Fighting Coordinated Attackers with Cross-Organizational
Information Sharing*

Mark Allman', Ethan Blanton*, Vlern Paxson', Scott Shenker !
TInternational Computer Science Institute, *Purdue University

Abstract

In this paper we propose an architecture for using cross-
organization information sharing to identify members of
a group of hosts enslaved for malicious purposes on the
Internet. We root our system in so-called “detectives”—
savvy network monitors like sophisticated intrusion de-
tection systems or honeyfarms that have a deep under-
standing of malicious behavior. We augment informa-
tion from these detectives with observations from a large
array of “witnesses” that are already in-place at many lo-
cations in the network. These witnesses are not savvy
enough to understand that a particular behavior is mali-
cious, but their simple factual observations can be shared
with a detective in order to form a broad picture of a
group of bad actors. A key aspect of the system is the de-
sign of a lightweight mechanism to reliably share enough
information between detectives and witnesses to form an
understanding of a group of bad actors without sharing
more information than necessary, in order to address pri-
vacy and competitive concerns.

1 Introduction

One of the largest current threats to hosts and networks
is armies of enslaved hosts (“bots™) controlled by a sin-
gle person or small group. These “botnets” provide an
attacker the ability to bring much distributed firepower
to bear on a particular target and/or to remain elusive by
shifting attacks around the network. The exact proce-
dures for an army of hosts to exchange information and
attack other hosts comprise nearly an endless list. There-
fore, monitoring the activity of such a group of hosts
presents an immense challenge along a number of axes.
First, observations from any one point in the network
provide only a small view into the overall activity. Sec-
ond, the vast array of attack vectors and benign commu-
nications channels that can be co-opted for control traffic
make ferreting out botnet activity very difficult.

To better unmask a group of coordinated attackers we
propose a system loosely modeled upon real-world crime
fighting. While society employs highly trained crime-
fighters (“detectives™), there are not enough such skilled
people to monitor all situations where a crime may be
committed. As a practical matter, real-world detectives

*This paper appears in ACM SIGCOMM HotNets V, November
2006.

rely on amateurs (“witnesses”) who have observations
and evidence that aid the detectives in their work. While
witnesses are clearly not as skilled and trustworthy as de-
tectives in terms of fighting crime, their value is in their
numbers and prevalence.

Detectives are charged with detecting patterns of crim-
inal activity, identifying suspects, and then questioning
witnesses to fill in the gaps in the detectives’ understand-
ing. In particular, we expect detectives to gather infor-
mation relating to a particular crime—not arbitrary in-
formation about arbitrary people or events. Of course,
some unrelated information may always “leak” into the
process, but anything not germane should be disregarded.
Similarly, witnesses should be questioned in such a way
that they do not know precisely what they are being asked
about, so that they do not learn what criminal activity the
detectives are pursuing nor whom the detectives suspect;
they only attest to what they have directly observed.

In the realm of fighting groups of coordinated attack-
ers, our detectives are savvy network monitors such as
sophisticated intrusion detection systems (IDSs) or hon-
eyfarms [8]. These components of our system can de-
tect “crimes” and discern suspicious patterns of activity.
However, as in real life, their viewpoint is too narrow to
understand the breadth of activity in disparate corners of
the network. Therefore, we also employ general traffic
monitors (packet taps, NetFlow logs, proxy cache logs,
etc.) as “amateur witnesses” that have evidence to of-
fer, but are themselves not savvy enough to understand
that a “crime” has been committed or to put together the
complete picture.

In this paper we propose leveraging the deep under-
standing of network detectives and the broad under-
standing of a large number of network witnesses to form
a richer understanding of large-scale coordinated attack-
ers. To accomplish this task, we need a way to share
information across organizations. Therefore, we offer an
information sharing mechanism that (i) reveals little-to-
no information to anyone who has not witnessed a given
event, while still allowing witnesses to provide corrob-
orating evidence and (ii) offers the detective reasonable
validation that the information from witnesses is sound.

