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Abstract

The more information about current network conditions laéé to
a transport protocol, the more efficiently it can use the pétwo
transfer its data. In networks such as the Internet, thejam proto-
col must often form its own estimates of network propertiasdal on
measurements performed by the connection endpoints. \Wedeon
two basic transport estimation problems: determining #tdrgy of
the retransmission timer (RTO) for a reliable protocol, astimating
the bandwidth available to a connection as it begins. We &dioth
of these problems in the context of TCP, using a large TCP aneas
ment set [Pax97b] for trace-driven simulations. For RT @eation,
we evaluate a number of different algorithms, finding thatgbrfor-
mance of the estimators is dominated by their minimum valaed
to a lesser extent, the timer granularity, while being altyunaf-
fected by how often round-trip time measurements are madeeor
settings of the parameters in the exponentially-weighteding av-
erage estimators commonly used. For bandwidth estimatiergx-
plore techniques previously sketched in the literaturegfty AD98]
and find that in practice they perform less well than antigiga\We
then develop a receiver-side algorithm that performs Biamitly
better.

1 Introduction

When operating in a heterogeneous environment, the mareniaf
tion about current network conditions available to a transproto-
col, the more efficiently it can use the network to transferdéata.
Acquiring such information is particularly important foperation in
wide-area networks, where a strong tension exists betweedimg
to keep a large amount of data in flight in order to fill the baiuttl
delay product “pipe,” versus having to wait lengthy periadisime
to attain feedback regarding changing network conditiespecially
the onset of congestion.

In a wide-area network, such as the Internet, that does mst p

vide any explicit information about the network path, it [ o the
transport protocol to form its own estimates of current rekacon-
ditions, and then to use them to adapt as efficiently as dess#b
classic example of such estimation and adaptation is how IREP
fers the presence of congestion along an Internet path tgnahg
packet losses, and either cuts its sending rate in the presérton-
gestion, or increases it in the absence [Jac88].
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analyzing TCP in particular is that it is the dominant praida use
in the Internet today [TMW97]. However, analyzing the bebaof
actual TCP implementations also introduces complicatibesause
there are a variety of different TCP implementations thdtae in
a variety of different ways [Pax97a]. Consequently, in onalg-
sis we endeavor to distinguish between findings that arefsptx
how different TCPs are implemented today, versus thoseatbyally
to general TCP properties, versus those that apply to gemdieble
transport protocols.

Our analysis is based on the, subset of TCP trace data col-
lected in 1995 [Pax97b]. This data set consists of sender-si
and receiver-side packet traces of 18,490 TCP connectimms@
31 geographically-diverse Internet hosts. The hosts weezdon-
nected with paths ranging from 64 kbps up to Ethernet spesuk,
each connection transferred 100 KB of data, recorded tspaump
We modifiedtcpanaly[Pax97a] to perform our analysis.

The rest of the paper is organized as follows§ Bxwe look at the
problem of estimating RTO, beginning with discussions efliasic
algorithm and our evaluation methodology. We analyze ttpachof
varying a number of estimator parameters, finding that thevath
the greatest effect is the lower bound placed on RTO, foltblyethe
clock granularity, while other parameters have little efféNVe then
present evidence that argues for the intrinsic difficult§irding op-
timal parameters, and finish with a discussion of the costans-
mitting unnecessarily and ways to detect when it has ocdurhe
§ 3 we look at the problem of estimating the bandwidth avadabl
a connection as it starts up. We discuss our evaluation rdetbgy,
which partitions estimates into different regions reflegttheir ex-
pected impact, ranging from no impact, to preventing logajrang
steady state, optimally utilizing the path, or reducingfpenance.
We then assess a number of estimators, finding that sertieesii-
mation such as previously proposed in the literature isginawith
difficulty, while receiver-side estimation can work coresigbly bet-
ter. § 4 summarizes the analysis and possible future work.

"2 Estimating RTO

For an acknowledgment-based reliable transport protmath as
TCP, a fundamental question is how long, in the absence eiviag
an acknowledgment (ACK), should a sender wait until retmaitis
ting? This problem is similar to that of estimating the latgeossible
round-trip time (RTT) along an end-to-end network path. ldoer,

In this paper we examine two other basic transport estimatiat differs from RTT estimation in three ways. First, the gaahot

problems: determining the setting of the retransmissioetiRTO),
and estimating the bandwidth available to a connection lasgins.
We look at both problems in the context of TCP, using tracgetla
analysis of a large collection of TCP packet traces. The apple

*This paper appears in ACM SIGCOMM '99.

to accurately estimate the truly maximal possible RTT, bther a
good compromise that balances avoiding unnecessary setission
timeouts due to not waiting long enough for an ACK to arrivet-v
sus being slow to detect that a retransmission is necesSagpnd,
the sender really needs to estimate fisedbackiime, which is the
round-trip time from the sender to the receiydus the amount of



time required for the receiver to generate an ACK for newbeieed 2.1 TheBasic RTO Estimation Algorithm

data. For example, a receiver employing the delayed aclagwl . . i

ment algorithm [Bra89] may wait up to 500 msec before trattimgi " Jacobson's algorithm, two state variab&RTTandRTTVARes-
an ACK. Thus, estimating a good value for the retransmistioar timate thg current RTT and a notion of its variation. Theslaeta
not only involves estimating a property of the network patit,also &€ used in Eqn 1 witk = 4 to attain the RTO. Both variables are
a property of the remote connection peer. Third, if loss isticon-  UPdated every time an RTT measurement Rig&sis taken. Since
gestion, it may behoove the sender to viaitgerthan the maximum  Only one segment and the corresponding ACK is timed at argngiv
feedback time, in order to give congestion more time to diam  iMe, updates occur only once per RTT (also referred to as ter
the network—if the sender retransmits as soon as the feedisagk flight”). SRTTis updated using an EWMA with a gain af :
\?\/Igﬁlsdets)'etZSCrcegszrfﬁF|55|on may also be lost, whereasgahlditer SRTTe (1 — a1)SRTT+ a1 RT Tmeas @

It has long been recognized that the setting of the retrasssom
timer cannot be fixed but needs to reflect the network pathenarsd
generally requires dynamic adaptation because of howlgeais
can vary over the course of a connection [Nag84, DDK]. The
early TCP specification included a notion of dynamicallyreating
RTO, based on maintaining an exponentially-weighted nwpawer-
age (EWMA) of the current RTT and a static variation term Pds
This estimator was studied by Mills in [Mil83], which chatadzes
measured Internet RTTs as resembling a Poisson distrbotier-
all, but with occasional spikes of much higher RTTs, and sstg
changing the estimator so that it more rapidly adapts tcesmsing
RTTs and more slowly to decreasing RTTs. (To our knowledgs, t
modified estimator has not been further evaluated in theatitiee.)
[Mil83] also noted that the balance between respondingdhapn

and Jacobson [Jac88] recommends= é which leads to efficient
implementation using fixed-point arithmetic and bit shifti Simi-
larly, RTTVARSs updated based on the deviati@RTT— RTTmeag
usingas = 1.

Any time a packet retransmitted due to the RTO expiring lfits
lost, the TCP sender doubles the current value of the RTOhdosi
both diminishes the sending rate in the presence of sustaomeges-
tion, and ameliorates the possible adverse effects of estisrating
the RTO and retransmitting needlessly and repeatedly.

SRTTandRTTVARare initialized by the first RTrheasmeasure-
ment usingSRTT+ RTTmeasandRTTVAR«+ %RTTmeas Prior
to the first measurement, RTO 3 sec.

Two important additional considerations are that all measu
the face of true loss versus avoiding unnecessary retraegms ap- ment is done using a clocgranularity of & secqnds, e, the
pears to be a fundamental tradeoff, with no obvious optimlaiten. clock advances in increments Gf" and the RTO |sbounde§iby

. S . RTOq i, and RTQnax. In the common BSD implementation of

Zhang [Zha86] discusses a number of deficiencies with the staTCP"(‘;'”: 0.5 sec, RTGyin = 2G = 1 sec, and RT@hax = 64 sec
dard TCP RTO estimator: ambiguities in measuring RTTs astaat ' X ' n-— - ' ax X
with retransmitted packets; the conservative RTO policyetfans-
mitting only one lost packet per round-trip; the difficultiyahoosing
an initial estimate; and the failure to track rapidly in@ieg RTTs
during times of congestion. Karn and Partridge [KP87] asslkd
the first of these, eliminating ambiguities in measuring RTThe
introduction of “selective acknowledgments” (SACKs) [MIRB6]
addressed the second issue of retransmitting lost pad@dwly.
Jacobson [Jac88] further refined TCP RTO estimation bydiutrng
an EWMA estimate of RTT variation, too, and then defining:

As will be shown, the value of RTQi is quite significant. Also,
since the granularity is coarse, the code for updaRig VARsets a
minimum bound orRTTVARf G, rather than the value of 0 sec that
can often naturally arise.

