chara
teristics of such traffic. In this paper we describe obsé@aatfrom
monitoring the network activity for more than 20,000 resiik
DSL customers in an urban area. To ensure privacy, all datais
mediately anonymized. We augment the anonymized paclesra
with information about DSL-level sessions, IP (re-)assignts,
and DSL link bandwidth.

Our analysis reveals a number of surprises in terms of théahen
models we developed from the measurement literature. Ronex
ple, we find that HTTP—not peer-to-peer—traffic dominatesaby
significant margin; that more often than not the home usersé-
diate ISP connectivity contributes more to the round-tiripess the
user experiences than the WAN portion of the path; and that th
DSL lines are frequently not the bottleneck in bulk-trangferfor-
mance.

Categories and Subject Descriptors

C.2.2 [Computer-Communication  Networks]: Network
Protocols—Applications; C.2.3 [Computer-Communication
Networks]: Network Operations—Network monitoring

General Terms
Measurement, Performance

Keywords

Network Measurement, Application Mix, HTTP usage, TCP per-
formance, Residential Broadband Traffic, DSL

1. INTRODUCTION

Residential broadband Internet connectivity is a matureice
in many countries. This foundation of rich access allowssuse
tightly integrate network use into their lives—from chewithe
weather or sports scores to shopping and banking to comttnic
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ing with family and friends in myriad ways. However, the natof
the connectivity differs from previously studied enviroemts such
as campus networks and enterprises in salient ways.

First, users of residential broadband connections wiérofiave
different goals than those in other environments, and areuio
ject to the same sorts of strict acceptable use policiesrhgtreg-
ulate their access at work or at school, such as prohibiagamst
accessing certain Web sites or employing certain appdicati In
addition, we expect that the users who set up hosts and amycill
equipment in residences often have no expertise in systemmad
istration, nor much desire to understand any more than isssecy
to “make it work”. Finally, unlike for campuses (and to a less
extent, enterprises), researchers rarely have large-scakess to
residential traffic, and thus its makeup, dynamics, andatians
remain underexamined.

In this work we present observations developed from passive
packet-level monitoring of more than 20,000 residential liBes
from a major European ISP. This unique vantage point previde
broad view of residential traffic, enabling more comprehanand
detailed characterizations than was possible in previarg vguch
as Cho et al.'s studies based on backbone traces [19, 9,thé}, o
work that examined specific applications like P2P-assistedent
distribution [27] and Skype [7], or studies using active swga-
ments [12].

In this initial exploration we focus on studying a broad rang
of dominant characteristicsf residential traffic across a number
of dimensions, including DSL session characteristicsyoek and
transport-level features, prominent applications, artévoek path
dynamics. Our study discovered a number of results we found s
prising in terms of the standard “mental models” one dev&fopm
the Internet measurement literature and by talking withrajoes
and colleagues. For example:

e HTTP traffic, not peer-to-peer, dominates. Overall, HTTP
makes up nearly 60% of traffic by bytes while peer-to-peer
contributes roughly 14%. Even if we assume that all un-
classified traffic is peer-to-peer, this latter figure onlses
to one-quarter, confirming contemporaneous observatipns b
Erman et al. [15] for a major US broadband provider.

e DSL sessions run quite short in duration, with a median
length of only 20—30 min. The short lifetime affects the rate
of IP address reassignments, and we find 50% of addresses
are assigned at least twice in 24 h, and 1-5% of addresses
more than 10 times, with significant implications for IP ad-
dress aliasing.



| Name | Time | Duration| Size | Loss | | Name [ Time | Duration | Loss |
WEEK | Aug 08 | 14x 100-600 none TEN Feb 2009 10 days | none
90 min | GB ea. EVERY4 [ Jan—Feb 2009 6x 24 h | none

SEP Sep08 | 24 h >4 TB | several multi-second
periods with no
packets Table 2: Summary of additional anonymized DSL session in-

APR | Apr09 | 24h >4TB | see above formation

. . < f 6—=o all sessions
Table 1: Summary of anonymized packet traces S / median duration per DSL line

e Delays experienced from a residence to the ISP’s Internet
gateway often exceed those over the wide-area path from the
gateway to the remote peer. We find a median local com-
ponent of 46 ms (due to DSL interleaving), versus a median

remote component of 17 ms.

e Users rarely employ the full capacity of their lines, confirm
ing observations by Siekkinen et al. [47]. 802.11 wireless

networking in customers’ homes, and TCP settings on the

residential systems, appear to limit the achievable threug
put.

We organize the paper as follows. After giving a short ovewi
of our datasets and terminology in Section 2, we look at DS se
sion characteristics in Section 3. In Section 4 we explorewap-
plications are popular among the user population, and takesar
look at the most predominant, HTTP, in Section 5. We briefly ex
amine transport protocol features in Section 6, and exaipértie
characteristics in Section 7. We summarize in Section 8.

2. DATA AND TERMINOLOGY
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Figure 1: PDF of session durations for sessions with duratio
longer than 5 minutes for datasetTEN.

router, for which we employed Endace DAG network monitoring
cards [14] for traffic capture. Immediately after captureaxtract
application classifications (using DPD [13]; see Sectidj 4nd
information such as HTTP headers from the traces using B [4

We base our study on passive, anonymized packet-level ob-storing anonymized versions of the packet and applicatieadh

servations of residential DSL connections collected atreggy

ers for later processing. Table 1 provides an overview ofdtte

tion points within a large European ISP. Overall, the ISP has traces, including when gathered and overall si?¢EEK reflects

roughly 10 million (4%) of the 251 million worldwide broad-
band subscribers [38]. They predominantly use DSL. The moni
tor operated at the broadband access router connectingnogist

14 intervals of 90 minutes each, gathered twice per day dufia
same hours over the course of one week. In addition, we gath-
ered anonymized DSL session information, including theises

to the ISP’'s backbone. The access bandwidth of the monitored start and end times, anonymized IP address, anonymizedairke

lines varies between 1,200/200 Kbps (downstream/upsjreaih
17,000/1,200 Kbps, with the exact rate depending on botlsuke
tomer’s contract and their distance from the DSLAM (the KSP’
line-card). In the portion of the network we monitored mosens
had distances low enough to in principle support 17 Mbps.

For clarity of exposition, we define the following terms.liAe
denotes a physical DSL line as identified by a line-card ifient
We define a DSL-levesessionas the period when the DSL mo-
dem and the line-card are together in operation. We refehndo t
network between the monitoring point and the customer atothe
cal side as opposed to thremote siddremainder of the Internet).
Similarly, the customer sendgstreamtraffic and receiveslown-
streamtraffic. A flow refers to unidirectional data transmission
at the usual 5-tuple granularity (IP addresses, transpotogol,
transport ports). Aconnectionis a bi-directional transport-level
communication channel, demarked for TCP by the usual cbntro
packets (SYN, FIN/RST) and for UDP by the the arrival of thetfir
packet and the absence of activity detected using an idleotimn
of 20 s. Finally, theoriginator endpoint actively initiated the con-
nection, as opposed to tihesponder which passively awaited the
connection request.

identifier, and the configured access-bandwidth. Along ®iBL
session traces for each of our packet measurements, waetii
10-day DSL session-only trace from Jan 2008K), as well as six
separate 24h session-only traces (see Table 2).

