
PRACTICAL CHALLENGE-RESPONSE FOR DNS
RAMI AL-DALKY, MICHAEL RABINOVICH AND MARK ALLMAN

PROBLEM
• DNS has been widely abused as a conduit

of reflection/amplification attacks.

• Several challenge-response schemes have
been proposed to defend against ampli-
fication attacks. Unfortunately, none of
them work in the presence of DNS resolvers
(RDNS)

©2018 AKAMAI | FASTER FORWARDTM

Recursive Resolvers pool

Authoritative

Server

R1

R2

R3

?

DNS Client

BASIC CHALLENGE-RESPONSE
Our challenge-response scheme contains two
components:

©2018 AKAMAI | FASTER FORWARDTM

Recursive Resolvers pool

Authoritative

Server
1.2.3.4

1.2.3.5

www.foo.com RR?
1

www.foo.com CNAME 01020304.HMAC.www.foo.com
2

01020304.HMAC.www.foo.com RR?

01020304.HMAC.www.foo.com CNAME 01020304.01020305.HMAC.www.foo.com

01020304.01020305.HMAC.www.foo.com RR?

01020304.01020305.HMAC.www.foo.com RR

3

4

5

6

Challenge Chain

©2018 AKAMAI | FASTER FORWARDTM

Recursive Resolvers pool

Authoritative

Server
1.2.3.4

1.2.3.5

Response

size: 35B
1

www.foo.com CNAME 01020304.HMAC.www.foo.com
2

01020304.HMAC.www.foo.com RR?

01020304.HMAC.www.foo.com RR
3

4

Nullification

www.foo.com RR?

PERFORMANCE RESULTS
• We assess our scheme via trace-driven sim-

ulation using passive traffic from Case Con-
nection Zone (CCZ).

• We simulate the RDNS behavior based on
the workload observed from CCZ clients.

• We bound our results with best case –
single resolver– and worst case –reaching
nullification– scenarios.

Response time distribution for cache misses

10ms 100ms 1s 10s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Resolution time (log scale)

C
D

F

Standard DNS
Best Case
Worst Case

Distribution of delay imposed on TCP
connections

100 90 80 70 60 50 40 30 20 10 0
2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

Delay imposed on TCP connections (msec)

C
C

D
F

Best Case
Worst Case

TRACK RNDS POOLS
Explicitly track RNDS pools

• This extension uses the challenge chains to
develop an understanding of RDNS pools.

Implicitly track RNDS pools
• The Auth server can assume that IP ad-

dresses in a given network block (e.g. /24)
are working together.

©2018 AKAMAI | FASTER FORWARDTM

Recursive Resolvers pool

Authoritative

Server
1.2.3.4

1.2.3.5

1
www.foo.com CNAME 01020304.HMAC.www.foo.com

2

01020304.HMAC.www.foo.com RR?

01020304.HMAC.www.foo.com RR
3

4

Track RDNS Pools

www.foo.com RR?

Distribution of challenge chain lengths
Chain Basic Explicit RDNS Implicit RDNS
length scheme (%) pool tracking (%) pool tracking (%)

1 76.2 99.7 92.7
2 81.0 99.9 98.9
3 84.1 99.9 ∼100
4 86.4 ∼100
5 88.2
6 90.4
7 91.5

8+ 100

Table 1: Cumulative distribution of challenge chain lengths

challenge chains these pools cause, we extend the probing of open
DNS resolvers we sketch in § 3. In particular, we implemented
our challenge-response mechanism in the MaraDNS server [3].
Then, from several PlanetLab nodes we scan the entire Internet
with lookups for names within our own zone—which is served by
our challenge-response-enabled ADNS. Our implementation uses a
single DNS label for the challenge and given our encoding scheme,
this is creates a limit on the chain length of seven challenges—which
is less than DNS’ query string would ideally support (see § 4). If
our ADNS has not received a challenge response from a previously
seen IP address after seven challenges, we return the requested DNS
resource record.9 Our goal is to assess the possible size of challenge
chains and therefore we did not use nullification in this experiment.

The first two columns in Table 1 show the cumulative distribution
of the challenge chain lengths we find in our Internet scan. We find
that 76% of the queries require a single challenge as the response to
the challenge arrives from the same RDNS as the original request.
On the other hand, 24% of the queries involve 5.3K RDNS pools
(we describe the method of determining pools in § 5.1). We find
that nearly 8.5% of the queries require more than seven challenges—
indicating these queries come from large RDNS pools. Further,
roughly 98% of these long chains come from Google RDNSes.
Google is known to have a complex DNS infrastructure [2] and
therefore this finding is unsurprising. While Google is responsible
for the longest challenge chains, we find only 14% of the 5.3K
RDNS pools to involve only Google resolvers. We find over 900 or-
ganizations are leveraging RDNS pools in some fashion.