Three oft-proposed variations for implementing the RTOnaest
tor are to time every segment’s RTT, rather than only one fghtfl
use smaller values df; and lower RTQ,i,, in order to spend less
time waiting for timeouts. RFC 1323 [JBB92] explicitly supts the
first two of these, and our original motivation behind thistd our
study was to evaluate whether these changes are worth pgrsui

RTO= SRTT+ k- RTTVAR @)
2.2 Assessing Different RTO Estimators

whereSRTTis a smoothed estimate of RTT (as before) RIATVAR There are two fundamental properties of an RTO estimatdntiea

is a smoothed estimate of the variation of RTT. In [Jac88% 2, but . : ) : ; L
; ) . : J investigate: (1) how long does it wait before retransnmitan lost
this was emended in a revised version of the papérsod [JK92]. packet? and (2) how often does it expire mistakenly and wessze-

While this estimator is in widespread use today, to our keoge ily trigger a retransmit? A very conservative RTO estimatoght
the only systematic evaluation of it against measured TGR@D  gimply hardwire RTO= 60 sec and never make a mistake, satisfy-
tions is our previous study [Pax97b], which found that, of@n j g the second property, but doing extremely poorly witherelg to
for over-aggressive misimplementations, the estimatpeas suf- e first, leading to unacceptable delays; while a very agive es-
ficiently conservative in the sense that it only rarely resin an  timator could hardwire RTG= 1 msec and reverse this relationship,
unnecessary timeout. flooding the network with unnecessary retransmissions.

The widely-used BSD RTO implementation [WS95] has several Our basic approach to assess these two properties is toacse tr
possible limitations: (1) the adaptive RTT and RTT variatstina-  driven simulation to evaluate different estimators, ustmefollow-

tors are updated with new measurements only once per reimd-t ing methodology, which mirrors the RTO estimator impleragion
so they adapt fairly slowly to changes in network conditjd@j the  jn [WS95]:

measurements are made using a clock with a 500 msec granular-

ity, which necessarily yields coarse estimates (thougeBglaintro- 1. For each data packet sent, if the RTO timer is not currently
duces some subtle tricks for squeezing more precision otitese active, it is started. The timer is also restarted when tha da
estimates); and (3) the resulting RTO estimate has a largigmim packet is the beginning of a retransmission sequence.

value of 1 second, which may make it inherently conservative

With the advent of higher precision clocks and the TCP “times 2. For each data packet retransmitted in the TCP trace due to a

tamp” option [JBB92], all three of these limitations mighe be- timeout, we assess whether the timeout urevoidable mean-
moved. It remains an open question, however, how to besgireser ing that either the segment being retransmitted was los|l or
the RTO estimator given these new capabilities: we know tineeat

estimator is sufficiently conservative, but istéo conservative? If 1The BSD timer implementation also uses a “heartbeat” tifmairéxpires
so, then how might we improve it, given a relaxation of thev@o everyG seconds with a phase independent of when the timer is acsetl
limitations? These are the questions we attempt to answer. We included this behavior in our simulations.



ACKs sent after the segment’s arrival at the receiver (up un- Minimum RTO H w ‘ w ‘ B ‘
til the arrival of the retransmission) were lost. This chégsk T000 msecl 1245641 84 063%
necessary because some of the TCPs in\thelataset used ag- ’750 msec 121’566 6.5 0.76%
gressive RTO estimators that often fired prematurely indle f 500 msec 102’264 4.8 1'02%
of high RTTs [Pax97a], so these retransmissions are ndettea 250 msec 92:866 3:5 2:27%

as normal timeout events. 0 msec 92.077 31 4.71%

3. If the timeout was unavoidable, then the retransmissiateis- RTO = 2,000 msed| 229,564 15.6 | 2.66%
sified as a “first” timeout if this is the first time the segment i RTO =1,000 mseq| 136,514| 8.2 | 6.14%
retransmitted, or as a “repeated” timeout otherwise. Thmas RTO=500msec| 85878| 4.5 12.17%
tor is charged the current RTO setting as reflecting the amoun )
of time that passed prior to retransmitting (considerafibn Table 1: Effect of varying RTQ;;,y, G = 1 msec

above), with separate bookkeeping for “first” and “repeated
timeouts (for reasons explained below). The RTO timer ig als

backed off by doubling it assess that all of these repeated retransmissions weeglindeec-

essary). Ih; + g; > 0, that is, trace included some sort of timeout,

4. If the timeout was avoidable, then it reflects a problemhwit then definep; = 7457+ the normalized number of bad timeouts in
the actual TCP in the trace, and this deficiency is not chargefie trace; otherwise define = 0. Note thatp; may not be a par-
against the estimator we are evaluating. ticularly good metric when considering transfers of vagylangth.

However, this study focuses only on transfers of 100 KB.

5. For each arrival of an ACK for new data in the trace, the ACK  For thejth good timeout, let RTObe the RTO setting of the ex-

arrival time is compared with the RTO, as computed by theyiing timer, and RTT be the most recently observed RTT (even

given estimator. If the ACK arrived after the RTO would haveit j a5 not an RTT that would have been measured for pur-
fired we consider the expiration a “bad” timeout, reflectingtt

the feedback time of the network path at that moment exceedtgé) ses Rczlfoujpc;;t_l_lr_l]g thS;RT'I;Iand R;- TVARSt?ti va_nables)_. Le_t
the RTO. 7= Y /RTT, so¢&! reflects the cost of the timeout in units

of RTTs. We can then define an average, normalized timeotibos
If the ACK covers all outstanding data the RTO timer is turnedy,, — E;[¢2], or Qif tracei does not include any good timeouts.

off. For a collection of traces, we then defiiié = . T; as the total

If the ACK also yielded an RTT measurement (because it agime spent waiting for (good) first timeoutsy = E.,.~o[t:] as
knowledged the segment currently being timed, or because ejhe mean normalized timeout cost per connection that expee at
ery segment is being timed3RTTand RTTVARare updated |east one good timeout; andl = E; [p;] as the mean proportion of
based on the measurement and the RTO is recomputed. timeouts that aread, per connection, including connections that did
Finally, the RTO timer is restarted. not include any timeouts (because we want to reward estigttat,
for a particular trace, don’'t generate any bad timeouts).
6. The sending or receiving of TCP SYN or FIN packets is not 1} can be dominated by a few traces with a large number of time-

assessed, as these packets have their own retransmisssos,ti  out retransmissions, for which the total time waiting fosffitime-

and if interpreted as simple ACK packets can lead to erromeowuts can become very high, so it is biased towards hightigrtow

measurements of RTT. bad things can getl¥ is impartial to the number of timeouts in a
trace, and so better reflects the overall performance of émagsr.
B likewise better reflects how well an estimator avoids baetiois
overall. For some estimators, there may be a few partictdaes
on which they retransmit unnecessarily a large number aédimas
noted below.

Finally, of the 18,490 pairs of traces.i, 4,057 pairs were elim-
inated from our analysis due to packet filter errors in reicgrdhe
traces, the inability to pair packets across the two trattas ¢an
occur due to packet filter drops or IP ID fields changed in flight
header compression glitches [Pax97c])tapanalys inability to de-
termine which retransmissions were due to timeouts. Tlhigdg us
with 14,433 traces to analyze, with a total of 67,073 timeetrans-
missions. Of those, 53,110 are “first” timeouts, and 34% ettaces
have no timeout retransmissions.

Note this approach contains a subtle but significant diffjc8up-
pose that in the trace packBtis lost and 3 seconds later the TCP’s
real-life RTO expires and is retransmitted. We treat this as a “first
timeout,” and charge the estimator with the RTR) it computed for
P. SupposeR = 100 msec. From examining the trace it is im-
possible to determine whether retransmittiRgafter waiting only
100 msec would have been successful. It could be that waitiyg
amount of time less than 3 seconds was in fact too short arvaite
for the congestion leading tB’s original loss to have drained from
the network. Conversely, suppogeis lost after being retransmitted
3 seconds later. It could be that the first loss and the secenha
fact uncorrelated, in which case retransmitting after wgionly R
seconds would yield a successful transmission.