To simplify the presentation, we focus our discussionS&®
and TEN. However, we verified our results across all traces and
explicitly point out differences. In particular, we use thesamples
from WEEK to verify that there are no dominant day-of-week or
other biases apparent in the 24 h tracg8H, APR). In addition,
we cross-checked our results with sampled NetFlow datartegbo
by 10 of the ISP’s routers. This further increases our confiden
the representativeness of our application mix results.

3. DSL SESSION CHARACTERISTICS

We begin our study with a look at the behavior of the users’ DSL
sessions (periods of connection to the ISP’s network). A ffies
sic question concerns the durations of such connectiontvdxle
analysis studies often make the assumption that one carfP b |
dresses as host identifiers (for example, for studies thattahe
number of systems exhibiting a particular phenomenon), pad

Our monitoring vantage point allowed us to observe more than vious studies have found stability in these mappings on tbero
20,000 DSL lines from one urban area, connected to one accesf several hours to days. Moore et al. analyzed the 2001 Code



SessionTimeout 7.2%

PortError 7.7%

- Other 1.9%
U= 1dleTimeout 1.7%

Figure 2: DSL (Radius) session termination causes distriltion
for sessions lasting longer than 5 minutes.
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Figure 3: Relative number of concurrent DSL lines across tine
for one 24h weekday period of dataseTEN. Note the base-line.

Red outbreak and found that for larger timescales (days aks)e
IP addresses cannot be used as reliable host identifiersodie t
reassignment [35]; they did not examine timescales belwerae
hours. Xie et al. observed some highly volatile dynamic IBrass
ranges, which they attributed mainly to dial-up hosts [54].

Thus, we expected to find typical session lengths of several
hours. However, we find instead that many are quite short. We
base our analysis on Radius [43] logs, which many Europe&as IS
use for authentication and IP address leasing. Radius gsppm
timeouts,SessionTimeowdnd ldleTimeout though the monitored
ISP only makes use of the firsBessionTimeoyterforms a role
similar to the DHCP lease time, limiting the maximum lifeérof
a session. The ISP sets it to 24 hr (a popular choice among Euro
pean ISPs [52, 37]). DSL home routers generally offer aroopth
reconnect immediately after a session expires. Howeveagritrast
to DHCP, Radius does not provide an option to request a péatic
IP address (e.g., the previously used IP address), and hallk®vs
addresses to change across sessions.

We analyzed the DSL session duration of the Radius logs, ex-
cluding sessions lasting under 5 minutes. Surprisinglyfimeethat
sessions are quite short, with a median duration of only Q@riBI-
utes. Figure 1 shows the distribution of DSL session dunatior

downstream
upstream

e
@J*MW

/

O
A

W
M

relative volume

T T T T T T
8h 12h 16h 20h Oh
time

Figure 4: Bandwidth usage of all DSL lines across time (1 min
bins).

those longer than 5 minutes, computed over all sessiongy afih

the distribution of the median session duration computedyst
line. The data exhibits two strong modes around 20-30 msnute
and 24 hr (the maximum duration given the Radius setup)ij-part
tioning the DSL lines in two large groups: always-connedieels,
and lines that only connect on demand and disconnect stafrtly
ter. We do not find much in between (lines connected for severa
hours). While previous work found short sessions (70%rigstit
most 1 hour) in the context of wireless university netwo@][ we
found it striking to discover such short DSL sessions indesiial
networks, in violation of our mental model that sessions ld/dne
significantly longer-lived.

To check if there is a significant difference in DSL session du
rations for P2P users vs. non-P2P users (see Section 4),rtire pa
tioned the DSL-lines into two groups. Overall, the charasties
of the distribution are similar, with two prevalent modeswever,
we find that P2P users tend to have longer session duratighs an
that a larger fraction of P2P users always remain connected.

To better understand the high prevalence of short sessigms,
examined the Radius termination status in the logs. Radffes-d
entiates between 18 termination causes. Figure 2 showsdtne d
bution of causes for sessions longer than 5minutes. We wabser
that more than 80% of sessions are terminated by user re(gisst
rises to 95% for sessions under 5 minutes). Most likely tlzase
caused by idle timeouts in the DSL modem on the client side.
While most current broadband contracts are flat-rate, inptst
time-based contracts were popular in Europe. Indeed, fhése
are still offered by most European ISPs. Therefore, it igljikhat
consumer DSL routers come with a small idle timeout as a fac-
tory default in an effort to aid users in keeping down costs, we
verified this for several popular home routers. The secondt mo
common termination cause is PortError, which likely reswhen
users power off their DSL modem as part of powering down their
entire computing setup.

Since many DSL sessions are short and Radius does not meserv
IP address assignments across sessions, we therefore éxpec
find) IP addresses used for multiple DSL lines across eadseft
During a 24 hr period we find 50% of the IP addresses assigned to
at least 2 distinct DSL lines, and 1-5% to more than 10 DSlsline
These results underscattee peril involved in using an IP address
as a long-term reliable host identifier



Previous work found that for consumers diurnal patternsg sta
with activity in the morning, steadily increasing throughdhe
course of the day, with the height of activity starting in #ely
evening and lasting till midnight [19, 17]. We see this samerall
pattern in terms of the number of active DSL sessions, as show
in Figure 3. However, we note that the variation is in fact esid
with 40% of the lines permanently connected. We also obsarve
slight day-of-week effect, with Sundays having larger nenshof
concurrent sessions, and Friday/Saturday having lowdy oeix-
ima than other weekdays.

We also observe a diurnal pattern in bandwidth usage, per Fig
ure 4, with the relative differences now being much more pro-
nounced. After all, keeping a session alive does not imply an
bandwidth usage per se.

Our data also offers us an opportunity to analyze the peatenti
resource requirements of an ISP wide NAT deployment. Inigart
ular, we study how many public IP addresses are needed togupp
the traffic on the monitored lines. For this purpose we cohat t
number of concurrently active TCP/UDP connections and asid a
min or 10-min timeout to the duration of each 5-tuple. Doing s
implies that we do not allow the immediate reuse of each fetup
Under the assumption that a single public IP address carosupp
65,536 concurrent connections (due to available port 9peeéind
that a single public IP address suffices to support 1,30062:0-
tive lines with a 10-min timeout, and roughly twice that whesing
a 5-min timeout.

Given the maximum number of concurrently connected lines, 5
10 public addresses would in principle suffice to accomnmtiat
monitored DSL-lines—a huge reduction of the required mutHi
address space.