An obvious way ADNSes can cope with RDNS pools is to set
policy limits on the challenge-response process to trade protection
for imposing lower delays on users’ DNS lookups. Examples of
such policies might include: (i) limiting the time the process can last,
(ii) opting to reduce possible amplification rather than eliminating
it via a lower threshold for nullification (e.g., the resolver may pay
for only two-thirds of the response bytes with requests bytes) or
(iii) imposing limits based on previous behavior or knowledge (e.g.,
requiring a successful challenge chain to be completed only once per
resolver per time period). These policy knobs give ADNS operators
latitude to shape the tradeoff between user experience and being
co-opted into an attack.

The remainder of this section proposes techniques that reduce the
delays without weakening the scheme’s protection.

5.1 Developing Understanding of RDNS Pools
Our first extension calls for relaxing the requirement that our

scheme be completely stateless for the ADNSes. Rather, we in-
vestigate the efficacy of allowing each ADNS to use the challenge
chains to develop an understanding of RDNS pools. This knowledge
is then used when future requests arrive to determine whether the
challenge response is valid. For instance, the arrival of a challenge
response encoding a challenge chain with two resolvers—R1 and
R2—indicates a legitimate RDNS pool that includes both resolvers.

9Seven challenges is enough to nullify over 97% of the responses
that arrived at ICSI’s DNS resolvers on September 26, 2016.

Indeed, this query signifies that both R1 and R2 have acted as ex-
pected upon receiving their respective challenges, and therefore
neither R1 nor R2 has been spoofed. Consider the case when the
ADNS subsequently receives a request from R1 and so issues a
challenge to R1. If the response to the challenge comes from R2,
the ADNS can accept the challenge immediately without continuing
the chain because the ADNS has previously established that R2

is in the same RDNS pool as R1.10 As the ADNS interacts with
RDNS infrastructure, the ADNS will build an increasingly accurate
understanding of RDNS pools and therefore will be able to reduce
the challenge chain length for normal DNS lookups. When a chal-
lenge response arrives and carries a proper HMAC, all IP addresses
encoded in the query have been verified to belong to the same RDNS
pool, and we refer to the enclosed chain as a validated chain.

A first challenge is how to group resolvers into RDNS pools. We
have explored several variants of the process but all perform simi-
larly (and well, per results below). Therefore, we focus on a simple
algorithm that groups RDNSes from validated chains with a com-
mon first resolver into an RDNS pool. E.g., consider encountering
the following sets of RDNSes in three validated challenge chains:
(Ra,Rb), (Ra,Rc) and (Rb,Rd). The ADNS would conclude there
are two RDNS pools: (i) (Ra,Rb,Rc) based on the first two chains
that both begin with Ra, and (ii) (Rb,Rd) based on the third chain
that starts with Rb. Since both pools share Rb it would seem natural
to consider all four resolvers to be within the same pool. We instead
use a strategy that keys on the first resolver in the chain because this
makes finding the pool candidate for a given chain efficient.11

To assess the benefits of this enhancement, we run a trace-driven
simulation using the logs of challenge chains from our Internet scan
collected at our ADNS. Initially, the ADNS has no understanding
of RDNS pools and therefore challenges the requesters using our
basic mechanism from § 4. As these challenge chains proceed, we
update our understanding of the RDNS pools based on the validated
challenge responses. This RDNS pool understanding is then used to
shorten future challenge chains. We randomly shuffle the queries
from our original scan to factor out the specific order of the queries
in our results. The simulation run we report is consistent with four
additional runs we conducted.

The cumulative distribution of the resulting challenge lengths
is shown in the third column of Table 1. Virtually all (99.7%) of
the queries require only a single challenge when leveraging the
previously developed understanding of RDNS pools. This leaves
0.3% of the queries requiring more than one challenge, in contrast
to the basic scheme (§ 4) where 24% of the queries need more
than one challenge. We thus conclude that an ADNS that retains
the understanding of RDNS pools observed through the challenge-
response process can significantly reduce the fraction of queries that
experience more than one challenge and the attendant delay.

The reduction in challenge chain length is gained at the cost of
developing and retaining state about RDNS pools. We now use a
back-of-the-envelope calculation to understand the rough magnitude
of the state requirement. First, an analysis of requests to the author-
itative servers for the com and net TLDs shows that 90% of the
requests come from 40K resolvers [24]. We make a pessimistic as-

10Similar to the DNS cookies and all prior challenge-response ap-
proaches, we assume an off-path attacker that is unable to sniff
ADNS responses to the victim.