We separate the activity of coordinated attackers into
two categories, attack traffic and control traffic. Attack
traffic can range from distributed denial-of-service at-



tacks to scanning for additional vulnerable hosts to re-
cruit into the group. Much research and many products
concentrate on finding individual hosts that are actively
attacking peers in the network. Control traffic’s purpose
is twofold: (i) for commands to flow from some con-
troller to all members of the group, or (ii) for the mem-
bers of the group to download new malcode or other-
wise further prepare for some task (such as an attack).
This traffic is more difficult to track than attack traf-
fic precisely because it can appear normal and benign
(e.g., simply downloading some data from a URL using
HTTP). This normality makes it much harder to identify
the traffic as laying the groundwork for an attack. In this
paper we focus on using this control traffic to unmask the
members in a group of coordinated attackers, even in the
absence of an attack.

A high-level example would be a honeyfarm becoming
“infected” by a given attack vector and then observing a
remote server from which the bots are instructed to re-
trieve some piece of malcode. The honeyfarm (the detec-
tive, in this case) would query witnesses throughout the
network for additional hosts that show similar commu-
nication patterns. Our information-sharing technique al-
lows the honeyfarm to uncover other hosts that are likely
members of the group of coordinated attackers based on
witness “testimony”, even though these group members
and witnesses are scattered throughout the network (such
that the honeyfarm cannot directly observe the behavior).
Furthermore, unless a witness has observed the activity
in question, the honeyfarm’s queries about the pattern are
obscured such that the honeyfarm reveals little informa-
tion to the potential witness.

This paper is organized as follows. In § 2 we briefly
describe our proposed architecture. Next, § 3 outlines the
underlying information-sharing mechanism that enables
the system. § 4 outlines related work. We provide brief
conclusions and areas for future attention in § 5.

2 Architecture

The overall architecture of our proposed system consists
of three classes of participants: (i) a set D of network de-
tectives (e.g., honeyfarms, sophisticated IDSs, etc.), (ii) a
set W of witnesses, (iii) an aggregation entity that can
play the part of a trusted organization like Interpol and
gather information from a number of detectives’ jurisdic-
tions and then distribute the information to information
consumers. The general operation is that some D; finds
a pattern and then interrogates witnesses in search of ad-
ditional hosts that exhibited the given pattern. From the
witness testimony, D; then forms a list of victims V;. D;
then sends V; to the Interpol-like aggregator along with
the appropriate pattern. The collector can then gather
various V; sets from various detectives together to form
a picture of the group of coordinated attackers. We con-

sider each component of the architecture in turn in the

following subsections.
2.1 Detectives

The set of detectives is charged with identifying traffic
patterns that correspond to malicious behavior and then
querying witnesses to uncover additional hosts that have
exhibited the same pattern. The detectives aggregate wit-
ness responses and reports the results to the collector.

In § 3.4 we discuss “rogue detectives” who attempt to
abuse the system by fabricating patterns in order to “fish”
for private information not related to malicious activity.
To reduce the risk of such fishing attacks in our system,
we keep set D closed, i.e., membership is known a priori
and each host in the set can be readily identified (e.g.,
using a cryptographic key). Since in our architecture
the detectives need to be known and trusted, the set is
intended to be kept small (e.g., hundreds of monitors).
However, we note that the wealth of information in our
system comes from witnesses, not detectives, and there-
fore a small set of the latter should not present a problem.