So far we only considered outgoing connections, yet a NATtmus

otherDPD 10%
,BitTorrent 8.5%

unicassified
10.6%:38

HW eDonkey 5%
N\ \
‘ - NNTP 4.8%

- well-known 3.6%

Figure 5: Application Mix for trace SEP.

deep packet inspection and traffic management systemsates|
customers sites to assess the application usage [45, 46 d€he-
logic claimed that by 2006 P2P accounted for more than 70% of
the traffic, with Ipoque supporting this claim for 2007. F@03
Ipoque found that P2P in Europe accounted for more than 50% of
traffic (with Web contributing another 25%).

On the other hand, Hyun-chul et al. reported that payloas:da
analysis conducted in 2004 from within the PAIX backbonenfibu
almost no P2P traffic, but more than 45% HTTP [23]. On the other
hand, the same study developed how at various universityonks
the traffic differs; for example, at KAIST in 2006 they found-u
der 10% HTTP, and 40-50% P2P.

Choetal. [9, 10] also found in 2008 that TCP port 80 contelut
only 14% of all bytes in Japanese ISP backbones (9% in 2005),

also accommodate incoming connections. We find that very few \yith the bulk of traffic being on unassigned ports. None of the

lines utilize incoming connections for traditional semscsuch as
HTTP. Most successful incoming connections are to ports-com
monly used for VoIP (SIP and RTP), default P2P ports, IPSgc ke
management, and traceroute destination ports. It is fikugiat
P2P applications can use Universal Plug-and-Play to dyceliyi
negotiate ports with the NAT devices. SIP and RTP include NAT
traversal solutions and proxy services. In addition, we firad al-
most all SIP connections are to/from the ISP’s SIP servecestIP

is used as a transparent VoIP replacement for end-custoMers-
over, one does not have to support traceroute. As such ibappe
that one would not need too many additional public IP adé®ss
for incoming connections.

default P2P ports contributed more 1% of the traffic voluniée(
authors point out that WINNY, the most prelevant P2P apptica
in Japan, uses unassigned ports.) They found that resatlzaffic
exhibited a shift to more streaming and video content, whigees
with recent blog and news reports that claim that P2P trafic h
somewhat declined, with streaming media increasing [20/\8fh
an assumption that the unassigned ports indeed reflectedneP
datasets indicated that P2P dominated the total traffiawelu
From a somewhat different perspective, Kotz and Essien [29,
30] reported that 50% of wireless traffic in 2001 on a uniugrsi
campus, which included residential buildings, used HT ViR4-
known ports, with 40% of this traffitncomingto local servers.

While we acknowledge that more in-depth study is needed, it Lengerson et al. [22] compared these results with neweegrac

appears that such NAT deployment would indeed conserveya ver
large number of public IP addresses. Whether it proves nenag
able, and/or impedes innovation, remains a separate qoesti

4. APPLICATION USAGE

from 2003/2004 of the same network, finding major shifts ia th
application mix (HTTP 63%-27%, File systems 5%19%, P2P
5%—22%), and that more traffic stayed on-campus than in 2001
(70%, up from 34%). Of the P2P traffic, 73% remained internal.
Therefore, we cannot easily compare these results to rggtle

To understand the popular applications among our user popu-broadband use. Finally, Fraleigh et al. [18] also used alpased

lation, we examine our application classifications (maddada-
collection time) and anonymized application-layer heddaces.
We in addition assess how well purely port-based classificat
would perform for correctly identifying residential traffpatterns,
and characterize traffic asymmetries.

Previous studies of Internet application mix found HTTP te-p
dominate around the turn of the century. Fraleigh et al. H8]
alyzed packet level traces recorded from the Sprint backbon
2001, finding that in most traces HTTP contributed40% of all
bytes, though several traces had P2P contributing 80%.

approach on 2001 data, finding that on some links 60% of theshyt
come from P2P and only 30% from HTTP, although most of their
traces have more than 40% HTTP.

Given this context, we now turn to an analysis of application
usage in our 2008/2009 residential traces.

4.1 Application usage analysis

To robustly identify application protocols, we employ theoB
system’s Dynamic Protocol Detection (DPD) [13]. DPD essen-
tially tries to parse each byte stream with parsers for nooser

Subsequent studies found that P2P became the dominarnt appliprotocols, deferring determination of the correspondipgliaa-

cation. Ipoque and Cachelogic both used data from theirogepl

tion until only that application’s parser recognizes tfafic. DPD



also uses regular expression signatures to winnow dowmitia i
set of candidate parsers. The Bro distribution includesD&D
parsers/recognizers for BitTorrent, FTP, HTTP, IRC, PCEN\TP,
SSH, and SSL. We extended the set of detectors with partal re
ognizers for eDonkey and Gnutella (both based on L7-filtgnai
tures [32]), NNTP, RTP, RTSP, SHOUTcast, SOCKS, and Skype.

In the SEP trace we can classify more than 85% of all bytes,
with another 3.6% using well-known ports, as reflected iruregb.
We find thatHTTP, not P2Pjs the most significant protocol, ac-
counting for 57% of residential bytes. We also find that NNTP
contributes a significant amount of volume, nearly 5%. Altadks
of the NNTP bytes arise due to transfers of binary files, wifRR
archives §pplication/rar) being among the most common file types,
suggesting that the traffic reflects the equivalent of fileristy.

We find that P2P applications—BitTorrent, Gnutella, and
eDonkey—contributec 14% of all bytes, with BitTorrent the most
prevalent, and Gnutella almost non-existent. However_thélter
signatures for eDonkey may be incomplete. We observe afsigni
icant amount of traffic (1.2%) on well-known eDonkey portatth
the classifier fails to detect as eDonkey. The distributiozcoonec-
tion sizes for this traffic closely matches that for trafficsjtively
identified as eDonkey (and differs from other applicatiori§we
presume that this indeed reflects eDonkey traffic, then tleeatlv
share of P2P traffic increases to 17-19%, with eDonkey’s lpopu
ity roughly the same as BitTorrent’s. But even if we assunagah
unclassified traffic is P2P, the total P2P share still runevo@5%.

P2P applications could also in principle use HTTP for data
download, thus “hiding” among the bulk of HTTP traffic and in-
creasing the significance of P2P traffic volume. However,iour
depth analysis of HTTP traffic (Section 5) finds that this is the
case.

Streaming protocols(RTSP, RTMP, SHOUTcast) account for
5% of the traffic in terms of bytes. We identify RTSP and SHOUT-
cast using partial DPD parsers, while we identify RTMP’sduhs
only on its well-known port. We also find noticeable VoiceeoVP
traffic (Skype [7], RTP), about 1.3% of the total bytes.

In order to increase our confidence in the representatigenies
our application mix results, we analyzed sampled NetFlaa da-
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Figure 6: Relative application mix per access bandwidth. Bt
tom bar is HTTP, top bar unclassified.

However, we do find that lines with higher access bandwidth
have a higher utilization in terms of average volume per.line
Lines in the 3500 and 6500 Kbps categories contribute abooét
as many bytes per line than lines in the 1200 Kbps class, and
17,000 Kbps lines three times more. We also find that genexfal t
fic per line is consistent with a heavy-tailed distributiamd the
top 2.5% of lines account for 50% of the traffic.