The only way to assess this effect would be to conduct livegxp
ments, rather than trace-driven simulation, which we |davéuture
work. Therefore, we asseast whether a given retransmission was2 3 Varying the Minimum RTO
effective meaning that the retransmitted packet safely arrivedeat th
receiver, but only whether théecisionto retransmit wasorrect, It turns out that the setting of RTR),,, the lower bound on RTO,
meaning that the packet was indeed lost, or all feedback freme- can have a major effect on how well the RTO estimator perfprms
ceiver was lost. Related to this consideration, only theatiffeness so we begin by analyzing this effect. We first note that thealisu
of an RTO estimator at predicting timely “first” timeouts &sassed. setting for RTQy;p, is two clock “ticks” (i.e., RTQui, = 2G), be-
For repeated timeouts it is difficult to gauge exactly how ynafithe  cause, given a “heartbeat” timer, a single tick translatés & time
potential repeated retransmissions would have been raegess anywhere betweef andG sec. Accordingly, for the usual coarse-

Given these considerations, for a given estimator and atret  grained estimator off = 0.5 sec, RTQi is 1 sec, which we will
T; be the total time required by the estimator to wait for undvoi see is conservative (since a real BSD implementation wosédau
able first timeouts. Leg; be the number of “good” (necessary) first timeout between 0.5 sec and 1 sec). But@br= 1 msec, the two-
timeouts, and; the total number of “bad” timeouts, including multi- tick minimum is only 2 msec, and so setting R} to larger values
ple bad timeouts due to backing off the timer (since we camdlgu can have a major effect.



Granularity H w ‘ w ‘ B ‘ Parameters H w ‘ W ‘ B ‘

500 msec|| 272,885 19.2 | 0.36% [WS95] || 245,668 154 | 0.23%

[WS95] (500 msec)|| 245,668| 15.4 | 0.23% [WS95}every || 241,100 | 14.7 | 0.25%
250 msec|| 167,360| 10.2 | 0.67% take-first(a;, a2 = 0,RTOn, = L s) || 158,199 85| 0.74%

100 msec|| 142,940| 8.4 | 0.95% take-first(a1, 2 = 0) || 131,180 | 4.4 | 2.93%

50 msec|| 143,156| 8.4 | 0.84% \llefy-S'OW<a1 = 5522 = 3p) iég'ggi gi ﬁggf

0 slow-everya; = 35, a2 = &) , . .28%

zomeec) 143z 04| 010 o | e 5 8

1 msec| 144,564| 8.4 | 0.63% S(as = g2 =) || 92077 31 4.71%

! : : std-everya: = §,02 = %) 94,081 | 3.1 5.09%

fast(a; = ,0. = 1) | 90212 30| 7.27%

Table 2: Effect of varying granularit¢#, RTQyj, = 1 sec take-last(a1, a» = 1) 93,490 | 3.3 | 19.57%
take-last-everyai, az = 1) 97,098 | 3.5 | 20.20%
take-last(cvy, 2 = 1, RTOpjp = 1) || 145571 85| 1.30%

Table 1 showsV, W and B for different values of RTQyipy. for
G = 1 msec. We see thd¥ runs from 144,564 seconds for a mini-
mum of 1 sec to about 64% as much when using no minimum. The

column forW shows that the 1 sec minimum means that a typical = )
RTO costs a bit more than 8 RTTs, but much of this expense diglis gives it a slight edge.
appears as we decrease the minimusn.on the other hand, shows AboveG = 100 msec, however, we start trading off reduced per-
that for a 1 sec minimum, on average only about 1 in 150 tingisut formance for avoiding bad timeouts. We can cut the averageofa
bad, while for no minimum, nearly 1 in 20 is (these bad time@ue bad timeouts by nearly a factor of two by usiig= 500 msec, but at
not clustered among a particular small subset of the traGejrly, @ cost of more than a factor of two in performance. We also thate
adjusting the minimum RTO provides a “knob” for directlydiag ~ the [WS95] estimator clearly performs better th@n= 500 msec,
off timely response with premature timeouts, with no obgitsweet  with both W and B lower. It gains by performing better on some
spot” yielding an optimal balance between the two. very-large-RTT traces, because it is able to better refidatively
As noted above, “delayed” acknowledgments in TCP can resuimall RTT changes due to its finer effective granularitigsSRTT
in elevating RTTs by up to 500 msec, and in a humber of comandRTTVAR
mon implementations, frequently elevate RTTs by up to 206ans
Accordingly, it is not clear that a minimum RTO of two ticksrfo
G = 1 msec is sound. However, for the bulk of our subsequent ana®.5 Varying theEWMA Parameters
ysis, we consider estimators with no minimum bound, bothigb-h
light the contribution to estimator efficiency of factoriet than the Table 3 shows the estimator's performance when varyingper
quite-dominant minimum RTO, and to keep in mind that transpo Edn 2) andaz, holdingG = 1 msec and RT@yin, = 0 msec fixed,
protocols different from TCP might not introduce such a minim. ~ €xcept where noted. The first two rows are the [WS95] implemen
For comparison, we include three static timers that use stanh  tation, which use&s = 500 msec, with the second row reflecting a

setting for RTO (except they double the RTO on repeated tins}o Variant that derives an RTT measurement from every ACK iaigiv
The table highlights the heavy cost of not using an adaptivert ~ at the sender. We see that the more freq @it TandRTTVARIp-
The constant estimators generate about 10 times as manjniad t dates have little effect on the estimator’s performancéy oraking
outs as the adaptive estimators with similar relative perémce fig- it slightly more aggressive.

ures (V). The values of don't tell the whole story for the static | "€ remaining estimators all use = 1 msec. Theake-firstex-
timers, however, because their bad timeouts are clustenedgrel- 7M€ 0fa1 = a; = 0 simply uses the first RTT measurement
atively few traces. For example, RTO = 2,000 msec resultsiaca [0 initializeé bothSRTT «— RTT andRTTVAR« 3RTT, yielding
timeout in 538 traces, while for RTQy, = 250 msec, which has a RTO « 3RTT. It never changeSRTT RTTVAR or RTO again
similar value ofB, spreads its bad timeouts over more than twice afPther than to back off RTO in the face of repeated retransmis
many traces. sions, and ur_ldo the_backlng off vyhen the retransmissionrepods).

The first variant of it reflects using R, = 1 sec, the second,
RTOmin = 0 sec. At the other extreme, we hatake-lasf which
24 Varying M easur ement Granularity always setsSRTT «— RTT andRTTVAR<« |SRTPprev — RTT]|.

) ) ) ) ] Thetake-last-everyariant is the same except every packet is timed
With the above caution regarding the considerable impogtasf  rather than just one packet per round trip, and the final ntriises
RTOpin in mind, we now look at the effect of varying. In Table 2,  the minimum RTT to 1 sec.

G ranges from 500 msec down to 1 msec. In order to compare the|n petween these extremes we run the gamut frery-slow
different granularities on an even footing, we hold R = 1 seC  \hich uses one-tenth the usual parameters (which are gvethd
constant, rather than having the relative differences @etwthe  std estimator), tofast which uses twice the parameters, with some
granularities overwhelmed by using Rf, = 2G. Weinclude one  ime-every-packet variants.

additional row, “[WS95],” which is the estimator as implemted in From the table we see that the settings of the EWMA parameters
[WS9S]. This implementation includes fixed-point arithin@ind ke |ittle difference in how well the estimator performadéed,
bit-shifting in order to estlmatSRTTgt an effective granularity of ¢ o,y goal is to minimize the rate of bad timeouts and stithesn

62.5 msec an®RTTVARat a granularity of 125 msec, though RTO 5q4ressive, we might pick the exceedingly simialke-firstestima-
itself is computed with a granularity of 500 msec. tor, which only barely adapts to the network path conditbos we

We first note that folz < 100 msec, the performance for good ight pick slow, which on average incurs 25% less normalized de-
timeouts, both absolutéi() and relative {¥") is essentially identical, lay per timeout, and occupies a sweet spot that locally nizgm
regardless of how fine the granularity becomes. But we diegalin
in avoiding bad timeouts (minimizing) as the granularity becomes  2gven thoughtake-first and take-lastshow overall decent performance
finer. The reason for the gain is that the more coarse gratiedar compared to the other RTO estimators, these RTO estimatatd perform
will often take no action in the face of a minor change in RTHjlev  extremely poorly over network paths that exhibit large, dardchanges in
the finer granularity estimator will adapt to reflect the dp@nand RTT.

