
ONE: The Ohio Network Emulator

Mark Allman, Adam Caldwell, Shawn Ostermann

mallman@lerc.nasa.gov, adam@eni.net

ostermann@cs.ohiou.edu

School of Electrical Engineering and Computer Science

Ohio University

TR-19972

August 18, 1997

This work sponsored in part by NASA Lewis Research Center.



Abstract

Studying network protocols and distributed applications in real networks can be

di�cult due to the need for complex topologies, hard to �nd physical channels (e.g.,

satellite channels), and conditions beyond the control of a researcher (e.g., queue sizes).

Network emulators can provide a controlled and reproducible environment for network

testing. This paper discusses ONE, a network emulator we have written and tested.

1 Introduction

Network emulators, like network simulators, allow researchers to create network topologies

and conditions that are di�cult to achieve in a reproducible manner on production net-

works. Studying network protocols and distributed applications in the relatively simplistic

environment that simulators and emulators furnish can be helpful when investigating subtle

network and protocol interactions. In addition, these environments can provide access to

network environments that are not easily found in the production Internet, such as satellite

links.

Network simulators do not generate real network tra�c, but rather model tra�c and

major network components internally. The strength of network simulators (such as REAL

[Kes88], NetSim [Hey90] and LBL's ns [MF95]) is that they allow study of complex network

topologies that are di�cult to create using real networks. In addition, simulators are not

limited by the speed of the hardware that makes up a network. Therefore, simulators provide

an environment for studying high speed networks. On the other hand, simulators usually run

an independent speci�cation of network code, rather than the code used in real networks.

This can cause a simulator to fail to mimic subtleties in the real code.

Two simulators, x -Sim [BP96] and dummynet [Riz97], allow direct execution of produc-

tion network code. The disadvantage of both of these tools is that they are limited to one

operating system (x -kernel and FreeBSD, respectively) to which they require modi�cations.

However, both of these tools provide a useful environment for testing the same code in both

a simulator and over real networks.

Network emulators alter real network tra�c between nodes in a physical network to model

various network con�gurations. The strength of network emulators is that researchers can

easily move network code between a real network and an emulated network. Furthermore,

the code being tested can run on any type of system without modi�cation and any testing and

analysis software will work in both environments. The drawbacks of emulation are twofold:

the speed of the emulated network cannot be greater than the speed of the underlying physical

network, and complex topologies are di�cult to create because they must be physically

constructed.

The remainder of this paper is organized as follows. Section 2 describes the components

of the network that are modeled by ONE. Section 3 discusses ONE 's con�guration. Section

4 provides veri�cation that ONE is providing an accurate model of a given network. Finally,

section 5 provides conclusions and outlines future work.

1



2 Modeling a Network

A simple network topology is given in �gure 1. A host on one network communicates with a

host on the other network via the two intervening routers. The area within the dotted line

is the portion of the network we wish to emulate. Figure 2 shows the emulated version of

the network in �gure 1. The emulator in this �gure is a Sun workstation, running the Solaris

operating system

1

and our emulator software. The machine has two network interfaces. ONE

passes packets between the two networks, just as the two routers would do in �gure 1.

HOST A ROUTER 1

HOST BROUTER 2

Figure 1: Simple Network Topology

Each host is connected to a physical network containing a router. The routers are connected

via another channel. The two hosts communicate via the two routers.

HOST A HOST BEMULATOR

Figure 2: Emulated Network Topology

ONE has two network interfaces that connect it to two separate networks. The hosts on these

networks communicate via the emulator. ONE alters the network tra�c being forwarded

based on several user-con�gurable parameters.

ONE models the routers and intervening network by delaying packets arriving on one

network interface before forwarding them to the other network. ONE also provides conges-

tion loss according to its con�guration. The delay a packet experiences is based on the packet

size and the con�guration parameters given by the user. The following three components of

packet delay are modeled.

Transmission Delay:

The transmission delay is the amount of time it takes a network node to transmit a packet

onto a given channel. The transmission delay is determined using the channel bandwidth

and the packet size (according to formula 1).

1

We have tested ONE under Solaris 2.2, 2.4 and 2.5.

2



trans delay =

packet size

bandwidth

(1)

Queuing Delay:

Queuing delay occurs when a packet arrives at a router which is already busy transmitting

another packet. In this case, the packet is placed in a queue. The queue delay for a given

packet P is dictated by the sum of the sizes of the packets in the queue when the P arrives.

Formula 2 gives the queue delay from the n-th packet in the queue.

q delay =

(

0; n = 1

P

n�1

i=1

packet size

i

bandwidth

; n > 1

(2)

Propagation Delay:

The propagation delay is the time it takes a packet to travel from one node to another along

a physical channel. This component of the delay is con�gured by the user.