An immediate question that a detective must tackle af-
ter identifying a suspicious pattern involves determining
which witnesses to interrogate. Depending on the situ-
ation, the appropriate scope of the queries might range
from asking one particular witness a quite-localized
question to asking the entire set of witnesses a broad one.
For instance, if some group of coordinated attackers em-
ploys a centralized code-distribution server then ideally a
detective could query a single witness close to the server
and reap a wealth of information about which hosts have
been seen downloading the code. This might be slightly
broadened to a small group of witnesses to account for
any of multihomed sites, possible artifacts in the wit-
nesses’ logging functions due to their use of sampling,
and/or witness misbehavior. The downside of targeted
querying is that the detective must assess the role of the
witness’s proximity to the point of interest. On the other
end of the spectrum, if the pattern is not host-specific
but along the lines of “incoming connection to port X,
outgoing connections to ports Y and Z” then querying
as many witnesses as possible around the network will
give a more complete picture than trying to query any
one particular witness. This is easier to accomplish than
targeting witnesses because no notion of proximity is re-
quired. In between, there are many possibilities for the
querying of various fixed or random sets of witnesses.
An in-depth exploration of which witnesses to query is
beyond the scope of this paper, but a clear candidate for
continued investigation.

2.2 Witnesses

We expect W, the set of witnesses, to consist of a
large number (thousands) of simple, general traffic mon-
itoring devices—not particularly designed for security



monitoring—scattered throughout the Internet. Unlike
the closed set of detectives, W is open: new monitors
can readily join and witnesses do not need to be vetted
before they start answering queries. Since many ISPs
and organizations do some sort of general traffic moni-
toring as a matter of course (for provisioning, debugging,
etc.) we aim to leverage these resources rather than rely
on additional deployment. That said, these monitors will
need to be augmented to answer queries from the detec-
tives in our system. Witnesses are expected to simply
log “the facts”—that is, direct observations from the net-
work without any analysis. We do not expect witnesses
to “judge” traffic. Rather, the function of witnesses is to
provide the detectives with observations to allow a pic-
ture of large-scale groups of coordinated attackers to be
formed by the detectives. We also note that witnesses
in our system can only provide information in response
to queries from the detectives and therefore cannot con-
tribute arbitrary data to the system. Witnesses are, of
course, also free to ignore requests based on local policy.
An incentive for witnesses to contribute information is
that the aggregated information will then be made avail-
able via the collection and distribution system such that
the organization providing the witness will ultimately
gain an amplified view of coordinated attackers.

2.3 Collection and Distribution

The Interpol-like collector is a known and trusted entity
that aggregates the information collected by the hosts in
D and makes the information publicly available. Since
the members of D are well-known, it is tractable to only
accept input from trustworthy parties.

The network Interpol serves several key functions.
First, it can aggregate information from many detectives
to form a more comprehensive picture of groups of co-
ordinated attackers. Second, the collector is responsi-
ble for making the results public, but must do so in a
way such that the source of each individual piece of in-
formation is masked.® In addition to collecting and ag-
gregating the information, the collector makes the data
publicly available (perhaps via some intermediary distri-
bution points). Doing so allows services to be built that
offer the information in myriad ways that operators may
find useful. Example services include: simple mirrors of
the data via FTP or HTTP, a database server that accepts
rich queries, behavioral database entries (ala [1]), or in-
sertion of the data into a robust distributed data structure
such as a DHT for reliable dissemination.

Finally, we stress that the collector’s role is to aggre-
gate and serve the information, not design the policy. The
collector can provide information that will inform policy
decisions, but those decisions are left in local hands.

1Additional ways to thwart tracking may also be useful to employ,
such as Mobile Honeypots [3].

3 Information Sharing Primitive

While the last section sketches our overall architec-
ture, this section focuses on a “loose private matching”
scheme to facilitate information exchange between de-
tectives and witness that conforms to the principles out-
lined in § 1.

3.1 LoosePrivate Matching

The key idea behind the “loose private matching” mech-
anism is to enable detectives to encode a query (traffic
pattern to look for) in such a way that (i) anyone who has
actually observed the traffic described by the pattern will
be able to recognize it, but (ii) the encoding is also am-
biguous enough that it could describe a variety of traffic
patterns, and therefore it reveals little information to en-
tities that have not observed the given traffic pattern. We
enforce this distinction by requiring that witnesses who
wish to attest to having seen traffic fitting a given pattern
must encrypt their responses using the decoded pattern
itself as a shared secret. The detective therefore gains a
reasonable (not perfect—see below) confidence that the
witness indeed observed the traffic in question.

