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Abstract

Over the past few years, we have reported on the performance issues faced by

TCP/IP based applications on satellite links. Performance is limited by the delay in-

herent in geosynchronous systems and the probability of bit errors found in any wireless

system, including satellite systems. These limitations are becoming more important as

new satellite systems o�er much higher data transmission rates than those available in

the past.

While high e�ciency on fast satellite links may eventually require new protocol

modi�cations, our previous studies indicate that full link utilization may be achievable

using the TCP performance enhancements that have already been approved or that are

currently in the standards process. Of particular interest in the satellite environment

are performance enhancements for scaled windows and timestamps (RFC 1323), fast

retransmit and recovery (RFC 2001), and selective acknowledgement (RFC 2018). The

paper describes each of these performance enhancements and explains how they can

increase TCP's performance over satellite links.

We present the results of a comprehensive performance study of these TCP protocol

enhancements in the satellite environment over error free links. We show results over

networks both with and without congestion loss. Finally, we examine TCP's perfor-

mance on realistic satellite links with a non-zero probability of bit errors, where the

e�ectiveness of selective acknowledgments is examined and compared to the perfor-

mance of traditional TCP implementations.

1 Introduction

In several experiments using NASA's Advanced Communications Technology Satel-

lite (ACTS), investigators have reported[Kru95] disappointing throughput using the

TCP/IP[Com95, Pos81, Ste94] protocol suite over 1.536 Mbit/second (T1) satellite circuits.

�
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2 TCP PROTOCOL VARIANTS 2

A detailed analysis of FTP �le transfers reveals that both the TCP receiver window size, and

the TCP slow start and congestion control algorithms contribute to the observed limits in

throughput. Furthermore, in the face of loss, TCP's data recovery (positive acknowledgment)

mechanism works poorly over long-delay channels.

Several mechanisms have been introduced and standardized that will aid TCP perfor-

mance in long-delay environments. The window size limitation in TCP was addressed in RFC

1323[JBB92]. RFC 2001[Ste97] formalizes the slow start, congestion control, fast retransmit

and fast recovery algorithms previously widely implemented. A selective acknowledgement

mechanism was de�ned in RFC 2018[MMFR96].

Section 2 summarizes the TCP variants that we tested. Section 3 describes the testing

environment that we used to conduct the experiments. Section 4 shows the results of our

experiments, and section 5 provides some closing remarks and directions for future work.

2 TCP Protocol Variants

All of the experiments reported in this paper were conducted using FTP client and server

applications running on top of variants of TCP. The computer endpoints used in these tests

were two Intel PC's running NetBSD 1.1 (based on 4.4 BSD Unix). Versions of TCP are

typically referred to in the literature by the names given to their releases as part of BSD Unix;

for the experiments discussed in this paper, we used TCP Reno with slow start, congestion

avoidance, fast retransmit, fast recovery, and large windows, as described below.

Slow Start and Congestion Avoidance

The slow start and congestion avoidance mechanisms were introduced in 1988 in

Jacobson[Jac88] and added as a requirement for TCP implementations in 1989[Bra89].

Slow start is used to gradually increase the rate at which the sender injects data into

the network. Slow start begins by sending one segment and waiting for an acknowl-

edgement. For each acknowledgement the sender receives, it injects two segments into

the network; leading to an exponential increase in the amount of data being sent.

Slow start ends when the receiver's advertised window is reached or when loss is de-

tected. Because the amount of time required for slow start to achieve full bandwidth

is a function of round trip time, satellite links are particularly sensitive to the limited

throughput available during slow start.

Congestion avoidance is used to probe the network for available bandwidth by sending

one additional segment for each round trip time (up to the receivers advertised window).

In the original slow start/congestion avoidance scheme, when the sending TCP detects

segment loss (indicating congestion), it drops back into slow start until the packet

sending rate is one half the rate at which the loss was detected and then begins the

congestion avoidance phase.

Fast Retransmit and Fast Recovery

TCP Reno also incorporates Fast Retransmit and Recovery [Ste97]. Although these
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mechanisms have been found in many Unix variants of TCP for several years, they

weren't documented as a Standards Track RFC until Stevens[Ste97] in 1997. Fast

retransmit reduces the time it takes a TCP sender to detect a single dropped segment.