To see if time-of-day effects influence the application nvixe
examine the application mix per hour, see Figure 7. We woxid e
pect to to observe more bulk downloads and less interactiffict

ported by 10 of the ISP's routers. This data shows that 50% of qyring off-hour period, which our data confirms. Night-titnef-

the traffic comes from TCP port 80. We further compared our re-
sults with those from a commercial deep-packet-inspecjmtem
deployed at a different network location, finding a closeahat

Our analysis of the other traces confirms the findings outline
above. In particular the other traces confirm that our resut not

fic includes a larger fraction of P2P traffic, though HTTP rama
dominant during every time slot. Also, we again note highalzil-
ity in NNTP due to the small number of lines using it.

In contemporaneous work Erman et al. [15] studied the aaplic
tion mix and HTTP content type of a major US broadband pravide

biased by the day-of-week we choose. However, while the HTTP j, the context of understanding the potential for forwardhiag.

traffic share in thedPR trace is about the same, we find slightly
more unclassified traffic. We note that the overall P2P tralfic
creases somewhat, and shifts from eDonkey to BitTorrentv(no
9.3%). Also the fraction of NNTP traffic decreases. On thig da
it only accounted for 2.2% of the traffic. Our hypothesis &ttbs-
pecially the latter observations reflect day-to-day vaoiet rather
than indications of trends, but we will require longer-timeasure-
ments to determine this definitively.

We might expect that application usage differs widely betwe
users with different access speeds. Figure 6 shows thecapph
mix seen for different downstream bandwidth rates. Althotige
mix does vary, the changes are modest, other than for more P2
traffic with higher bandwidths, and much higher NNTP prenate
for the 17000 Kbps class. However, only a small percentaipexf
use NNTP, so its contribution to traffic mix can see more |
across different types of lines.

1we do not consider video delivery via HTTP as streaming. We
refer to those as progressive HTTP downloads.

They find that HTTP contributes 61% on average and 68% dur-
ing the busy-hour to the traffic volume in the downstreamdire
tion while P2P only contributes 12%. As such, their resuits a
strikingly similar to our results, strengthening the olsgion that
HTTP is again on the rise and P2P on the decline.

4.2 Application mix of P2P VS. Non-P2P lines

Next we study if the application usage of those lines that fre

quently use P2P differs from those that do not. We find thaghbu
PS% of DSL-lines use P2P protocols and that their traffic dbotr

tion accounts for 30% of overall volume. If a line uses P2R@ro
cols, they usually also account for most of the line’s traf2€%
BitTorrent and 17% eDonkey. However, HTTP is still populada
is responsible for 23% of transferred bytes. We also notethiea
fraction of unclassified traffic is higher at 23%, correspongdo
roughly 64% of all unclassified traffic. There is hardly any NN
usage, only 0.6% of bytes.
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Figure 7: Relative application mix hour-by-hour. Same leged
as in Figure 6.

Protocol | Vpp/VD | Vpp/Vp |

HTTP 97.5% | 98.1%
BitTorrent 4.8% | 66.1%
eDonkey 36.6% | 55.9%
SSL 75.2% | 86.1%
NNTP 66.7% | 95.3%
RTSP 92.6% | 99.1%

Table 3: DPD vs. destination port.Vp is the volume identified
by DPD for a given protocol P, Vp is the volume observed on
the P’s default port(s), and Vpp is the intersection of the two
(running on P’s default port and detected asP).

Non-P2P lines predominantly use HTTP, for which it conttésu
72% of their traffic volume, followed by NNTP with 6.5%, with
only 5.2% of the traffic unclassified. Streaming servicesadse
more dominant in this group (6.7%).

4.3 Does port-based classification work?

Very often in networking studies it is easier or more tendble
acquire TCP/IP transport information rather than relyimgdeep
packet inspection systems. A significant question conogrttie

negotiated ports. Kim et al. [23] found that port-based clata
quality is inversely proportional to the fraction of P2Pffia

We confirm that for current residential traffic a port-based a
proach works quite well. Table 3 shows how well a port-baged a
proach would have performed for dominant application layrer
tocols. For each protoce®l, columnVpp/Vp is the fraction of the
traffic volume observed oR’s default port(s) that DPD identifies
asP. ColumnVpp/Vp shows the proportion of the traffic dpis
port that would be correctly identified by only inspecting thort
number.

We interpret the table as follows. Most of the HTTP traffic
(97.5% of bytes) does indeed appear on port 80 (middle cglumn
and when looking at traffic on port 80 we find that 98.1% of those
bytes come from HTTP (righthand column). The largest norFRIT
application on port 80 is SHOUTcast, a HTTP-like streamingy p
tocol. We therefore conclude that for our traffic, classifyport 80
traffic as HTTP yields a good approximation for the total vo&u
of HTTP traffic.

NNTP can only be partially identified by its default port (319
About two-thirds of NNTP traffic uses that port, and of thefica
appearing on that port, nearly all (95.3%) is indeed NNTBnir
DPD, we know that the remainder uses the well-known HTTP
proxy port, 3128. For SSL-based protocols (HTTPS, IMAPS,
POP3S, SSMTP, NNTPS) we find roughly 75% using well-known
ports. More than 90% of RTSP bytes appear on its default
port (554).

The story is vastly different for P2P protocols, howevemcsi
many institutions try to block P2P traffic with port-basedefis,
most P2P protocols have evolved to use non-standard, dgatyni
negotiated ports. Still, one third of the detected eDonkayfit
uses its well-known ports, and finding traffic on either thpegs
or on the BitTorrent ports generally means that the traffindeed
caused by those protocols. (Interestingly, we find that 39Bibf
Torrent traffic appears aeDonkeyports.)

4.4 Traffic symmetry

A common assumption regarding residential traffic is that th
downstream dominates the upstream, i.e., most bytes asdfarad
to the local side. Indeed, this assumption has shaped—aind is
grained in—the bandwidth allocations of ADSL and cable broa
band offerings. In addition, the prevalence of incomingretions
affects the feasibility of carrier-grade network-addrgasislation
(NAT).

In our datasets, we observe that most bytes appear in commect

accuracy of such studies regards the degree to which one canoriginated locally, with only 10% due to connections oragied re-

soundly infer application protocols based solely on the T@HP
port numbers that connections use. Certainly, in advexsaet-
tings, classification based on port numbers has quite lihpitaver,

motely. The largest fraction of incoming trafficisclassified (33%
of bytes), significantly higher than for outgoing connestipand
with P2P the most significant contributor by volume (28% BitT

due to the ease by which end systems can vary the ports they userent, 17% eDonkey). Voice-over-IP and streaming protoatds

However, for non-adversarial situations, one might hopkever-
age a predominant tendency for applications to indeed stittk
the port assigned for their use.

Our DPD-based analysis—which is highly accurate for thgse a
plications where we have a full protocol parser, and stiteptally
quite accurate when we employ only a partial parser—presamt
opportunity to assess the accuracy of port-based clag®fiassing
fairly solid ground truth.