Table 3: Effect of varying EWMA parameteds , o2




1.0

RTTVAR factor H w \ W \ B \ —— RTTVAR L

k=16 168,002] 7.0 | 0.59% o | MesRTT J

k=12 144,053| 5.7 | 0.81% &° g

k=28 118,858| 4.4 1.52% é w|

k=6 105,681 | 3.8 | 2.43% Z2°

adapt 94,220 3.2 | 4.44% 2.

k=4 92,077 31| 4.71% =il

k=3 85,264 2.8 | 7.68% 5.

k=2 78,565 | 2.5 | 13.64% ol

RTOmjn = 750 mseck =6 || 128,266| 6.7 | 0.50% - 7

RTOmin = 750 msec 121,566| 6.5 | 0.76% b 1o+ 106 1oA 1085 1gna

take-ﬁr3§5omsec, k=6 163,799 6.4 0.70% Ratio of Extra Wait Necessary : X
P— — 0,

S$m!n _ 288 nggk =6 iégg%ﬁ 2% 28302 Figure 1: Extra waiting time necessary to avoid bad RTO
in= , : :

RTOmin = 250 mseck =6 || 106,139| 4.0 | 1.29%

RTOpjp = 250 msec 92,866 | 3.5| 2.27%

. bit, however, when we increase Rjf,, as shown in the second half
Table 4: Effect of varyinqRTTVARactor, k of the table. For example, we find that RIQ, = 250 mseck = 4
performs strictly better than the no-minimukn= 6 variant, and

B. As we found for [WS95], timing every packet makes little-dif RTOmin = 250 msec,k = 6 performs better than thee = 8 vari-
ference over timing only one packet per RTT, even thoughring ant. Even the extremely smptake-fnrstespmator, if usingt = 6
every packet we run many more measurements through the EWMAS] RTGpin = 250 msec, performs a bit better than the regular
per unit time. This in turn causes the EWMASs to ad§fTTand 1 Omin = 750 msec estimator.
RTTVARmore quickly to current network conditions, and to more
rapidly lose memory of conditions further in the past, simih ef-
fect to using larger values fer; andas. .
We note that as the timer more quickly adapBs,steadily in- 2.7 Can WeEstimate RTO Better?
creases, witliake-last-evergenerating on average one bad timeout . . ) .
in every five, indicating correlations in RTT variationstspan mul- Having evaluated the effects of different estimator patanseand,
tiple round-trips. We can greatly diminish this problem laysing for t.he Tost part, onLy found tradeoffs and I|ttIe.|n the wdycom-
RTTpin to 1 sec, but only by losing a great deal of the estimator'@€lling “sweet spots,” we now turn to the question of whetthere
timely response, and we are better off instead using thespond- &€ |ndfeed opportunities to deV|se.st|II. better estlmatArtsey con-
ing take-firstvariant. sideration for answering this question is: when we undenege, by

We also evaluated varying the EWMA parameters for RFQ= how muchiis it? If, for example, underestimates tend to beyféss
] —~ ) .~ than RTT, then that would suggest a modification to Eqn 1 irctvhi
500 msec. We find thall” increases by roughly 50%, with the vari- SRTThas a factor of 2 applied to it.

ation among the estimators further diminishing, whitefalls by a
factor of 4-8, further illustrating the dominant effect b&tRTO min-
imum.

Finally, a number of the paths iN> contain slow, well-buffered
links, which lead to steady, large increases in the RTT (umany
seconds). We might expetake-firstto do quite poorly for these =~ _— ; . .
connectiZJns, sincegthe fith measured RTTCrtas IitFt)Ie toydb svibse- dicating that finding a partlcule}r _value bf|_n Eqn 1 _that “fff'c'e”t'y
quent RTTs, but in fadiake-firstdoes quite well. The key is the last takes care of most of the remaining bad timeouts is unlikely.
part of step 5 irf; 2.2 above: the RTO timer is restarted with each Also shown is thatd is generally less than the current RTO and
arriving ACK for new data. Consequently, when data is flowing@lSo the maximum RTT seen so far; this suggests adding ohesé t
the RTO has an implicit extra RTT term [Lud99], and fake-first values to RTO to make it sufficiently conservative to avoid bme-
this suffices to avoid bad timeouts even for RTTs that gromiry t Outs. However, doing so has much the same effect as otheatsti
orders of magnitude. Indeethke-firstdoesbetterfor such connec- Variants that wait longer based on other factors (e.qg., ahea\ofx).
tions than estimators that track the changing RTT! It doesesause For example, changing the standdrd= 4 estimator shown in Ta-
more adaptive estimators wind up waiting much longer aftedast  ble 4 to use twice the computed RTO (i.e., add in an additi®T&
arriving ACK before RTO expires, whileake-firstretransmits with  term) lowersB from 4.71% to 0.57%, but increas#g from 3.1 to
appropriate briskness in this case. But this advantagetiepiar to  5.7—a bit better than just usirig= 12, but not compellingly better.

Let A denote the amount of additional waiting time needed to
avoid a bad RTO. Figure 1 plots the cumulative distributiérthe
ratio of A to RTTVAR(solid), the maximum RTT seen so far (dot-
ted), and RTO (dashed), for the us@al= 1 msec estimator. The
ratio of A to RTTVARanges across several orders of magnitude, in-

the highly-regularized feedback of such connections. ésddow- For RTQpiy = 0.5 sec, the plot is very similar, with slightly

ever, suggest the notion of a “feedback timeout,” discussiefly in - more separation between the RTO and MAX RTT lines. Thus, Fig-

§4. ure 1 suggests a fundamental tradeoff between aggresss/amne
suffering bad timeouts.

2.6 Varyingthe RTTVAR Factor A related question is: if a packet is unnecessarily retratsd)

does it reflect a momentary increase in RTT, or a sustainedase?

The last RTO estimation parameter we considér the multiplier of ~ We find that about 62% of the bad timeouts were followed by RTTs
RTTVARw~hen computing RTO, per Egn 1. For the standard impleless than the current RTO, so the bad timeout reflected ai¢rans
mentationk = 4. Table 4 shows the effects of varyikgrom 2-16, RTT increase. Another 24% were followed by exactly one mége e
for G = 1 msec and RTQ;;, = 0 sec. Theadaptestimator starts vated RTT, though a bit more than 2% were followed by 10 or more
with & = 4 but doubles it every time it incurs a bad timeout. elevated RTTs. Thus, most of the time a significant RTT ireeda

k clearly provides a knob for trading off waiting time for urmae quite transient—but there is non-negligible tail-weight $astained
essary timeouts, with no obvious sweet spot. This balanaegds a RTT increases.



2.8 Impact of Bad Timeouts In the context of TCP, the goal in this section is to deterntireeef-
o _ . ) ficacy of different algorithms a TCP connection might userntyits
We fInIS.h our study of RTO estimators with brief comments ewne start-up to determine the appropriate sending rate witpashing
ing the impact of bad timeouts. o on the network as hard as does the current mechanism. In a more

Any time a TCP times out unnecessarily, it suffers not onlgss|  general context, the goal is to explore the degree to whiehitthing
of useful throughput, but, often more seriously, unneadlgsauts  strycture of flights of packets can be exploited in order torexte
ssthreshto half the current, sustainable window, and begins a newow fast a connection can safely transmit.
slow start. In addition, because the TCP is now sendingnsné- We assume familiarity with the standard TCP congestionrobnt
ted packets, unless it uses the TCP timestamp option, intaafely  gigorithms [Jac88, Ste97, APS99]: the state variawed bounds
measure RTTs for those packets (per Karn's algorithm [KR&Md  {he amount of unacknowledged data the sender can curreielst i
thus it will take a long time before the TCP can adapt its RT€s i the network, and the state variaskthresimarks thecwndsize
mate in order to improve its broken RTO estimate. (See [PalM87 ot \yhich a connection transitions from the exponentialéase of
an illustration of this effect.) , o “slow start” to the linear increase of “congestion avoidahddeally,

Bad timeouts can therefore have a major negative impact @Ra T ssthrestyives an accurate estimate of the bandwidth available to the
connection’s performance. However, they mist have much of an  connection, and congestion avoidance is used to probe fitimhl
adverse impact on theetworks performance, because by definition hanawidth that might appear in a conservative, linear tashi
they occur at a time when the network is not congested o thié po A ey connection begins slow start by settivgndto 1 segment,
of dropping the connection’s packets. This in turn leadh®db- 5 then increasingvndby 1 segment for each ACK received. If the
servation that if we could undo the deleterious effects ubeTCP | ocaiver acknowledges evekysegments, and if none of the ACKs
connection of cuttingssthreshand entering slow start, then a more 4, lost, thercwnd will increase by about a factor of = 1 + L

aggressive RTO estimator would be more attractive, as TR/ every RTT. Most TCP receivers currently use a “delayed ;tvﬁno
able to sustain bad timeouts_without unduly impairing penfance edgment” policy for generating ACKs [Bra89] in whi¢h= 2 and
or endangering network stability. o , hencey = 2, which is the value we assume subsequently.