Rather than waiting for the retransmit timeout (RTO), the TCP sender can retransmit

a segment if it receives three duplicate ACKs for the segment sent immediately before

the lost segment.

Fast recovery works hand in hand with fast retransmit. As mentioned above, when a

sender retransmits a segment, it normally recovers by moving �rst into a slow start

phase followed by a congestion avoidance phase. If the sending TCP detects the seg-

ment loss using fast retransmit, however, fast recovery is used instead. Fast recovery

halves the segment sending rate and begins congestion avoidance immediately, without

falling back to slow start.

Large Windows

The original TCP standard limits the TCP receive window to 65535 bytes. TCP's

receiving window size is particularly important in a satellite environment because the

maximum throughput of a TCP connection is bounded by the round trip time[Pos81],

as seen in the formula:

throughput

max

=

receive bu�er size

round trip time

(1)

Without large windows, then, a TCP connection over a typical geosynchronous satellite

is limited to throughput:

throughput

max(satellite)

=

64Kbytes

585ms

� 112; 000

bytes

second

� 896; 000

bits

second

(2)

Note that this upper bound on TCP throughput is independent of the bandwidth of

the channel. A TCP connection running over a full T1 channel (1,536,000 bits/second)

could still only achieve a maximum throughput of approximately 896,000 bits/second

with a 65536 byte receive window. As speci�ed in RFC 1323[JBB92], large windows

(window scaling) can allow TCP to fully utilize higher bandwidth links over long-delay

channels such as those found in satellite links.

Selective Acknowledgments

The cumulative positive acknowledgments employed by TCP are not particularly well

suited to the long-delay satellite environment due to the time it takes to obtain in-

formation about segment loss. A selective acknowledgement (SACK) mechanism is

de�ned in RFC 2018[MMFR96]. SACKs generated at the receiver explicitly inform
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TCP Documented Standardization Widely

Modi�cation In Status Available

Slow Start and

Congestion Avoidance RFC 2001[Ste97] Required Yes

Fast Retransmit and

Fast Recovery RFC 2001[Ste97] Standards Track Yes

Large Windows RFC 1323[JBB92] Proposed Standard No

Selective ACKs RFC 2018[MMFR96] Standards Track No

Table 1: Summary of TCP Performance Enhancements

the sender about which segments have arrived and which may have been lost, giving

the sender more information about which segments might need to be retransmitted.

As a summary of the above information, the current status, documentation, and avail-

ability of the performance enhancements described above is shown in table 1.

3 Experimental Environment

All of the experiments reported in this paper measured the user-level data throughput over

TCP between a pair of Intel 80486 computers running NetBSD 1.1 (which is derived from

the BSD 4.4 source code). These two computers were each connected via a 10Mbps Ethernet

to a Cisco 2514 router. Depending on which experiment was being run, the two routers were

connected to each other via either a circuit over the NASA ACTS satellite or through a

hardware satellite emulator.

3.1 NASA ACTS Satellite

Figure 1 shows the experimental setup used for the ACTS experiments. We connected a

dual-interface, fractional T1 DSU/CSU to the T1 interface of the VSAT earth station. The

�rst 12 channels were connected to one router, while the next 12 channels were connected to

a second router. Connections were made via RS449 between the DSU and the routers. The

earth station was then instructed to establish a satellite link from the �rst block of channels

(1-12) to the cross-connect system in the satellite, and from the satellite back to the earth

station (channels 13-24). Each channel was con�gured as a 64 kbps circuit. The result of this

con�guration was a 768 kbps full-duplex satellite link between the routers. An additional two

64 kbps channels were connected between the earth station and the Master Control station

at NASA Lewis in Cleveland. These channels were instrumented for continuous, end-to-end

bit error rate monitoring.
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Figure 1: ACTS Experiment Setup

This �gure shows the experimental setup used for the ACTS experiments reported in this

paper.
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Figure 2: Hardware Emulator Setup

This �gure shows the experimental setup used for the hardware emulation experiments re-

ported in this paper.