Numerous previous studies have indicated that the advér2Bf
has rendered port-based approaches infeasible. Cho etQ4l. [
found that on Japanese Internet backbone links, 79% ofci@f§i
bytes) uses unknown ports, and that TCP port 80 contributls o
14% of bytes. In 2004 Karagiannis et al. [26] found P2P traffic
increasingly moving away from well-known ports to dynanflica

contribute significant volume to incoming connections (30%-
coming FTP data connections for active FTP sessions acéount
just over 1% of bytes in incoming connections. Finally, welfin
that very few lines offer “classic” Internet services likMEP or
HTTP, nor did they appear significantly involved in DDoS oaisc
ning activity (according to Bro’s scan detector).

When looking at the number of bytes transfered upstream and
downstream, i.e., the symmetry of traffic, we find that 85%Ilbf a
bytes come downstream, i.e., the asymmetry assumptionhdbes
(though likely bandwidth asymmetry helped shape this)sTino-
portion is much higher than seen in the Japanese backbode stu
ies [19, 9], which found only 55% of volume was downstream.
However, they found P2P dominated their traffic mix, thus-con
tributing to symmetry. For our traffic, we find that for P2P ap-



plications only 59% of bytes come downstream, yielding an up
load/download “share-ratio” of 459 ~ 0.7—still resulting in less
symmetry than seen in the Japanese studies.

5. HTTP USAGE

As HTTP dominates the traffic in our datasets, we now examine
it more closely to characterize its usage. A basic questimcerns
what has led to its resurgence in popularity versus P2Pdraffth
two possible reasons beirfg HTTP offers popular high-volume
content, e.g., [8, 42], and/@ii) HTTP serves as a transport protocol
for other application layer protocols, including possiBiIgP [50,
3]. We find that 25% of all HTTP bytes carry Flash Video, and
data exchanged via RAR archives contributes another 14%s,Th
clearly much of HTTP’s predominance stems from its use in pro
viding popular, high-volume content. We further find thaterms
of volume, HTTP isnot significantly used for tunneling or P2P
downloads.
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other 11.7% ﬂl“””m

nin 12.7% / /

|
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Figure 8: Top content-types for HTTP by bytes for trace SEP.

Many facets of HTTP usage have seen extensive study, as thor-

oughly surveyed by Krishnamurthy and Rexford [31]. Somel-stu
ies have focused on understanding user behavior [4, 5, Hile w
others have examined changes in content [53] and the peafaren

of web caching [1, 5, 16]. Other work has looked at media serve
workloads regarding file popularity and temporal propsit®ich

as in terms of live media streams collected from a large COH, [4
and file reference characteristics and user behavior ofguptimn
video-on-demand system in large-scale use [55].

More recently, various efforts have aimed at understanfiom
passive measurements how the rapid advent of “Web 2.0”-appli
cations has changed HTTP traffic patterns [44], as well as-Web
based applications such as YouTube [20, 57] and online lsoeia
works [21, 36]. Others have employed active probing to sepbt
cific features of such applications [8].

Sites likealexa.com employ user-installed toolbars to track the
popularity of various Web sites across demographic grolipgy
find thatgoogle.com, yahoo.com, youtube.com, andfacebook.com
currently rank among the most popular sites in terms of nurabe
visits. In contrast, in this study we analyze popularityemts of
traffic volume.

5.1 Content Type Distribution

We use Bro's HTTP analyzer to parse the anonymized HTTP
headers and compute the size of each HTTP request/respainse p
To identify the content types of objects, we both examind+h&P
Content-Type header and analyze the initial part of the HTTP body
usinglibmagic. We find more than 1,000 different content-types in
HTTP headers. Surprisingly, the results of these two aghez
often disagree: 43% of all HTTP bytes (28% of requests) exhib

analysis illustrates the need for considerable cautiomwiasing
an assessment of content types solely orOfwent-Type header.

Figure 8 shows a pie chart of the distribution of bytes percon
tent type from theSEP trace. The most common content-type by
volume is Flash Videov/deo/flv)—the format used by sites such as
youtube.com and many news sites—which contributes 25% of the
bytes. This is followed by the archive format RA&bplication/rar),
which accounts for 15% of HTTP traffic.

The unknown or unidentifiable content-types together aatou
for 18% of the HTTP traffic. We find that a significant portion
of this traffic reflects automated software updates, as 14%eof
unidentifiable bytes come from a single software update &ite
age types (GIF, PNG, and JPEG) contribute 11.4% of bytedewhi
video types other than Flash account for only 7.6%.

During the night we observe a higher fraction of RAR objects
and unknown objects, while the relative popularity of HTMhda
image types decreases. This indicates that the former duisé¢o
bulk transfers rather than interactive browsing.

The general content-type distribution is essentially amgjed
when considering thaPR trace. However, the fraction of non-
Flash Video Yideo/flv) video content increases (to 9%), while au-
dio content decreases. Moreover, the fraction of unknowrect
types from the automated software site falls to 7.5%mR. We
also confirmed that the presented results are not subjectytofd
week effects by comparing them with results fravEEK trace.

Drawing upon recent data from a major US broadband provider,
Erman et al. [15] also report similar content type distritus.
They find that video content corresponds to 32% of HTTP traffic
and compressed file downloads, e.g., RAR, for 16% of traffic.

a mismatch. Some disagreements are minor and easy to resolve  When separating lines with and without P2P protocol usage, w

For example, in the absence of a standardized MIME type repre
sentation we can find several different strings used for #mes
type. We also often see generic useapplication/octet-stream as
Content-Type. In other cases, the sub-type differs: for example, the
Content-Type header may specifyithage/gif,” while liomagic yields
“imagel/jpeg”.

WhencContent-Type andlibomagic disagree, we try to identify the
most likely “true” content type by using heuristics. We starnor-
malizing the content types and giving priorityltamagic for those
content types with well-known formats, e.g., most image\dddo
types. For other formats, we manually examine the mismatahe
pick the most likely resolution. We report mismatches wdd oot
resolve as #/x” in our results, and generic or unidentified content
types, such asapplication/octet-stream, as ‘h/n”. All in all, our

find that the content-type distribution for non-P2P linessely
matches the overall one. However, lines that use P2P havaliesm
fraction of Flash Video (20%) and RAR archives (11%), and a
larger fraction of unidentified content-types (25%) We ntitat
28% of this unidentified traffic is served from CDNs and 8% from
a Direct Download Provider.