The sum of the above component delays is the amount of time ONE holds a packet before

forwarding it. For example, assume two identical packets are sent through our emulator back-

to-back. Assume the transmission delay is 1 second for each packet and the propagation delay

given by the user is 0.5 seconds. The �rst packet will be delayed 1.5 seconds by ONE (1

second for transmission delay and 0.5 seconds for propagation delay). ONE will delay the

second packet 2.5 seconds (1 second for transmission delay, 0.5 seconds for propagation delay

and 1.0 seconds for queue delay).

3 Con�guration

Our emulator delays packets being sent between the two networks using two user-con�gurable

parameters.

� linespeed

This is the bandwidth of the channel between the two routers in �gure 1 (e.g., 100

Kilobytes/second).

� propagation

This is the propagation delay of the channel between the two routers in �gure 1 (e.g.,

20 milliseconds).

The above parameters can be set for each network interface on the emulator. For example,

setting the linespeed on a given interface subjects all packets arriving on that interface to

the given bandwidth.

Additionally, ONE queues packets for transmission based on the following two user-

con�gurable settings:

� qsize

This is the size of the queue for the given interface (e.g., 50 Kilobytes).

� memunit

This is the internal bu�er size (memory allocation granularity) used to store packets

in the queue (e.g., 256 bytes).

3



The queue size can be set for each interface, while the bu�er size speci�ed is for both

interfaces. ONE uses �xed size bu�ers to store queued packets in order to model routers

that employ a similar strategy. If, for example, memunit is set to 256 bytes, a 5 byte packet

will use 256 bytes of queue space. Similarly, a 300 byte packet will use 512 bytes of queue

space. Memunit can be con�gured to 1 byte, making the memory allocation equal to incoming

packet sizes.

4 Experimental Results

The following is a presentation of several experiments to show that each aspect of our emu-

lator is functioning properly. Also included is a realistic comparison of FTP tests run over

ONE and equivalent tests run over the NASA ACTS satellite system.

le0 Propagation le1 Propagation Expected Observed RTT

Delay (ms) Delay (ms) RTT (ms) RTT (ms) Di�erence (ms)

10 10 � 20 23.87 3.87

50 50 � 100 104.41 4.41

100 100 � 200 204.49 4.49

250 250 � 500 504.57 4.57

10 40 � 50 54.01 4.01

100 65 � 165 169.18 4.18

75 0 � 75 79.44 4.44

Table 1: Propagation Delay

This table compares the expected RTT with the values observed using the emulator for

various combinations of propagation delays.

4.1 Propagation Delay Tests

To verify that our emulator correctly delays packets based on the con�gured propagation

delay, we sent small ICMP ping packets from one network to the other via ONE. The emulator

was con�gured with in�nite bandwidth to remove the transmission time from the total delay

experienced by the packets. Also, the interval between successive pings was large enough to

ensure that no queuing delay was present. The results of our experiments are shown in table

1. The con�gured propagation delay was varied as shown in the �rst two columns of table

1. As shown in the last column of the table, the actual round trip time (RTT) the packets

experienced was slightly longer than the expected RTT. This di�erence can be explained

by the time the packet was on the network but not in the emulator (one RTT between the

emulator and the sending host and one RTT between the emulator and the receiving host).

Our emulator does not correct for this error, as the di�erence will change based on the type

of physical channel used between the hosts and the emulator. If greater accuracy is needed,

the user can slightly lower the propagation delay to o�set the delay added elsewhere.

4



4.2 Transmission Delay Tests

To verify that ONE delays packets the proper amount of time based on the con�gured band-

width, we again sent ICMP pings across our emulator. To ensure that only transmission

delay was a�ecting the packets, the propagation delay was set to 0 ms. Furthermore, the

inter-packet spacing ensured that no queuing delay was present. The bandwidth was con�g-

ured to the values given in the �rst column of table 2 on the �rst network interface of our

emulator. The second interface was given in�nite bandwidth. The results of these tests are

summarized in table 2. Again, the di�erence between the expected and observed RTTs can

be explained by the time the packets were on the network but not in ONE.

Bandwidth Packet Size Expected Observed RTT

(bytes/sec) (bytes) RTT (ms) RTT (ms) Di�erence (ms)

100 100 � 1000 1004.07 4.07

100 200 � 2000 2005.30 5.30

100 300 � 3000 3008.42 8.42

200 100 � 500 504.46 4.46

200 200 � 1000 1008.06 8.06

200 300 � 1500 1505.21 5.21

Table 2: Transmission Delay

This table compares the expected RTT with the values observed using the emulator for

various combinations of bandwidth and packet size.

Packet Expected Observed RTT

Number RTT (ms) RTT (ms) Di�erence (ms)

1 � 1000 1005.96 5.96

2 � 2000 2005.51 5.51

3 � 3000 3006.52 6.52

Table 3: Queuing Delay

This table compares the expected RTT with the values observed using the emulator for each

of three datagrams sent back-to-back.