3.2 Hardware Emulator

Figure 2 shows the experimental setup used for the experiments that used the hardware

emulator. The emulator we used for these experiments is the \Data Link Simulator" made

by Testlink Corporation. The hardware emulator can be con�gured to limit the amount of

bandwidth between the routers. In the following experiments, the nominal bit rate was set

to 1,536,000 bps (full T1) or 768,000 bps (half T1), depending on the test. In addition, the

emulator can model a given amount of propagation delay. The propagation delay was set

at 290 ms in each direction for the following tests, providing round trip times equivalent to

those observed in the ACTS experiments.

4 Experimental Results

This section reports our results comparing the various TCP performance enhancements over

both actual satellite links and emulated links. Each of the data points reported represents

the average of at least 30 measurements obtained by timing a �le transfer of a given size
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using either FTP or XFTP. Experiments were run on isolated networks to eliminate the

possibility of competing network tra�c distorting the measurements. For the satellite tests,

link errors rates were monitored before, during, and after each test to verify that link errors

weren't distorting the data. Packets carrying TCP segments are limited to 512 bytes over

the experimental network.

As part of our early research into TCP over satellite links, we developed and tested

a modi�ed version of FTP[PR85] called XFTP[AO96]. Using XFTP, the user can specify

the number of parallel TCP connections that XFTP should use to transfer each �le and

the receive window size to use for each TCP connection. The XFTP client and server are

based on the 4.4BSD Unix source code and have been compiled and run on various computer

platforms supporting the Unix operating system. Several of the experiments below compared

TCP variants against XFTP using an equivalent e�ective window size.

In each of the graphs below, in addition to plotting the experimental data, we also plot

both the link speed and the maximum theoretical TCP data throughput rate for compar-

ison. The maximum theoretical TCP data throughput rate takes into account the extra

bytes lost to framing and header overhead and provides a better comparison against optimal

throughput values than the link speed.

By analyzing the experimental data, we determined that two issues continue to limit

TCP's large data �le transfer e�ciency over satellite links. The �rst problem is slow start.

Assuming a 112 Kbyte window, used in some of the experiments below, TCP requires 11

round trip times to begin sending data at maximum speed. With long satellite round trip

times, this speed increase requires approximately 6.5 seconds. For �le transfers of relatively

small �les, the amount of time spent in slow start is shown to have a serious negative impact

on overall throughput. For larger �le sizes, the slow start penalty is amortized over a longer

period of time and is less noticeable.

The second problem observed in our experiments is congestion avoidance. When a TCP

that is sending at the full bandwidth of a T1 link, for example, detects a lost segment, it

slows its sending rate from approximately 400 segments per second to approximately 200

segments per second (depending on how the loss was detected, see above). With the additive

increase growth behavior of congestion avoidance, TCP then requires 200 round trip times

(or almost 2 minutes) to return to its peak rate of 400 segments per second.

4.1 Results Over the ACTS Satellite - No Loss

Our �rst set of experiments tested the TCP variants over the ACTS experimental network

described above in section 3.1. For this experiment, we tested both the standard TCP

Reno (with a 56 Kbyte window) and XFTP using 4 connections yielding the same e�ective

window size (4 connections, each with a 14 Kbyte window). We varied the size of the �le

being transferred and measured the throughput achieved. For each of these experiments, the

queues in the routers were set above the Delay Bandwidth Product [PD96], meaning that

there was enough bu�ering in the routers that no TCP segments were lost due to congestion.
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Figure 3: Tests over ACTS Links with Adequate Bu�ering

This graph compares the throughput achieved with standard TCP Reno with large windows

against XFTP with the same e�ective window size. The link tested was one half T1 speed.

Throughput values for transfers of �les of size 200 Kbytes, 1 Mbyte, and 5 Mbytes are

plotted.

[The �gure included in the conference proceedings was incorrect. The �gure above represents

correct data]

Because selective acknowledgments are only useful in the presence of lost segments, we didn't

include TCP SACK in these tests. Figure 3 summarizes the results.