When TCP uses the timestamp option, it can unambiguously de-Nge that if during one round-trip a connection hsissegments
termine that it retransmitted unnecessarily by observitegen ACK i, flight, then during slow start it is possible, during thenBTT, to
that echoes a timestamp from a packet sent prior to the ehian  arflow a drop-tail queue along the path such that 1)N = N/k
sion. (A TCP could in principle also do so using the SACK opfjo segments are lost in a group, if the queue was completelydnty-
Such a TCP could remember the valuessfhrestandewndprior 1o jng'the N segments during the first round-trip. Such loss will in gen-
the last retransmission timeout, and restore them if itadiscs the eral significantly impede performance, because when nheltipg-
timeout was unnecessary. ) __ ments are dropped from a window of data, most current TCPeimpl

Even without timestamps or SACK, the following heuristiagi  mentations will require at least one retransmission timémtesend
be considered: whenever a TCP retransmits due to RTO, ituresms )| dropped segments [FF96, Hoe96]. However, during cdimes
AT, the time from the retransmission until the next ACK arriviés avoidance, which can be thought of as a connection’s stetadg;
AT is less than the minimum RTT measured so far, then argualy thcp increaseswndby at most one segment per RTT, which ensures
ACK was already in transit when the retransmission occureed  hatcwndwill overflow a queue by at most one segment. TCP’s fast
the timeout was bad.. If the ACK only comes later than the mimm | atransmit and fast recovery algorithms [Jac90, Ste97,99PSro-
RTT, then likely the timeout was necessary. vide an efficient method for recovering from a single droppeg-

We can assess the performance of this heuristic fairly $infdr  ment without relying on the retransmission timer [FF96].
our usualG = 1 msec estimator, a total of 8,799 good and bad ge [Hoe96] describes a method for estimatisthrestby mul-
timeouts were followed by an ACK arriving with T" less than the  tjn|ying the measured RTT with an estimate of the bottlertemhkd-
minimum measured RTT. Of these, fully 75% correspongj@od  iGth (based on the packet-pair algorithm outlined in [KE3@t the
timeouts, indicating that, surprisingly, the heuristimgeally fails.  peginning of a transfer. [Hoe96] showed that correctlynesting
The failure indicates that sometimes the smallest RTT seefars  ggthreshwould eliminate the large loss event that often ends slow
occurs right after a timeout, which we find is in fact the ca®®;  giart (as discussed above). Given that Hoe's results wesedban
haps because the lull of the timeout interval gives the nétywath a simulation, an important follow-on question is to expldne tegree

chance to drain its load and empty its queues. to which these results are applicable to actual, measurd? cod-
However, if the threshold is instegd= 2 of the minimum RTT, nections.
then only 20% of the corresponding timeouts goed (these com-  Tpere are several other mechanisms which mitigate the gl

prise only 1% of all thegoodtimeouts). Forf = 3, the proportion ¢4 5eq by TCP’s slow start phase, and therefore lessen ¢aetoe

falls to only 2.5%. With these reduced thresholds the chaficie-  oqiimatessthresh First, routers implementing Random Early Detec-

tecting a bad timeout falls from 74% to 68% or 59%, respeltive o (RED) [FJ93, BCC 98] begin randomly dropping segments at

f = 5. B drops from 4.71% to 2.39%, a reduction of nearly a factofty signal the connection to reduce its sending rate beffoeeueue

of two, and enough to qualify the estimator as a “sweet spot.”  gyerfiows. Currently, RED is not widely deployed. RED als@sio
not guarantee avoiding multiple losses within a window dhdas-

. . . pecially in the presence of heavy congestion. However, RED a

3 Estimating Bandwidth has the highly appealing property of not requiring the dgpient of
any changes to current TCP implementations.

We now turn to the second estimation problem, determinirgg th Alternate loss recovery techniques that do not rely on T@&'s

amount of bandwidth available to a new connection. Cleatfrlg,

tranqurt protpcol sendgr knows the available bandWIdth./,ouId 3strictly speakingewndis usually managed in terms of bytes and not seg-

like to immediately begin sending data at that rate. But mab- ens (full-sized data packets), but conventionally itigdssed in terms of

sence of knowing the bandwidth, it must form an estimate. TREf,  segments for convenience. The distinction is rarely ingrartAlso, [APS99]

this estimate is currently made by exponentially incregie send-  allows an initial slow start to begin wittwnd set to 2 segments, and an ex-

ing rate until experiencing packet loss. The loss is takearaisn-  perimental extension to the TCP standard allows an inikia¥ start to begin

plicit signal that the rate had grown too large, so the ragfféctively  with cwndset to 3 or possibly 4 segments [AFP98]. We comment briefly on

halved and the connection continues in a more conservasieédn. the implications of this change below.




transmission timer have been developed to diminish the éinplr  path’s bottleneck bandwidth, which vessumehat PBM provides.
multiple losses in a flight of data. SACK-based TCPs [MM96,Thus, we use PBM to calibrate the efficacy of the otbsthreshes-
MMFR96, FF96] provide the sender with more complete informatimators we evaluate.

tion about which segments have been dropped by the netwark th Of the 18,490 traces available k>, we removed 7,447 (40%)

non-SACK TCP implementations provide. This allows aldoris to
quickly recover from multiple dropped segments (generaiighin

one RTT following loss detection). One shortcoming of SAG&sed
approaches, however, is that they require implementatiemges
at both the sender and the receiver. Another class of atgosit

referred to as “NewReno” [Hoe96, FF96, FH99], does not mequi

SACKs, but can be used to effectively recover from multipleses
without requiring a timeout (though not as quickly as whemgis

from our analysis for the following reasons:

e Traces marred by packet filter errors [Pax97a] or major clock
problems [Pax98]: 15%. Since these problems most likely do
not reflect network conditions along the path between the two
hosts in the trace, removing these traces arguably doesinot i
troduce any bias in our subsequent analysis.

e Traces in which the first retransmission in the trace wasithvo

SACK-based algorithms). In addition, NewReno only recuira-
plementation changes at the sender. The estimation digwistud-
ied in this paper all require changes to the sender's TCPemeh-
tation. So, we assume that the sender TCP implementatibhavié
some form of the NewReno loss recovery mechanism.

able,” meaning had the TCP sender merely waited longer, an
ACK for the retransmitted segment would have arrived: 20%.
Such retransmissions are usually due to TCPs with an initial
RTO that is too short [Pax97a, PAM9]. We eliminate these
traces because the retransmission resulsthreshbeing set

to a value that has little to do with actual network condisipn
so we are unable to soundly assess how well a lagwesh
would have worked. Removing these traces introduces a bias
against connections with particularly high RTTs, as these a
the connections most likely to engender avoidable retrégsm
sions.

3.1 Methodology

In this section we discuss a number of algorithms for estirgat
ssthreshand our methodology for assessing their effectiveness. We
begin by noting a distinction betweeavailable bandwidthandbot-
tleneck bandwidthIn [Pax97b] we define the first as the maximum

rate at which a TCP connection exercising correct congestiatrol e Traces for which the PBM algorithm failed to produce a single
can transmit along a given network path, and the second ampfie unambiguous estimate: 4%. We need to remove these traces
bound on how fasanyconnection can transmit along the path dueto  pecause our analysis uses the PBM estimate to calibratéfthe d
the data rate of the slowest forwarding element along thie pat ferent estimation algorithms we assess, as noted aboveo\Rem

Our ideal goal is to estimatavailable bandwidthn terms of the |ng these traces introduces a bias against network conditio
correct Setting ofsthreshsuch that we fU”y utilize the bandwidth that make PBM itself fail to produce a Sing|e estimate: multi
available to a given connection, but do not exceed it (mogeipely: channel paths, changes in bottleneck bandwidth over thseou
only exceed it using the linear increase of congestion avad). of a connection, or severe timing noise.
Much of our analysis, though, is in terms of bottleneck baidtty
as this is both an upper bound on a gasthreshestimate, and a
quantity that is more easily identifiable from the timingusture of
a flight of packets, since for any two data packets sent badlatk
along an uncongested path, their interarrival time at theiver di-
rectly reflects the bottleneck bandwidth along the fath.