5.2 Distribution Across Domains

Next we examine the distribution across domains, presgthie
results for theSEP trace in Table 4. We base our analysis on ex-
tracting the second-level domain from the HTHBst header. We
find that the byte distribution per domain fairly closely ctes a
Zipf distribution, per Figure 9. The top 15 domains accownt f
43% of all HTTP bytes. Since Flash Video is the most volumiou



| Rank | Domain | Fraction of Traffic |
1 | Direct Download Providet 15.3%
2 | Video portal 6.1%
3 | Video portal 3.3%
4 | Video portal 3.2%
5 | Software updates 3.0%
6 | CDN 2.1%
7 | Search engine 1.8%
8 | Software company 1.7%
9 | Web portal 1.3%
10 | Video Portal 1.2%

Table 4: Top domains (anonymized) for traceSEP

-2 -1

-3

log10(P[ volume > u [MB]])
4

[ T T
10 100

T T
1000 10000 100000

u [MB]

Figure 9: CCDF of HTTP volume per domain, for domains
with >1 MB of total traffic for trace SEP.

content-type, itis not surprising to find sites offeringe@s$ among
the top domains, and indeed most of the traffic to/from thédeos
portals has typeideo/flv. A Direct Download (DDL) provider also
accounts for a significant fraction of HTTP traffic. These DDL
providers (also called “One-click providers”) host largkedifor
their customers. When a user uploads a file, they receive-a (en
coded) URL that provides subsequent access for downlodting
file. Users can then distribute the URLSs to friends or shaeenth
in online forums. About 16% of the HTTP traffic involves Ditec
Download providers, with one provider in particular heg\dbm-
inating this traffic (93% of DDL traffic volume). Nighttimedtffic
exhibits a strong shift towards DDL sites; they account #éf#@2of
HTTP bytes during the 4 AM hour. DDL providers also originate
almost 90% of albpplication/rar bytes.

Similar results hold for thaPR trace, with only some changes in
the lower ranks. Given the small difference in volume fosthdo-
mains, we attribute such changes to normal day-to-dayrdiffees
rather than long-term trends.

5.3 User-Agent Popularity

To assess the popularity of different types of web clients ew-
tract theUser-Agent headers from the HTTP requests, group them
into broader categories, and then rank these categoriearsféered
volume. We group user-agents that we cannot classify, anobsts
lacking aUser-Agent header, asUnclassified”. Table 5 shows the

[ Rank | User-agent | Fraction of Traffic |

1 | Firefox 3 24.6%
2| MSIE7 20.4%
3| MSIE6 13.6%
4 | Firefox 2 11.9%
5 | Unclassified 5.5%
6 | Safari 4.3%
7 | Network libraries 4.0%
8 | Opera 2.8%
9 [ Streaming clients 2.5%
10 | Download managers 1.6%

Table 5: Top user-agents by volume

results. We can attribute more than 82% of HTTP traffic toitrad
tional Web browsers, with Firefox and Internet Explorertehav-

ing a share of approximately 35% each, while Safari and Opera
only contribute 6% and 3% of HTTP traffic. We also crosschdcke
with the results described above to verify that a large foacof

the traffic due to these traditional web clients involveslskabwn
domains. We do not see a significant volume contribution by ad
vertised P2P clients. Further, even if such P2P traffic fatls the
“Unclassified” bin, it represents little in terms of overall volume.
Therefore, in our dataset we do not observe a large propodfio
P2P systems running on top of HTTP, unless they employ mymicr
of well-known browsers, and also manipulate content typelsi-
mains.

6. TRANSPORT PROTOCOL FEATURES

We next delve into exploring which of the various TCP options
and configurations we see in actual use. Doing so allows uslito ¢
brate our expectations with regard to TCP throughput perémce,
which we then explore in Section 7. We limit our analysis ta-co
nections that transfer some actual TCP payload, which desla
large number of unproductive connections caused by battksca
scanning, or other establishment failures. The excludetheo
tions contribute about 0.1% of all bytes, but amount to 35%lbf
connections.

To compare our results to previous studies, we need to digterm
the usage of options ongger-hostbasis. However, unlike previous
studies we expect to find our dataset rife with NATs (withie th
DSL customers’ home networks). Therefore, isolating imtiial
hosts presents a challenge, since multiple hosts may sisimgla
DSL line. To address this difficulty, we assess option usadge/®
ways. The first technique considers each DSL line identifiea a
single host, and attributes any options observed in paclestsci-
ated with the line to that host. Doing so obviously under¢stiine
number of hosts. For the second approach, we assume that each
distinct TCP option set represents a distinct host. Thiyilover-
counts the number of hosts, so by employing both strategiesanw
bracket the ranges for host-based use of various TCP options

Window Scaling

Window Scaling enables efficient data transfer when the
bandwidth-delay product exceeds 64 KB. We find window sgalin
advertisements in 32—-35% of the SYNs in our dataset, with #% o
the connections failing to successfully negotiate the disgrdow
scaling. When focusing on only connections transferringanioan

50 KB, we find only a small change, with 34-38% successfully ne
gotiated window scaling. Finally, we observe that 45-62%hef



hosts in our datasets advertise window scaling (acrosegrand
across our under- and over-estimates for host count). Itrasn
Medina et al. reported that 27% of the observed client habtera
tised window scaling in early 2004 [34]. Of those advertisets,
97% were found to be zero (i.e., the client advertisesathiity to
scale windows, but not the desire to do so). In our datasetjove
not find a predominance of scale factors of zero; most scale fa
tors are in fact non-zero, and cover a wide range. Even with ou
rough counting of hosts, we can see that use of larger wintias's
become more routine over the past 5 years.

TCP Timestamp

Timestamps help TCP to compute more accurate round-trip tim
estimates, and serve to disambiguate old packets from nesw on
in very high-speed transfers. We observe timestamps askert
in 11-12% of the connections in our dataset, with 8% of the con
nections ultimately negotiating their use. We further obsdhat
21-39% of the hosts (across traces and host-counting n®tade
vertise timestamps, versus 22% as observed by Medina &4l. [
Further, Veal [51] probed a variety of web servers and catesiu
that 76% of the servers will use timestamps when requestédeby
client.

Selective Acknowledgment (SACK)

SACK facilitates more effective recovery from lost datarsegts.
We find that 97% of connections in our dataset advertise stippo
for SACK, with 82% of the connections successfully negotit
its use. In addition, we observe that roughly 9% of the connec
tions that negotiate SACK have at least one instance wheseby
receiver uses SACK to report a discontinuous arrival (eithee

to loss or reordering). Finally, we observe 82-94% of thetdos
in our dataset advertising SACK (across traces and hostticau
strategies). Medina et al. reported that in 2004 88% of thentd
attempted to use SACK [34], and that active probing foundjhdy
69% of successfully contacted servers supported SACK.

Maximum Segment Size (MSS)

The MSS governs the largest data segment a TCP sender wét tra
mit. Across all TCP traffic, we find advertised values in th@3

In a previous study, Dischinger et al. [12] recently used ac-
tive measurements to probe 1,900 broadband host from 11r majo
providers in Europe and North America. They found that tis¢-la
mile predominates as the performance bottleneck and ischigh
jitter in the achievable throughput. They also found thaglband
links have large queuing buffers of several hundred to s¢Weou-
sand ms, and that 15% of last-mile RTTs exceed 20 ms. However,
they do not compare access versus remote contributions To RT
While their study covers a more diverse set of hosts, ourcgmbr
leverages capturing all activity of residential hosts.