In the absence of segment loss, TCP can achieve good throughput for long data transfers

over satellite channels. As discussed above, the primary factor limiting TCP's performance

(in the absence of loss) is slow start. Larger �le transfers spend relatively less time in slow

start resulting in better average throughput. Limited testing time with the ACTS satellite

only allowed us to test �les of size 5 Mbytes; even for 5 Mbyte �les, TCP Reno achieved

approximately 90% of optimal throughput.
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Figure 4: Tests over ACTS Links with Insu�cient Bu�ering

This graph compares the throughput achieved with standard TCP Reno with large windows,

XFTP with the same e�ective window size, and TCP SACK. The e�ective window size in

each test was slightly larger than the bu�ering available in the routers to force segment loss

due to congestion. The link tested was one half T1 speed. Throughput values for transfers

of �les of size 200 Kbytes, 1 Mbyte, and 5 Mbytes are plotted.

4.2 Results Over the ACTS Satellite - Congestion Loss

The �rst set of ACTS experiments, above, tested the TCP variants over a network with

su�cient router bu�ering that congestion loss did not occur. In normal use, however, �le

transfers often incur occasional congestion loss on the networks between the two hosts. In

the experiments below, the window size of the TCP connections was increased so that it was

a little larger than the bu�ering available on the routers. Because TCP was able to inject

more data into the network than the routers could bu�er, congestion loss occurs in these

tests. As in the previous experiments, we tested standard TCP Reno and XFTP. To test the

e�ectiveness of selective acknowledgments in overcoming congestion loss in this environment,

we also included experiments with the TCP SACK kernel in these experiments. The results

are shown in �gure 4.

For 200 Kbyte �les, the results are similar to those seen in the previous graph. XFTP
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with 4 connections performed slightly better than standard TCP because XFTP e�ectively

sends more data during the initial slow start period. Because 200 Kbyte �les are not large

enough to cause congestion loss, TCP Reno and TCP SACK show equal throughput.

For 1 Mbyte �les, TCP is able to send data more quickly than the routers can bu�er and

loss occurs, although the congestion event only causes the loss of a few segments. Without

selective acknowledgments, standard TCP Reno su�ers relatively poor performance. TCP

SACK and XFTP (which e�ectively o�ers selective acknowledgments by spreading the loss

across multiple connections) both perform much better than TCP Reno for 1 Mbyte �les.

For 5 Mbyte �les, the results are similar. A relatively larger �le size amortizes the slow

start over a longer period of time, yielding improved throughput. TCP SACK and XFTP are

both able to overcome the occasional segment losses to achieve good performance, with TCP

SACK achieving 61% of the optimal throughput and XFTP achieving 86% of the optimal

throughput.

4.3 Comparing the Experimental Environments

As mentioned above, limited testing time with the ACTS satellite and bandwidth limited to

one half T1 speed didn't allow us to perform comprehensive testing. By repeating each of the

ACTS satellite tests on the hardware emulator, described above, we were able to verify that

the emulator provided experimental results that were quite close to those seen over ACTS.

Figure 5 shows a comparison of the two testing environments. Most of the test points are

su�ciently close together that they are di�cult to distinguish from each other on the graph,

leading us to conclude that additional tests using only the hardware emulator should be

good approximations of the results that we should expect over the ACTS satellite.

4.4 Results Over the Hardware Emulator - No Loss

This section describes tests using the hardware satellite emulator with su�cient router queu-

ing that congestion loss could not occur. These tests duplicate the ACTS experiments above

except that we tested a link at full T1 speed and added tests for �le sizes of 12 Mbytes and

30 Mbytes. Figure 6 summarizes the results for this test.

Results of this test are similar to those of the ACTS test. XFTP performed slightly better

than TCP Reno. The addition of the larger �le sizes to the test tends to indicate that, in

the absence of loss, TCP can achieve near-optimal throughput levels in this environment.

TCP Reno reaches an average throughput for 30 Mbyte �les that is 93% of optimal; XFTP

achieves 96% for the same size �le.

4.5 Results Over the Hardware Emulator - Congestion Loss

As a �nal comparison with the ACTS results, we repeated the congested test on the hardware

emulator. As in the previous experiment, we emulated a full T1 link. In addition to the �le
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Figure 5: Comparing the Hardware Emulator to the ACTS Satellite

This graph shows the tests reported above together with the same tests conducted using the

hardware emulator. For all of the tests except one, the results are nearly identical.

sizes used for the ACTS experiments, we added a test for �les of size 12 Mbytes. Figure 7

shows our results.