4.3 Queuing Delay

To verify that our emulator delays segments properly based on the length of the queue, we

used the UDPping

2

tool to send a burst of 3 UDP datagrams consisting of 100 bytes from a

host on one side of our emulator to the echo port on a host on the other side. The emulator

was con�gured to subject all packets arriving on its �rst interface to a bandwidth of 100

bytes/second. All packets arriving on the second interface were given in�nite bandwidth.

2

Available at http://jarok.cs.ohiou.edu/software/.

5



The propagation delay was set to 0 ms for all packets and the queues were large enough to

handle well over 3 packets. Each packet in the burst should be delayed 1 second based on

the transmission time. Furthermore, each packet after the �rst should be delayed another

second for each packet ahead of it in the queue. The results of these tests are shown in table

3. These results are consistent with the way in which the packets should be delayed based on

the con�gured bandwidth and the number of packets in the queue. The di�erence between

the actual RTTs and the expected RTTs can again be explained by the time the packets

spent on the network outside ONE.

4.4 Queue Drops

To show that ONE is properly dropping packets when the queue is full, we sent bursts of

UDP datagrams through the emulator. We con�gured the queue to be 1024 bytes and the

standard bu�er size (memunit) to be 256 bytes. We con�gured the bandwidth such that the

transmission delay was 1 second to ensure that the packets would be queued by ONE. We

sent 6 back-to-back 100 byte UDP echo datagrams through the emulator. As expected, ONE

consistently dropped packets 5 and 6.

4.5 Comparison with ACTS Network

While the above tests show that each aspect of our emulator works well when isolated, we

wanted to ensure that all mechanisms work correctly in conjunction with each other. To

show that the emulator provides a good approximation of a physical network, we repeated

a set of FTP transfers over the NASA ACTS [AHKO97] satellite using the emulator. The

results of these experiments are shown in �gure 3. In both the ACTS and ONE tests, the

TCP receive window was large enough to ensure that congestion loss occurred, provided that

the transmission is long enough to fully open the window.

Due to the slow start algorithm [JK88], the 200 KB transfer was not able to utilize a full

window and therefore, no congestion loss occurred. In the 1 MB and 5 MB transfers, TCP is

able to to �nish slow start and achieve a full window. This overwhelms the con�gured router

queue. For each of these three data points, both ONE and ACTS showed similar throughput,

indicating that ONE accurately models the physical network. Larger disparities for the two

larger �le sizes are due to subtle di�erences between the queueing mechanisms in the routers

and ONE.

5 Conclusions and Future Work

We have developed a network emulator that accurately models the network con�gured by the

user. While the emulator should not be a replacement for real network tests or simulations,

we believe it is a powerful tool for studying distributed applications and network protocols

in a controlled and reproducible environment. Furthermore, the emulator provides this

environment to a wide variety of hardware and software systems.

Future work on the emulator includes developing a model for packet loss due to corrup-

tion. This will be useful in the study of protocols for lossy networks, such as satellite channels.

6



14

16

18

20

22

24

26

28

30

32

34

36

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

T
hr

ou
gh

pu
t (

K
by

te
s/

se
co

nd
)

File Size (bytes)

ACTS
Emulator

Figure 3: Emulator vs. ACTS

This �gure compares throughput for �le transfers of size 200 KB, 1 MB, and 5 MB between

the ACTS network and ONE 's emulation of the network.

Additionally, alternative queuing strategies such as Random Early Detection [FJ93] should

be implemented.

Acknowledgments

This work bene�ted from discussions with Hans Kruse and John Tysko. Edward Kroeze

provided the needed hint for �xing a bug in our packet capturing routines. Finally, we

would like to thank Chris Hayes for helping us work the bugs out of ONE.

7



References

[AHKO97] Mark Allman, Chris Hayes, Hans Kruse, and Shawn Ostermann. TCP Perfor-

mance Over Satellite Links. In Proceedings of the 5th International Conference

on Telecommunication Systems, March 1997.

[BP96] Lawrence Brakmo and Larry Peterson. Experiences with Network Simulators.

In ACM SIGMETRICS, 1996.

[FJ93] Sally Floyd and Van Jacobson. Random Early Detection Gateways for Conges-

tion Avoidance. IEEE/ACM Transactions on Networking, 1(4):397{413, August

1993.

[Hey90] A. Heybey. The Network Simulator. Technical report, MIT, September 1990.

[JK88] Van Jacobson and Michael J. Karels. Congestion Avoidance and Control. In

ACM SIGCOMM, 1988.

[Kes88] Srinivasan Keshav. REAL: A Network Simulator. Technical Report 88/472,

University of California Berkeley, 1988.

[MF95] Steven McCanne and Sally Floyd. NS (Network Simulator), 1995. URL

http://www-nrg.ee.lbl.gov.

[Riz97] Luigi Rizzo. Dummynet: A Simple Approach to the Evaluation of Network

Protocols. Computer Communications Review, 27(1):31{41, January 1997.

8