To develop this approach, we consider that patterns
being queried are defined by some set of observed ac-
tions that a detective can piece together. To illustrate,
suppose a honeyfarm H is attacked by some host A that
is scanning for vulnerable hosts to recruit into a group of
bad actors via an SQL exploit. Furthermore, after H is
“infected” it is then asked to TFTP some malcode from
code server C. A natural pattern a detective might de-
velop from this interaction is “incoming SQL hit from A
arrives at some host X, which in turn initiates an outgo-
ing TFTP request to host C”. Any X (such as H) that
satisfies this pattern could be assumed to be infected in
the same manner as H. The pattern could be loosened up
such that any communication from host A (a known bad
actor) could be used instead of just SQL connections to
handle attackers that use multiple attack vectors could be
found. Or, any TFTP to host C could be taken as an in-
dication that the host initiating the connection has been
infected. Clearly, these are not iron-clad signatures for
an attack, and care must be taken to narrow the scope
of queries. For instance, if the malcode happens to have
been left on a popular blogging site B and infected ma-
chines fetch it via HT TP then using the pattern of “HTTP
transactions to B” is not going to be a useful pattern in
finding infected machines.

After forming a pattern, the components of the pat-
tern, C;...Cy, are then hashed together to form a key,
K =H(Cy,...,Cn), which is then used to query witnesses
for hosts with similar traffic patterns. The witnesses that
receive the query then consult their logs for hosts hav-
ing communications that match the requested key. Only
if the witness has seen the given pattern will it be able



to untangle the given key and provide a useful response.
The response is encrypted using the decoded components
of K as the shared secret.

Consider an example where a key is constructed by
a honeyfarm with a destination IP address dy, a trans-
port protocol t, and a destination port number py as
K = H(dn,th, pn). Now, consider K}, being sent to some
number of witnesses with the intent of obtaining a list of
source IP addresses that have communicated with hosts
in the fashion described in the pattern Kj,.

Assume that some witness finds three records that
match Kp—with two of these records matching the query
sent by the honeyfarm, and the third being a coinciden-
tal hash collision. The witness cannot determine which
of these matching records (if any), are correct, so all
matches are returned. Assume that the source IP ad-
dress of each matching record s; is associated with a
three-tuple T; = {d;, t;, pi }, which represents the material
hashed to produce the key matching s;. In our example,
Ty =To={dy,t1,p1} = {d2,t2, p2}, and T3 = {d3, t3, p3},
a different tuple than T; and T,. The witness forms
two responses to be returned to the honeyfarm. The re-
sponses consist of a list of addresses d; from the query
followed by each appropriate s;. These records are en-
crypted using T; as the shared secret. Specifically, the
witness forms the two responses Ry = Ex, ({d1,51,52})
and Ry = ET3({d3753}).

The honeyfarm can now decrypt both responses using
Th = {dn,th, pn} as the shared secret. When decrypting
R1, the honeyfarm will find d, = d as the first address in
the list, and so will know that the rest of the addresses in
this response are valid for the given query. When simi-
larly decrypting Ry, the honeyfarm will not find d, as the
first item in the returned list, and therefore will know that
this response is meaningless and was caused by a colli-
sion at the witness. Note that the honeyfarm still does not
know either the values d3 or s3, as the decryption of Ry
using the inappropriate key Ty, # T3 yields random data.

We also note that patterns can consist of more than one
key that can then be logically connected to form a more
specific query. E.g., K1 may be “source IP A, destina-
tion port S” and K, may be “destination IP C, destination
port T”. The query could then be for any host X that the
witness observes that satisfies both K1 and Ko.