Jiang and Dovrolis [25] estimated TCP RTTs from passive mea-
surements of unidirectional packet data using SYN-SYN/ACK
ACK handshakes and a slow-start based approach. They found
that 90-95% of connections have RT¥$H00 ms at various aca-
demic links. Aikat et al. [2] examined the variability of R¥Within
a connection using data from the University of North Camlin
They report that a striking 15% of TCP connections have nmedia
RTTs>1s. However, their analysis does not take delayed ACKs
into account. Fraleigh et al. [18] analyzed packet leveldassfrom
the Sprint backbone from 2001, finding that the median RTEnev
exceeded 450 ms across their 9 traces. Only 3 traces hadmmedia
RTTs>300 ms, while 6 traces had median RTTs<d80 ms.

Siekkinen et al. [47, 48] analyzed performance limitatiens
perienced by ADSL users using passive measurements obappro
mately 1,300 DSL clients. They found that most users do riet ut
lize the available bandwidth, and that most traffic is agtian-
limited—particularly for P2P applications, which oftentiaely
limit the transfer rate. Network limitations like congestior TCP
windows only affected a small number of transfered bytes.

Zhang et al. [56] analyzed Internet flow traces from variotts a
cess, peering, and regional links within a Tier-1 provite2002 to
understand from where performance bottlenecks arose. foheg
that the most frequent performance limitations were netveon-
gestion and advertised receiver window sizes.

Given this context, we now turn to an analysis of performance
limitations in our 2008/2009 residential traces.

7.1 TCP performance limitations
TCP’s advertised window can have a significant impact on per-

1460 byte range in 98% of the connections. These values ariseformance, as the window must equal or exceed the bandwlty-d
from the very common 1500 byte Ethernet MTU, minus space re- product for a connection to fully utilize the network patispac-

quired for TCP/IP headers, as well as space for additiomaleling
headers.

Explicit Congestion Notification (ECN)

ECN enables routers to signal conditions of congestion auith
necessarily employing packet drops. We find virtually nopgup

for ECN, observing only a handful of hosts (no matter how they
counted) advertising support for it in their SYN packets.

Summary

We find that usage of performance improving TCP options sarie
considerably. SACK enjoys widespread deployment and use; w
dow scaling is quite common in terms of both support and &ffec
(non-zero) employment; ECN sees almost no use.

7. PERFORMANCE/PATH CHARACTER-
ISTICS

We now turn our attention to factors that affect the perfarosa
that users experience—spanning network effects, trahgpoto-
col settings, application behavior, and home networkingigeq
ment.

ity. If too small, the data sender must pause and wait for AG#&s
fore sending additional data, whereas with a large enougdaw
data can steadily stream. We use the access bandwidth tai®mp
bandwidth-delay products for all connections and find thathie
downstream direction, 44% of all connections that trameteat
least 50 KB have a bandwidth-delay product that exceeds the m
imum advertised window, but this proportion drops to 15%tfer
upstream direction (which due to bandwidth asymmetry dags n
require as large of a window).

We find that the maximum advertised window observed per con-
nection tends to be fairly small, with a median across alhean
tions in our dataset of 64 KB. Interestingly, the use of windo
scaling does not significantly affect advertised windowesithe
median for such connections increases only slightly, t®683<B.
However, the 7% percentile for connections with window scaling
is roughly 190 KB, as opposed to the limit of 64 KB imposed by a
lack of window scaling.

We note, however, that connections with small advertisat wi
dows might in fact have their performance more significatithy
ited by TCP’s response to congestion. We assess loss/remrde
events by checking whether a sender ever fails to send mainoto
cally increasing sequence numbers. Loss plays a key rotshiea
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The not infrequent appearance of large local RTTs led us-to in
vestigate their possible cause. Typically, large RTTs ceflerge
queuing delays. Indeed, Dischinger et al. [12] found thaiden-
tial broadband links can exhibit queuing delays of severabads
when a DSL line is fully utilized.

Manual inspection of sequence number plots of some connec-
tions with large RTTs$1000 ms) indeed shows such queues build-
ing up. We therefore checked whether those lines utilized tc-
cess bandwidth during these events. We found, howeverttisat
is not always the case: while we often see significant traffic on

RTT [ms]
Figure 10: TCP round trip times for trace SEP.

able TCP performance [33, 39], and TCP can confuse reoglerin
for loss [6], causing it to perform congestion control agtidhat
hinder performance. We find that roughly 10% of TCP connec-

tions experience such events. Furthermore, 33% of corumecti ; . . .
that transfer> 50 KB experience loss or reordering. These rates 11€S€ DSL lines, they do not necessarily utilize their astr or

are consistent with the observation that 8% of connectibasrte- downstream bandwidth fully. A more detailed manual analyst

gotiated SACK actually exchanged a SACK block, as did 30% of yeals_ other effects, too, such_as RTTs within a connectiodlesly
connections that transfered at least 50 KB. In addition, netthat ~ /UMPINg by an order of magnitude. o ,
about 1% of connections required SYN retransmissions iardal _One possmle_ cause could be ww_eless links in users’ homes,
successfully establish. given the plau5|b|_llty of a large fractlon_of broadband gsem-
Finally, we find that at some points the receiver's advesttisin- ploying 802.11 wireless to connect their computers to therin
dow “closes” (drops to zero). Generally, this behavior dadiés net. I_n densely populated, urban areas, users often “S‘.@ému
that the receiving application has failed to drain the ofiegesys- ous wireless networks, and therefore can experience ngifgize
tem's TCP buffer quickly enough, and therefore TCP mustgrad ~contention for the medium.

ally advertise less available buffer. As the advertisedeigpace To assess this hypothesis, we used several DSL links
decreases, the sender’s ability to keep enough data in tightly (1x 8000 Kbps and 3x 2000 Kbps downstream) to estimate up-

fill the network path diminishes. We find that for 4% of the dewn  Stréamand downstream throughput and queuing delays using a
stream connections the advertised window drops to zerdeHis measurements done with thettest tool.

phenomenon occurs for 3% of the upstream connections. Using wired connections, we are able to fully utilize the DSL
link’'s bandwidth. When using wireless connections, theiaad

7.2 Round-trip-times (RTT) throughput often drops to 400-1000 Kbps. In both cases, we ex

erience queuing delays of several seconds. However, doeed

We gathered our measurements at the ISP’s broadband accesg1 hout wh . el th to st
router, which is the first IP router that traffic from the lotalsts rougnput when using WIreless access causes the queuarto s
building up at lower rates. In addition, while we were unatde

encounters. We can therefore divide the end-to-end RT Tthieat o . i

residential connections experience into a local componaes- fs;téjrﬁ;ed tgingP?szfse“ngh 3e\ﬁlirned g;gne?s?g’ w?efg};re'

sured from our monitor to the end system and back, and a remote Leuing delav stil rF())se topsever(e]il secognds 4 9

component, from our monitor over the wide-area Interneh pat q 9 Y ) ' L
These results show that wireless networks can have a sigmtific

the host at the other end of the connection. . t on th hievable th hout. | toular. 11 M
We estimate TCP RTTs using the connection setup handshake!"Pact on the achievable throughput. In particu'ar, pe-
less cards and wireless connections in areas with many wiher