Note that in most TCP implementatiossthreshis initialized to
an essentially unbounded value, while here we concentrett@acer-

ing this value in an attempt to improve performance by avgjddss  pottleneck bandwidth estimate made using the PBM algorithiis
or excessive queueing. Thus, all of the algorithms conettieT this  theloss point meaning the transmission rate in effect when the first
section areonservativeyet they also (ideally) do notimpair a TCP's |ost packet was sent (so, if the first lost segment was sehtowind
performance relative to TCPs not implementing the algorithlow-  corresponding téV bytes, therl = W/RTT bytes/second). If the
ever, if an estimator yields too small a valuessthreshthen the TCP  connection does not experience logs,is the bandwidth attained
will indeed perform poorly compared to other, unmodified BCP  hased on the largestvnd observed during the connectidnWhen

As noted above, one bottleneck bandwidth estimator is ‘Back, > Bor L' > B, the network path is essentially free of competing
pair” [Kes91]. In [Pax97b] we showed that a packet pair algotraffic, and the loss is presumed caused by the connectighdiger-
rithm implemented using strictly sender-side measuresng@et- flowing a queue in the network path. ConverselyLibr L' is less
forms poorly at estimating the bottleneck bandwidth usesj traf-  than B, the path is presumed congested. Finallyis the bandwidth
fic. We then developed a more robust method, Packet Bunch Modetimate made by thesthrestestimation algorithm being assessed.
(PBM), which is based on Iooklng for modalities in the timistguc- In addition, define ng«') — (x . RTT)/segment Sizmpresenting
ture of groups of back-to-back packets [Pax97b, Pax97c]MBB the size of the congestion window, in segments, needed fevech
effectiveness was assessed by running it over the NPD d&{@se  phandwidth ofz bytes/second, for a given TCP segment size and RTT.

cluding theN, dataset referred to earlier), arguing that the algorithniNote that as defined, seg) is continuous and not discrete.)
was accurate because on those datasets it often produaadtest

:Eht?\te(r:r?gt.espond with known link rates such as 64 kbps, T1,0E1, 311 ConnectionsWith L oss
PBM analyzes an entire connection trace before generating aGiven the above definitions, and a connection which contaiss,
bottleneck bandwidth estimates. It was developed for aB&gset- we assess an estimator’'s performance by determining wihiiteo
work path properties and is not practical for current TCPlenmn-  following six regions it falls into. Note that we analyze tegjions in
tations to perform on the fly, as it requires information froath the  the order given, so an estimate will not be considered foragipns

sender and receiver (and is also quite complicated). Hawfareour  subsequent to the first one it matches.
purposes what we need is an accurate assessment of a givemknet

After removing the above traces, we are left with 11,043 egcnAn
tions for further analysis. We use trace-driven simulatomssess
how well each of the bandwidth estimation algorithms penfowe
base our evaluation on classifying the algorithm’s estinfat each
trace into one of severaggions representing different levels of im-
pact on performance.

For each trace, we define three variablBs,L andE. B is the

Sstrictly speaking, it's the largest flight observed durihg tonnection,
which might be smaller thaownddue to the connection running out of data
to send, or exhausting the (32-64KB) receiver window.

4Providing the path isn't “multi-channel” or subject to rowg changes
[Pax97b].



No Estimate Made. The estimator failed to produce asthresh | Algorithm No | No Prv. | Stdy. | Opt. | Tot. || Red.
estimate before the first segment loss occurred in the trace. Est. | Imp. || Loss | State Perf.
PBM 23% | 46% 9% 10% | 11% | 31% 0%

No Impact. The estimate satisfie® > ~L. This means thak is TSSF 42% | 1% 1% 3% | 0% | 4% || 52%"
a sufficiently large overestimate that the connection véhave CSA:;%-I 62% | 20% 6% 9% | 2% | 17% 2%

no differently using that estimate than it would if no estima CSA’;;g'05 53% | 37% 5% 4% | 0% | 9% 1%*
were made. CSA’:;gl 45% | 32% 8% 10% 2% | 19% 4%~
CSA‘:;2'2 38% | 24% 9% 13% 3% | 25% || 13%

Some Loss Prevention. WhenL < E < ~vL holds, the given | TCSA 62% | 14% || 6% | 11% | 1% | 19% || 5%
ssthreshestimate prevents some, but not all, loss of data pack-TCSA 70% | 10% | 6% 9% | 2% | 17% || 2%
ets. While the estimate is greater than the loss point, itagesl | ReC¥yin 11% | 32% | 6% | 13% | 4% | 23% || 34%"
the size of the last slow start flight by, = sedvL — E) seg- Sgg\ﬁvg ﬂ;’f igz’f 18;’;’ iizf 1?)?/0 gizﬁ) 32/4’

0 0 0 0 0 0 0

ments. Therefore, up t; segment drops may be prevented. Rec@gg 1106 | 65% 2% 2% | 8% | 23% 00

Steady-State. When% < E < L holds, we classify thesthresh
estimate as “steady-state.” During congestion avoidambigh
defines TCP’s steady-state behavior [Jac88, MSMO&#whd
decreases by half upon loss detection and then increases I8)1.2 Connections Without L oss
early until another loss occurs. So, given the loss poink of
cwnd can be expected to oscillate betwegrand L after the

connection’s second loss evéntBy making an estimate be-
tweenZ andL, the estimator has found the range about whic
the connection will naturally oscillate, assuming the Ipest

is stationary.

Optimal. When the analysis reaches this point, we know thatNO Est.lmate Made. The estimator failed to produce asthresh
E < L since none of the above conditions hold. If €8y > estimate.
sed B) — 1 also holds, then thesthreshestimate reduces the
gueueing requirement, as follows. SinEeis very close to or
larger than the bottleneck bandwidth, yet less tlétalwe know
that the loss point is greater than the bottleneck bandyvidth
thessthrestestimate is no less than the bottleneck bandwidth or
one segment less than the bottleneck bandwidth. (We canside
one segment less than the bottleneck bandwidth to be withirb
the range because both slow start and congestion avoidalhce w
take a single RTT to increassvndto correspond wittB—and
we prefer to reach that point via congestion avoidance rathe
than slow start, so we don'’t overshoot it.)

Thus, assuming the connection lasts long enough, the queue ) )

will still be filled to L. However, we will fill the queue more Reduce Performance. At this point, E < min(L’, B —seg '(1))
slowly and smoothly than with slow start. Furthermore, when  holds, indicating that the estimate failed to provide exgen
we exceed the queue during congestion avoidance, itis gnly b tial window growth toL’, which is a known safe sending rate.
one segment, whereas during slow start we will exceed the ca- Furthermore, our failure to readf is not excused by provid-
pacity of the queue by as much-atimes the capacity.When a ing exponentiacwnd growth long enough to fill the pipeX
connection falls into this region, the queue length is atliire- bytes/second). We again mark with a *" those connectioms fo
duced byN, = (L — E) - RTT bytes. Since this region reduces which the reduction is often particularly large.

gueueing, prevents loss, yet fully utilizes the networkhpate
deem it “optimal.”

Table 5: Connections with Loss (8,257 traces)

The following regions us&’ to assess the impact séthrestestima-
tion on connections in the dataset that do not experiense Bach
rﬁrace is placed into one of the following four regions. (Agaiote
hat we analyze the regions in the order given, so an estiwibiteot
be considered for any regions subsequent to the first onadhes)

Unknown Effect. WhenE > L’ holds, the estimate does not limit
TCP’s ability to opercwnd as it is above the maximuewnd

used by the connection. Since we do not have a good measure
of the limit of the network path, nothing more can be assessed
about the performance of the estimator.

ptimal. When se¢~) > sed B)—1 holds, the estimate is greater
than the bottleneck bandwidth and therefore does not lierit p
formance. However, we also know that < L’ due to the
above region. Therefore, the estimate reduces the initialie-
ing requirement similar to the “optimal” region §13.1.1.

3.2 Benchmark Algorithm

Reduce Performance. Finally, if none of the above conditions hold aAg noted above, we use PBM as our benchmark in terms of accu-
thenE < 5 andE < B (these bounds are not tight). We there-rately estimating the bottleneck bandwidth. Bsthrestestimation,
fore setssthreshtoo low and forcecwnd growth to continue e yse a revised version of the algorithm, PBR provide some
linearly, rather than exponentially. When an estimatoraund sort ofupper boundon how well we might expect any algorithm to
estimates mify;, B) by more than half in 5¢% of the con-  perform. (itis not a strong upper bound, since it may be ttercal-
nections in which performance would be reduced, we consideforithms estimate thavailable bandwidth considerably better than
this to be an especially bad estimate. In this case, thet®por goes PBM, but it is the best we currently have available.) The differ-
percentage of connections experiencing reduced perf@enan once petween PBMand PBM is that PBNManalyzes the trace only
marked with a . up to the point of the first loss, while PBM analyzes the tracis

entirety. Thus, PBMrepresents applying a detailed, heavyweight,

6The size ofcwnd when detecting the first loss event is roughly..