3.2 Example

As a concrete example of the above notions, consider a
query which requests the source IP address for all hosts
having communications that match a pattern that encom-
passes the destination IP address (4 bytes), transport pro-
tocol number (1 byte) and destination port number (2
bytes). From these 7 bytes a key K is formed by tak-
ing the product of the bytes (with any zeros rounded up
to one). This hash has two crucial properties: (i) the

hash space is large (1...2557, excluding numbers with a
prime factor larger than 255) and (ii) collisions are guar-
anteed to be possible in theory. Assuming the protocol
number and port number remain the same, IP addresses
a.b.c.d, a.c.b.d and a.b/2.c-2.d will all yield the same
value (assuming that b and c are even). This ambigu-
ity is critical because it largely prevents anyone who has
not seen the corresponding traffic from understanding the
question and forming a valid response.

To assess this simple hash function we analyze one
day’s worth of connection logs from ICSI’s border. We
used the log from July 27 2006, which consists of
roughly 6.2 million connections. We compute a hash us-
ing the product of the bytes in the three fields described
above for each connection. We find that 11% of the con-
nections hash to a unique K that is not shared by another
three-tuple in the dataset. Therefore, 89% of the con-
nections hash to a K with a collision. This indicates that
collisions are not just theoretically possible, but ambi-
guities do in fact naturally occur when using byte-wise
multiplication as a simple hash.

0.9
0.8

o7l [
0.6
0.5
0.4
0.3

0.2
0.1

CDF

1 10 100 1000
Collisions

Figure 1: Collisions per key.

Figure 1 shows the distribution of collisions per key
in our dataset. The figure shows that roughly two-thirds
of the keys are used to cover the 11% of connection that
hash to a non-shared K. Further, 90% of the keys cor-
respond to 10 or fewer three-tuples and nearly all keys
correspond to 100 or fewer three-tuples. This shows that
while there is ambiguity in this particular hash function,
the ambiguity likely does not present a logistical problem
in transmitting massive amount of data that then needs
decrypted by a detective using this hash function. The
amount of ambiguity can also be increased with the ap-
plication of the modulus operator to K such that the size
of the hash space is decreased. Alternatively, the ambigu-
ity can potentially decreased by using a smaller window
of time such that less traffic is observed.

We stress that we are not proposing this hash as ideal.
We offer this hash as a simple proof-of-concept that the
general idea has promise. For instance, a scheme such as



Private Stream Searching [2] provides many of the desir-
able qualities we sketch above (and more) at additional
computational cost. Crucial future work will clearly in-
volve a survey of alternate hash algorithms and a deeper
analysis of the properties of such algorithms.

3.3 Query Language

As described above, the detectives and witnesses have a
shared understanding of the components of the queries
(1P addresses, port numbers, etc.). While we do not have
space to dig into the details of the query language in this
paper, we note several possible approaches. First, a stan-
dard set of common queries could be defined and a query
identifier could be used to synchronize the detectives
and witnesses. These fixed hashes could be calculated
as the records are initially captured and stored with the
records such that a simple lookup on a given key would
be straightforward. The downside of such an approach
is that the system is locked into a stock set of queries.
Another approach is to make the queries self-describing.
For instance, the queries may come with a bit mask indi-
cating which components from the traffic are included in
the hash. This is more flexible than a system with a stan-
dard set of queries, at the price of computing a hash for
every stored record every time a query arrives. A third
approach is a hybrid—with a set of common questions
and a self-describing mechanism for richer queries.

3.4 Cheating
34.1 Detectives

The fundamental way that detectives can cheat is to fabri-
cate a query to fish for private information. For instance,
a query could easily be constructed that asks for hosts
that accessed some unsavory web server. This is essen-
tially inherent in the mechanism. Even if the queries in-
clude additional hard-to-fabricate evidence that network
traffic has been observed (e.g., a TCP initial sequence
number as “proof of standing”) and can be verified by
a witness,? the bar for cheating is only slightly raised.
The detective then only needs to observe or execute some
access to the resource in question to then gain the ap-
propriate credentials to fish for a broader set of private
information. One way to possibly mitigate the impact
of fishing attacks is for witnesses to not answer queries
about some pattern until a number of independent detec-
tives have requested information about the same pattern.
This offers some assurance that a rogue detective is not
simply trying to coax witnesses to send private informa-
tion that has no relevance to attacks. The nature of our
architecture aids the mitigation of this fishing attack, as
well, because we intend the system to consist of a fairly
small number of detectives and to gain the bulk of the