The results from this experiment are again similar to the results of the ACTS experi-

ment. TCP Reno did relatively poorly in the presence of congestion loss and only achieved

throughput that was 32% of optimal for 12 Mbyte �les. TCP SACK performed much better,

achieving throughput that was 63% of optimal for 12 Mbyte �les. As before, XFTP's ability

to send more data during slow start and recover more quickly from congestion avoidance

allowed it to achieve throughput that was 87% of optimal for 12 Mbyte �les.

4.6 Throughput in the Presence of Link Errors

All of the tests above were conducted on links that were error free (to the best of our

monitoring ability). In addition to their relatively long propagation delays, as compared to

terrestrial links, satellite links are also believed to exhibit error characteristics that impede

TCP's ability to achieve good throughput. To test TCP's ability to overcome bit errors,

we transferred 5 Mbyte �les over the hardware emulator at di�erent bit error rates. The
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Figure 6: Tests over Hardware Emulator with Adequate Bu�ering

This graph compares the throughput achieved with standard TCP Reno with large win-

dows against XFTP with the same e�ective window size. The link emulated was T1 speed.

Throughput values for transfers of �les of size 200 Kbytes, 1 Mbyte, 5 Mbytes, 12 Mbytes,

and 30 Mbytes are plotted.

hardware emulator can be programmed to introduce a given number of bit errors at a deter-

ministic interval. For these tests, the hardware emulator inserted 4000 consecutive bit errors

into the data stream at a programmed interval. We chose 4000 bits (500 bytes) because that

error burst was likely to a�ect 2 adjoining segments. Figure 8 shows the results.

For bit error rates of 1�10

�7

(the hardware emulator was programmed to insert 4000 bit

errors every 10,000,000 bits), the addition of SACK to the standard TCP Reno code is shown

to greatly improve throughput relative to TCP Reno without SACK. At this error rate, we're

destroying approximately one or two segments out of 2400, or injecting 3 loss events into a

5 Mbyte �le transfer. Optimal throughput for this line speed would be approximately 165

Kbytes/second. TCP Reno achieved approximately 22% of this rate, while TCP SACK was

able to achieve approximately 41% e�ciency.

For bit error rates of 1� 10

�6

, we're destroying approximately one or two segments out

of 240, or injecting 30 loss events into a 5 Mbyte �le transfer. TCP Reno only achieved

approximately 4% of the optimal rate, while TCP SACK was able to achieve approximately
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Figure 7: Tests over Hardware Emulator with Insu�cient Bu�ering

This graph compares the throughput achieved with standard TCP Reno and TCP SACK,

both with large windows, against XFTP with the same e�ective window size. The link

emulated was T1 speed. Throughput values for transfers of �les of size 200 Kbytes, 1 Mbyte,

5 Mbytes, and 12 Mbytes are plotted.

9% e�ciency. At an error rate of 1� 10

�5

, a�ecting one or two segments out of 24, both of

the protocols exhibits very poor performance.

5 Conclusions

The experiments presented in this paper indicate that a version of TCP using slow start and

congestion avoidance, fast retransmit and fast recovery, and large (scaled) windows can allow

an application that uses TCP to achieve high throughput over satellite links. When network

congestion and higher bit error rates are present, the addition of selective acknowledgments

(SACK) can also improve performance in some cases.

Two TCP mechanisms appear to have a limiting e�ect on TCP's satellite performance:

slow start and congestion avoidance. Slow start over satellite links takes 6.5 seconds to

reach maximum throughput. When lost segments trigger congestion avoidance, the resulting
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Figure 8: Tests over Hardware Emulator with Bit Errors

This graph compares the throughput achieved by TCP Reno and TCP SACK for di�erent

bit error rates.

throughput decrease can continue for as long as several minutes. Because the slow start and

congestion avoidance mechanisms are generally considered to be essential to well-behaved

TCP implementations on the Internet, however, suggesting changes to these mechanisms

must be undertaken with extreme caution. Further research into these mechanisms is clearly

required.

For further information regarding TCP work being done at Ohio University, software

used for these experiments, or references to related work and publications, visit us on our

web site at http://jarok.cs.ohiou.edu/.
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