Therefore, the first halving afwndcauses it to be approximatelyL. Each
subsequent loss event should only overflow the queue slightl therefore
cwndwill be reduced to.

“Some implementations of congestion avoidance add a cdnsfan
% times the segment size tavnd for every ACK received during conges-
tion avoidance. This non-standard behavior has been stwlgad to some-
times overflowing the queue by more than a single segmeny &vee cwnd
approacheg., [PAD199].

but accurate algorithm on as much of the trace as we are alltove
inspect before perforce having to makessthrestdecision.

As shown in Tables 5 and 6, the PBMstimate yieldssthresh
values that rarely hurt performance, regardless of whetteecon-
nection experiences loss. Each column lists the percenfanaces
which, for the given estimator, fell into each of the regioiscussed
in § 3.1.1. TheTot. column gives the percentage of traces for which
the estimator improved matters by attaining eitherpghevent loss,



Algorithm No | Unk. | Opt. Red.

Est. | Imp. Perf.
PBM 0% | 56% | 44% | 0%
TSSF 13% 2% 2% | 82%"
CSA‘;;%- T 24% | 42% | 13% | 22%
CSA‘;ng-Of" 19% | 59% | 11% | 10%
CSA’;;g 1 14% | 48% | 11% | 27%
CSAYZ92 | 13% | 34% | 11% | 43%
TCSA 24% | 25% | 8% | 44%
TCSA 27% | 33% | 11% | 28%
ReCvnin 1% | 15% 2% | 83%"
Recwavg 1% | 46% | 23% | 31%"
RetVmed 1% | 45% | 28% | 26%
Recvnax 1% | 71% | 27% | 1%

Table 6: Connections without Loss (2,786 traces)

steady-state, or optimal regions. This column can be directly com-
pared with the last columrr €duce performance) to assess how a
given estimator trades off improvement in some cases withagge
in others.

We see that PBM’ provides some benefit (steady state, pievent
of loss, or optimal) to 31% of the connections that expeeeioss,
and, when no loss occurs, the estimate falls in the optingibne
for 44% of the connections. The remaining estimates areestier
mates, in the case when the connection experiences losayerin
unknown impact (but, do not harm performance) in the conoest
that do not have dropped segments. This indicates that nfutie o

time theavailable bandwidth is less than the raw bottleneck band-

width that PBM measures, which accords with the finding given
[Pax97b].

3.3 Sender-Side Estimation Algorithms

The following is a description of the sender-side bandwikttima-
tion algorithms, and the correspondisgthreshestimates, investi-
gated in this paper. TCP’s congestion control algorithmekwen the
principle of “self-clocking” [Jac88]. That is, data segrnteare in-
jected into the network and arrive at the receiver at theafitee bot-
tleneck link, and consequently ACKs are generated by theivec
with spacing that reflects the rate of the bottleneck linkerEfore,
sender-side estimation techniques measure the rate oétilvaing
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Figure 2: Delayed ACK leading to timing “lull”

For the currens andF', check whethef’s ACK and then — 1
subsequent arriving ACKs are all within the sequence raiige o
the flight. If so, then we use this flight to make an estimate.
Otherwise, we continue to the next flight. However, if any of
the ACKs arrive reordered or are duplicates, the algorithm t
minates. When looking forward for the— 1 subsequent ACKs,
the algorithm ignores any ACKs for a single segment, as they
were presumably delayed.

To find the next flight, advancé by F' segments. IfV, is the
number of ACKs for new data that arrive between the old value
of S and its new value, then the size of the next flight'ig- IV,

(the slow start increase).

When we find a suitable flight, we estimate the bandwidth as
the amount of data ACKed between the first andritie ACK,
divided by the time between the arrivals of these ACKs.

As the second rows of Tables 5 and 6 show, the performance of
the TSSF algorithm is quite poor. The overwhelming probleith w
this estimator is underestimating the bandwidth, which ld@ause
a reduction in performance.

The underestimation is caused in part by TCP’s delayed adkno
edgment algorithm. RFC 1122 [Bra89] encourages TCP receive
to refrain from ACKing every incoming segment, and to indtea-
knowledge every second incoming segment, though it alsaines)

ACKs to make a bandwidth estimate. These algorithms assiate t that the receiver wait no longer than 500 msec for a seconmiessg

the spacing injected into the data stream by the networkasiiVe
intact at the receiver and will be preserved in the returé@ flow,
which may not be true due to fluctuations on the return chaalrel
tering the ACK spacing (e.g., ACK compression [ZSC91, Mdy92
These algorithms have the advantage of being able to diradjlist
the sending rate. In the case of TCP, they can directly sesstineesh
variable as soon as the estimate is made. However, a digagean
of these algorithms is their reliance on the ACK stream aately
reflecting the arrival spacing of the data stream.

3.3.1 Tracking Slow Start Flights

The first technique we investigate is a TCP-specific algarithat
tracks each slow start “flight.” The ACKs for a given flight arged
to obtain an estimate afsthresh While this algorithm is TCP spe-
cific, the general idea of measuring the spacing introdugethé
network in all segments transmitted in one RTT should beiegpl
ble to other transport protocols. We parameterize the igorby

to arrive before sending an ACK. Many TCP implementations us
a 200 msec “heartbeat” timer for generating delayed ACKs.elvh
the timer goes off, which could be any time between 0 and 2G&tms
after the last segment arrived, if the receiver is still wnagjtfor a sec-
ond segment it will generate an ACK for the single segmerithiha
arrived. Using this mechanism can fail to preserve in thernéhg
ACK stream the spacing imposed on the data stream by thebottl
neck link. The time the receiver spends waiting on a secogihset
to arrive increases the time between ACKSs, which is assuméheb
sender to indicate the segments were further spaced outehyeth
work, which leads to an underestimate of the bandwidth.
Furthermore, once a delayed ACK timer effect is injected the
ACK stream, the flight is effectively partitioned into twomiiflights
for the duration of slow start, since data segments are serg-i
sponse to incoming ACKs. The sequence-time plot in Figure 2 i
lustrates this effect. In the plot, which is recorded from sender’s
perspective, outgoing data segments are indicated wiith sqpliares
drawn at the upper sequence number of the segment, whilmingo

n, the number of ACKs used to estimate the bottleneck bantiwidt ACKs are drawn with hollow squares at the sequence numbgr the

For our analysis, we used = 3. Let F' be the current flight size, in
segments. The Tracking Slow Start Flights (TSSF) algorighthen:

¢ Initialize the current segmertt to the first data segment sent,
andF to the initial value ofctwndin segments.

acknowledge.

The first flight shown, which consists of two segments, aliait
single ACK that arrives at timg = 2.0. But the flight of three
segments that this ACK triggers elicits two ACKSs, one for tsemy-
ments arriving al’ = 2.6, but another for just one segment at time



T = 2.8. The latter reflects a delayed ACK. The next flight of fiveto have converged). We show the effectiveness of using theking
packets then has a lull of about 200 msec in the middle of itis Th closely-spaced ACKs” (TCSA) algorithm in Tables 5 and 6. Aghw

lullis duly reflected in the ACKSs for that flight, plus an addital de-
layed ACK occurs from the first sub-flight of three segmeritads
T = 3.3 throughT = 3.5). The resulting next flight of 8 seg-
ments is further fractured, reflecting not only the lull educed by
the new delayed ACK, but also that from the original delay&KA
and the general pattern repeats again with the next flighg afet-
ments. None of the ACK flights give a good bandwidth estimate,
is there much hope that a later flight might.

This mundane-but-very-real effect significantly comptésaany
TCP sender-side bandwidth estimation. While for otherspant
protocols the effect might be avoidable (if ACKs are not getd,
the more general observation is that sender-side estimaiibsig-
nificantly benefit from information regarding just when theckets
it sent arrived at the receiver, rather than trying to infes timing
by assuming that the receiver sends its feedback promptlygimto
generate an “echo” of the arrivals.

3.3.2 Closely-Spaced ACKs

the CSA method described above, the TCSA algorithm doesavet h
a performance impact on the connection in over 75% of the@onn
tions with loss. Furthermore, the number of connectionsafieich
the performance would be reduced is increased by roughlgtarfa
of 2 for both connections that experienced loss and thoselithaot
when comparing TCSA with CSA.

Since TCSA shows an increase in the number of connections
whose performance would be reduced, it clearly often estisnmo
low, so we devised a variant, TC§Ahat does not depend on the
minimum observation (which is likely to be an underestimai&e
compare each CSA estimat®;, with estimateE;_, (fori > 1). If
these two samples are within 10% of each other, then we usevthe
erage of the two bandwidth estimates tossthresh Tables 5 and 6
show that TCSAis comparable to TCSA in most ways. The excep-
tion is that the number of underestimates that would redectop
mance is decreased when using TCS it would be the preferred
algorithm.