(SYN, SYN/ACK, ACK) [25], ignoring connections with SYN | d da/ ith link lity. f ianifiqaert
or SYN/ACK retransmissions, and connections in which thelfin ess senders, and/or with poor link quality, face signitqagrior-
mance degradation. We verified that wireless connectionani

ACK carries data (which can indicate that an "empty” ACK has contested environments and with current 54 Mbps wirelegiseg,

been lost). Figure 10 shows the smoothed probability Bistion frer th th hout and ing del ired co ¢
of the RTTs. We found it quite surprising to observe that imgna ofier the same throughput and queuing delay as wired Comsc

cases the local RTT exceeds the remote RTT,the.time to sim- 7.4 Achieved Throughput
ply get to the Internet dominates over the time spent trageie
Internet

The difference manifests itself throughout most of theritigt
tion. For example, the median, 590", and 99" percentiles of
the local RTTs are all substantially larger than their resnadun-

terparts, and we find that 1% of local RTTs exceed 946 ms, while 2Dye to a bottleneck in the Internet between the DSL line aed th
for remote RTTs the corresponding delay quantile is only 523 measurement server

Next, we examine how many lines actually utilize their calié
access bandwidth across a substantial period of time. W tog
number of transfered bytes per DSL line across 1 sec binshemd t
calculate the throughput per bin. We call a liactiveif it sent at
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Figure 11: Fraction of active lines using 50%/10% of their
available upstream/downstream bandwidth at least once per
5 minute bin (smoothed).
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Figure 12: Achieved throughput of flows with size>50 KB by
application protocol.

least one packet, or received at least 5 KB, in each bin. We the
compare these results to the available access bandwidtatdr
DSL line, determining how many lines exceeded 10% or 50% of
their bandwidth for at least one second during a given 5 miioge

Figure 11 shows that most lines use only a small fractioneif th
bandwidth. Less than a quarter of the active lines exceed &0%
their bandwidth for eveimne second over a 5 minutiene period.
However, during the day we observe 50—-60% of active lineiach
ing at least a 10% bandwidth utilization. These results arsis-
tent with findings from Siekkinen et al. [47].

To gauge whether there is a principle network limitation bA o
tainable performance, we analyzed the achieved througbeut
unidirectional flow, distinguishing flows by their applizat-layer
protocol. To do so, we constructed the equivalent of NetFdata
from our packet traces, using an inactivity timeout of 5 seig-
ure 12 shows the distribution of the achieved throughputtese
flows, given they transfered at least 50 KB. We observe thatHT
and NNTP achieve throughputs an order of magnitude largar th
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Figure 13: Number of mean parallel flows with size>50 KB
per application protocol and line (in 5 min bins).

those for P2P and unclassified traffic (note the logarithroadey.
We also find that other DPD-classified traffic, as well as watfi
well-known ports, achieves throughput similar to that foF THP
and NNTP. These findings suggest that a portion of uncladsifie
traffic is likely P2P. For flows with more data-(500 KB), the dif-
ference in throughput actually increases slightly. Furti@e, we
see that the throughput for all of these larger flows increase
well.

Some P2P applications open multiple parallel connectioms-i
der to download content from several peers at the same time. T
analyze this behavior, we investigated the mean number raf-pa
lel flows per application; see Figure 13. The plot confirmg tha
P2P protocols use more parallel flows than HTTP. However, the
difference is substantially smaller than the differencechieved
throughput. As such, the upstream capacity of other peers co
bined with application restrictions effectively throgl®2P trans-
fers. Interestingly, we find that NNTP behaves similar to B2
protocols, using a larger number of parallel flows. This isstno
likely a result of users using a customized NNTP client folkbu
download, rather than a traditional newsgroup reader.

8. SUMMARY

In this paper we have studied residential broadband Inténafe
fic using anonymized packet-level traces augmented with 3L
sion information. Our data covers more than 20,000 custemer
from a major European ISP. Our initial exploration of theadats
unearthed a number of surprises that alter some of our meoi@
els of such traffic.

We started with DSL level characteristics, examining sesdi-
rations, their termination causes, and the number of coectises-
sions. Session durations are surprisingly short, with aiamedura-
tion of only 20—-30 minutes, while we would have expected sdve
hours to days. Our termination cause analysis turned uprtbat
sessions end due to termination from the user end, which we at
tribute to default router configurations based on formeetimon-
tracts. As a consequence, IP addresses are reassignedniiigqu
with up to 4% of addresses assigned more than 10 times a day.
This indicates that the use of IP addresses as host idestifzar
prove quite misleading over fairly short time scales.



Next we examined usage of different applications and timeir i
pact on overall traffic. We observed that P2P no longer doteéna
in terms of bytes. Rather, HTTP once more carries most of the
traffic, by a significant margin50%). While we used Bro’s
DPD [13] to identify applications, we also examined the effic
we would obtain from a simple, purely port-based approachjbe
plication classification, finding it works quite well for odatasets,
due to the prelevance of HTTP, NNTP, and streaming appicati
It does not work as well for P2P, however.

To understand why HTTP is again the dominant application, we
looked at a number of facets of its usage. We found that Flash
Video, the format used by video portals suctyast ube. comand
news sites, contributes 25% of all HTTP traffic, followed &R
archives. The latter are mostly downloaded from Direct Dioad
providers associated with file-sharing. We did not find aifiicgmt
share of HTTP traffic attributable to P2P protocols or agian
protocols using HTTP as a transport protocol.

We note that a number of these results agree with those ofrErma
et al.'s contemporaneous study [15], suggesting that drels are
representative for a significant fraction of the Internet.

We analyzed transport protocol characteristics in termEQRP
options. We found that window scaling and SACK have become
more popular since Medina et al.'s previous study [34], BACK
employed by more than 90% of clients. Window scaling is also
often used, but does not in fact result in larger advertiseeiver
windows.

We assessed performance and path characteristics of TGP con
nections, noting that most DSL lines fail to utilize theirailable
bandwidth. Examining TCP round-trip-times, we found that f
many TCP connections the access bandwidth-delay product ex
ceeds the advertised window, thus making it impossible lier t
connection to saturate the access link. Our RTT analyssrals
vealed that, surprisingly, the latency from the DSL-coneédost
to its first Internet hop dominates the WAN path delay. This di
crepancy can however be explained by ADSL’s interleavinghne
anism. We found that WAN delays are often as little as 13 mss, bu
local RTTs not infrequently exceed 1000 ms, a phenomenadn tha
is likely caused by the use of wireless equipment in the coste
home and ensuing contention on the wireless hop. We also ob-
served that connections from client-server applicatibks HTTP
and NNTP, achieve an order of magnitude higher throughput pe
flow than P2P connections.

In future work we plan to explore application charactecsand
network capacity issues in more depth, as well as to obtaigi{io
tudinal data to perform trend analysis. Furthermore, wa fan-
vestigate interactive and real-time sensitive traffic saeNoIP and
gaming. Although these do not yet contribute a significamiper
of bytes, these protocols are important for perceived Quafi
Service by customers.
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