2This would limit the witnesses that can be queried to those along
the path of the specific observed traffic that the detective describes.

information about the members of groups of coordinated
attackers from witnesses. Therefore, as sketched in § 2
the set of detectives is known and assumed trustworthy
in our architecture (with the caveat that witnesses can
clearly further constrain detectives using the threshold-
ing approach sketched above).

3.4.2 Witnesses

Witnesses can either withhold information or fabricate
information in response to queries. Our envisioned sys-
tem includes a large number of witnesses with many van-
tage points that are likely overlapping. Therefore, the
fact that some witness W; withholds some record does
not mean that another witness Wj will not furnish that
record to the querying detective. A witness can also try
to inject bogus records into a response in two ways. First,
bogus records could be piggybacked on a legitimate re-
sponse. In other words, the witness was able to untangle
the query by looking through the local logs, but then in-
stead of simply reporting legitimate log contents, either a
completely bogus list or a partially bogus list is returned
in an attempt to implicate innocent actors. This can be
effectively mitigated within our proposed system by col-
lecting multiple independent witness statements about
some actor before making a decision. Another variant
of the injection attack is to attempt to crack the hash and
respond to a query despite having not seen corresponding
traffic. In this case, the chances of the “witness” guessing
the correct components the detective used to form a hash
are dependent on the hash function, and with an appropri-
ate hash function this should be quite difficult. Further,
enough ambiguity in the hash should be in place such that
a brute force responding with all possible combinations
of the initial components should be readily apparent.

A final form of attack, difficult to defend against, is
when an adversary is able to correlate across multiple
queries (either made to multiple witnesses, or a succes-
sion of queries made to the same witness) to infer what
information a detective seeks. Even without multiple
queries, an adversary can make some inferences in this
regard by inspecting the witness records that match a
given query and assessing which matches likely reflect
more interesting behavior than others.

4 Related Work

Sharing information across networks and organizations
to aid security is not a novel concept. [7] outlines a sys-
tem that allows sharing of information across local or re-
mote instances of the Bro IDS. The system relies on pre-
arranged certificates to authenticate peers and can scope
the information being shared with each peer. The scheme
presented in this paper does not require pre-shared cer-
tificates, nor do all components of the system need to be
well-known, but the information shared is also not as rich



as two IDSs could agree to share.

A general “private matching” approach is given in
[4] whereby two encryption functions exist such that
E1(E>(x)) = E2(E1(x)). Two peers can exchange their
encrypted version of some x and determine if x is the
same without revealing x. We use a loose form of private
matching that does not rely on a shared understanding of
encryption functions or keys, which hinders scalability.

The SPIE system [6] allows victims of network attacks
to trace the attack back to its origin without relying on
the (possibly spoofed) IP address by having routers keep
a history of all the packets forwarded (in a Bloom filter).
This history can then be queried by producing one of the
attack packets—with routers indicating whether or not
they have forwarded the given packet. This is an instance
of the system we propose in this paper. However, we
expand the notion to include less specific questions and
non-binary answers.

[1] proposes a system that allows for the reporting of
malicious hosts into an open database for anyone to use
in forming policy decisions (e.g., “host X is a scanner”).
The validity of the information in the database is left to
the consumer’s assessment of the information provider’s
reputation. The system assumes a large number of intelli-
gent monitors to collect wide-scale information, whereas
we focus on leveraging information from generic net-
work monitors that cannot make behavioral judgments
on their own.