Thessthrestestimation algorithms in [Hoe96] and [AD98] are based3.4 Receiver-Side Estimation Algor ithm

on the notion of measuring the time between “closely spac@d&
(CSAs). By measuring CSAs, these algorithms attempt toidens

The problems with sender-side estimation outlined abodedehe

ACKs that are sent in response to closely spaced data segmem@valuation of the following receiver-side algorithm fotigsating the

whose interarrival timing at the receiver then presumaklfjects
the rate at which they passed through the bottleneck linkveyer,
neither paper defines exactly what constitutes a set oflglspace
ACKs.

bandwidth. Estimating the bandwidth at the receiver reradhe
problems that can be introduced in the ACK spacing by delayftu
ations along the return path or due to the delayed ACK timer.

A disadvantage of this algorithm is that the receiver caimnop-

We explore a range of CSA definitions by varying two paranseter erly control the sender’s transmission rétélowever, the receiver
The first,v, is the fraction of the RTT within which the consecutive could inform the sender of the bandwidth estimate using a 3&GP

ACKSs of the closely-spaced group must arrive in order to besith

tion (or some other mechanism, for a transport protocol raiten

ered “close.” We examined values of 0.0125, 0.025, 0.05, 0.1 and TCP). For our purposes, we assume that this problem is saiwed
0.2. The second parameter, is the number of ACKs that must be note that alternate uses for the estimate by the receiverasea for

close in order to make an estimate. We examined 2, 3,4, 5. The
bandwidth estimate is made the first timeACKs arrive (save the

future work.
The receiver-side algorithm outlined below is TCP-specifits

first) within v - RTT sec of their predecessors. This algorithm hakey requirement is that the receiver can predict which neynssts

the advantage of being easy to implement. Also, it does rm
on any of the details of TCP’s congestion control algorithmisich

makes the algorithm easy to use for other transport pragoéotlis-

advantage of the algorithm is that it is potentially highbpeéndent
on the above two constants.

will be transmitted back-to-back in response to the ACK=iids,
and thus it can know to use the arrivals of those segmentsas$ go
candidates for reflecting the bottleneck bandwidth. Anygport
protocol whose receiver can make such a prediction can weatad
estimation technique. In particular, by using a timestansgited by

Our goal was to find a “sweet spot” in the parameter space th#ie sender, the receiver could determine which segments sest

works well over a diverse set of network paths. Rows 3—6 ofekab
and 6 show the effectiveness of several of the points in thenpeter

closely-spaced without knowledge of the specific algoritisad by
the sender. This is an area for near-term future work.

space. Values of andn outside this range performed appreciably For convenience, we describe the algorithm assuming that se

worse than those shown.

guence numbers are in terms of segments rather than bytesi; Le

We chosen = 3, v = 0.1 as the sweet spot in the parameter spacejenote the segment acknowledged by ifieACK sent by the re-

However, the choice was not clear cut, as both 2, » = 0.05 and

ceiver. LetD; denote the highest sequence number the sender can

n = 2, v = 0.1 provide similar effectiveness. All of the parametertransmit after receiving théth ACK. If we number the ACK of the

values shown, including the chosen sweet spot, reducerpafce
for a large number of connections that do not experiencedosls
yield no performance benefit in over 60% of the connectioatdfd

experience loss (due to an inability to form an estimate eresti-

mating).

3.3.3 Tracking Closely-Spaced ACKs

initial SYN packet as 0, thed, = 0. Assuming that the initial con-
gestion window after the arrival of ACK 0 is one segment, weeha
Dy = 1. To accommodate initial congestion windows larger than
one segment [AFP98], we increaBg accordingly.

The basic insight to how the algorithm works is that the nezrei
knows exactly which new segments the arrival of one of its AGK
the sender will allow. These segments are presumably sehttba
back, so the receiver can then form a bandwidth estimatedtmzse

The ssthreshestimation algorithm in [AD98] assumes that the ar-their timing when they arrive at the receiver.

rivals of closely-spaced ACKs are used to form tentatigéhresh
estimates, with a final estimate being picked when theske sietivn
into a form of consistency. We used a CSA estimator witk 3 and

8The TCP receiver could attempt to do so by adjusting the &ideerwin-
dow to limit the sender to the estimatssthrestvalue, even also increasing it

v = 0.1 (the sweet spot above) to assess the effectiveness of th@iearly to reflect congestion avoidance. But when doingtsbiminishes the

proposed approach. For their scheme, we take multiple ssnapid
use the minimum observed sample tossghresh We continue esti-
mating until the point of loss, or we observe a sample witlii#olof
the minimum sample observed so far (in which case we areme$u

10

efficacy of the “fast recovery” algorithm [Ste97, APS99]chase it will need
to increase the artificially limited window, and, accordinghe algorithm, an
ACK that does so will be ignored from the perspective of segdiew data
in response to receiving it.



Any time the receiver sends thjet+ 1st ACK, it knows that upon is benefit in timing every packet. Given that such benefitisiee,
receipt of the ACK by the sender, the flow control window wiitle  the other goals of [JBB92] currently accomplished usingestamp
Ajy1 — A; segments, and the congestion window will increase byptions should be revisited, to consider using a largeresscginum-

1 segment, so the total number of packets that the senderavan nber space instead. We finished our RTO assessment by notihg th
transmit will beA4; 1, — A; + 1. Furthermore, their sequence num-timestamps, SACKs, or even a simple timing heuristic candsslu
bers will beD; + 1 throughD; 11, so it can precisely identify their to reverse the effects of bad timeouts, making aggressive &go-
particular future arrivals in order to form a sound meas@mFi-  rithms more viable.

nally, we take the firsi’ such measurements (or continue untila data Our assessment of various bandwidth estimation schemesl fou
segment was lost), and from them form our bandwidth estinfade  that using a sender-side estimation algorithm is problemdtie to

our assessment below, we used= 50. the failure of the ACK stream to preserve the spacing impased

(We note that the algorithm may form poor estimates in the &fc  data segments by the network path, and we developed a residee
ACK loss, because it will then lose track of which data paglae algorithm that performs considerably better. A lingeringestion is
sent back-to-back. We tested an oracular version of theitigp ~ whether the complexity of estimating the bandwidth is wainéaper-
that accounts for lost ACKs, to serve as an upper bound orffihe e formance improvement, given that only about a quarter ofctre
tiveness of the algorithm. We found that the extra knowledigly ~ nections studied would benefit. However, in the context lbéptises

slightly increases the effectiveness of the algorithm.) or other transports, estimating the bandwidth using theivec-side
This algorithm provides estimates for more connections tiray ~ algorithm may prove compelling. .
of the other algorithms studied in this paper, because ey Our study was based on data from 1995, and would benefit con-

yields an estimate. Tables 5 and 6 show the receiver-baged al siderably from verification using new data and live experiteeFor
rithm using four different methods for combining thé bandwidth ~ RTO estimation, a natural next step is to more fully exploretlier
estimates. The first “Recv” row of each table shows the dffect combinations of the different algorithm parameters migéld/a sig-
ness of using the minimum of th€ measurements as the estimate nificantly better “sweet spot.” Another avenue for futurerkis to
This yields an underestimate in a large number of the coiume;t  consider a bimodal timer, with one mode based on estimafiig R
decreasing performance (34% of the time when the conneetpa-  for when we lack feedback from the network, and the other dbase
riences loss and 83% of the time when no loss is present). &kte n on estimating the variation in the feedback interarrivalogss, so
row shows that averaging the samples improves the effeetiee  we can more quickly detect that the receiver feedback strieasn
over using the minimum: the number of connections with reduc Stalled. For bandwidth estimation, an interesting nexp steuld
performance is drastically reduced when the connectiorésqpces  be to assess algorithms for using the estimates to ramp ugorw
loss, and halved in the case when no loss occurs. Howevelljthe nections to the available bandwidth more quickly than TCGRisv
side is the number of cases when we overestimate the bardinidt Start. Finally, both these estimation problems merit fartstudy in
creases when loss is present in the connection. Taking teame scenarios where routers use RED queueing rather than ditpps

of the K samples provides similar benefits to using the average, eRED deployment should lead to smaller RTT variations andieceo
cept the number of connections experiencing reduced peafoce  Of implicit feedback for bandwidth estimation.

increases by a factor of 2 over averaging when loss occurallfi
using the maximum of th&™ estimates further increases the number5
of overestimates for connections experiencing loss. Hewaising
the maximum also reduces the number of underestimates tty ne
none, regardless of whether the connection experiences @fshe
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