Finally, [5] suggests that, rather than looking at the
low-level details of communications (e.g., payloads of
IRC packets), large groups of coordinated attackers can
be identified by deriving communication patterns in the
form of a who-talks-to-who “contact graph” from an ag-
gregate view of the traffic (or, even a subset of the ag-
gregate view). Our proposed scheme is similar, but aims
to form notions of botnets by using observations of ma-
licious activity to chase down similar activity elsewhere.
Further, we offer a scheme that allows pertinent informa-
tion exchange and does not rely on arbitrary traffic data.

5 Conclusionsand Future Work

In this paper, we make several contributions. First, we
offer a system that leverages existing wide-scale generic
traffic monitoring (“witnesses”) to aid a much smaller
group of intelligent systems (“detectives”) in forming
both a deep and broad understanding of groups of coordi-
nated attackers that can then be used network-wide. Sec-
ond, we offer a framework for identifying coordinated
attackers that does not rely on the specifics of the way
any particular botnet operates and therefore may pro-
vide a longer shelf-life than schemes that rely on inti-
mate knowledge of botnet behavior. Finally, we sketch
a loose private matching mechanism to allow for infor-
mation sharing about mutually observed network events.

The mechanism has promise within the system we have
outlined, in addition to possible other tasks where scoped
sharing of data across organizations is useful.

While we believe this paper offers a number of novel
contributions, much additional work on nearly all aspects
of the proposed system is required. For instance, fur-
ther investigation into hash functions for use within the
loose private matching scheme is needed. In addition,
an investigation into deriving activity patterns is required
such that honeyfarms can compute these patterns on the
fly. Such an investigation will also provide information
about the critical components of the patterns, which will
aid in the design of a query language that detectives and
witnesses can share. Finally, a large number of logisti-
cal questions remain, such as, will operators find sharing
in the fashion presented in this paper is reasonably safe
given the potential benefits?

Acknowledgments

Discussions with a large group of people have helped
our thinking along, including Marina Blanton, Jason
Franklin, David Lapsley, Carl Livadas, Doug Maughn,
Robin Sommer, Tim Strayer and Robert Walsh. This
work was supported in part by the National Sci-
ence Foundation under grants ITR/ANI-0205519, NSF-
0433702 and STI1-0334088, for which we are grateful.

References

[1] M. Allman, E. Blanton, and V. Paxson. An Architecture for
Developing Behavioral History. In Proceedings of USENIX
Workshop on Steps to Reducing Unwanted Traffic on the
Internet, July 2005.

[2] J. Bethencourt, D. Song, and B. Waters. New Construc-
tions and Practical Applications for Private Stream Search-
ing (Extended Abstract). In IEEE Symposium on Security
and Privacy, May 2006.

[3] B. Krishnamurthy. Mohonk: Mobile honeypots to Trace
Unwanted Traffic Early. In ACM SIGCOMM Network
Troubleshooting Workshop, Sept. 2004.

[4] Y. Li,J. Tygar, and J. Hellerstein. Private Matching. Com-
puter Security in the 21% Century, pages 25-50, 2005.

[5] V. Sekar, Y. Xie, D. Maltz, M. Reiter, and H. Zhang. To-
ward a Framework for Internet Forensic Analysis. In Pro-
ceedings of ACM SIGCOMM HotNets, 2004.

[6] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones,
F. Tchakountio, S. T. Kent, and W. T. Strayer. Single-IP
Packet Traceback. IEEE/ACM Transactions on Network-
ing, 10(6):721-734, Dec. 2002.

[7] R. Sommer and V. Paxson. Exploiting Independent State
For Network Intrusion Detection. In Proceedings of AC-
SAC, 2005.

[8] M. Vrable, J. Ma, J. Chen, D. Moore, E. VandeKieft,
A. Snoeren, G. Voelker, and S. Savage. Scalability, Fi-
delity and Containment in the Potemkin Virtual Honey-
farm. In ACM Symposium on Operating System Principles,
Oct. 2005.