11Since we do not have a realistic traffic pattern we are unable to
soundly explore expiring information about RDNS pools. Therefore,
our results are the best case in that in a realistic setting information
would be expunged periodically. We implemented a crude expiration
threshold of 1–72 hours and find our results are affected by only a
few percent. Therefore, we do not believe the simulation results we
show are dramatically better than could be achieved in reality.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 3, July 2018

RANDOM CHAIN TERMINATION

©2018 AKAMAI | FASTER FORWARDTM

Recursive Resolvers pool

Authoritative

Server
1.2.3.4

1.2.3.5

1
www.foo.com CNAME 01020304.HMAC.www.foo.com

2

01020304.HMAC.www.foo.com RR?

01020304.HMAC.www.foo.com RR
3

4

Track RDNS Pools

www.foo.com RR?

Distribution of challenge chain with Prob.

sumption that each of these 40K resolvers represents an RDNS pool.
Further, [7] shows that 85% of RDNS pools contain at most ten
resolvers and that the largest pool contains 317 resolvers. Therefore,
assume that 85% of the 40K pools will require 26 bytes of state: IP
address, timestamp, and a Bloom filter large enough to track ten IP
addresses. The remaining 15% of the pools will consume 346 bytes
of state to hold the same state as the small pools plus an additional
Bloom filter that can hold up to 320 IP addresses. Therefore, the
approximate amount of state a busy ADNS would use to store an
understanding of RDNS pools in less than 3 MB—which is not an
onerous requirement in modern servers.

5.2 Implicit Understanding of RDNS Pools
An alternative to explicitly retaining an understanding of RDNS

pools is to implicitly assume that if two RDNS servers fall within
the same address block they are likely working together. As an
example, we assume that if two RDNS servers are located within
the same /24 they are working together and therefore receiving a
challenge response from any IP address within any of the /24 blocks
that we challenged in the preceding rounds is acceptable. In the last
column of Table 1, our scan data shows that making this assumption
increases the instances where we need only a single challenge from
76% (the base case) to almost 93%. Further, 98.9% of the cases are
handled after two challenges when using implicit RDNS pools.

The downside of treating all hosts within an IP address block as
equivalents is that one host within the block can easily attack another
host within the block. The larger the block the more problematic
this issue becomes because there are simply more hosts to attack and
likely a more complicated topology within the block. For instance,
treating all RDNS servers within the same AS as equivalents would
make the potential for problems much larger than using /24 blocks.

We argue that at the level of /24 blocks our policy is relatively
safe. First, arbitrary attacks are not possible since an attacker needs
control of a host within the victim’s /24. Second, if an attacker
controls a host within a /24 then there are at most 255 victims
that can be attacked. Third, since a /24 is the smallest block that
can reliably be routed in the Internet we know that hosts within
a /24 are likely to be geographically and topologically close and
hence likely share fate.12 That is, if an attacker controls 1.1.1.1
and attacks 1.1.1.2 then the attack is likely to impact the Internet
connectivity of the attacker as well as the victim. Further, this sort
of shared-fate attack is possible regardless of whether we leverage
implicit RDNS pools. Indeed, since 1.1.1.1 and 1.1.1.2 share fate, an
attacker that controls 1.1.1.1 will be able to impact 1.1.1.2 without
spoofing the host but by simply saturating its own Internet link.
Thus, using implicit RDNS pools does not increase vulnerability in
this respect. Therefore, we conclude that treating all hosts within a
/24 as equivalents offers tangible benefit and little cost. We briefly
investigate shorter prefixes but find roughly the same benefits (within
1% of /24) until we get to /16 blocks. The /16 prefixes handle roughly
99% of the cases with a single challenge (6% more than the /24
case), bringing implicit pools roughly on par with explicit pool
tracking—but, broadens the attack surface to 64K hosts.

5.3 Probabilistic Responses
As with the other extensions in this section, our goal is to safely

reduce the challenge chain length in the face of RDNS pools. Our
next extension randomly ends the challenge chain by returning the

12A natural extension is for an ADNS to leverage routing table
information to more precisely determine address blocks. While this
allows for more resolvers to be treated as equivalents, it also requires
the ADNS to keep additional state. Ultimately, the granularity each
ADNS uses is a policy decision.

n Nullification (%) Probabilistic Responses (%)
1 44.5 72.3
2 72.8 92.2
3 92.0 97.8
4 96.6 98.9
5 97.8 99.2
6 98.5 99.4
7 ∼100 ∼100

Table 2: Cumulative distribution of challenge chains with proba-
bilistic responses

ultimate answer before either meeting the nullification threshold
or receiving an acceptable challenge response. Once an attacker
knows that an ADNS is returning the ultimate answer randomly, a
game of sorts ensues whereby at some point the attacker spoofs a
challenge response such that the ADNS will send the next response—
either the ultimate answer or another challenge—to the victim. The
attacker wins the game when the ADNS randomly chooses to return
the ultimate (large) response at the same point the attacker chooses
to spoof the source address. In this case, since the nullification
threshold has not been met, the attacker has sent fewer bytes to the
ADNS than the ADNS sends to the victim. On the other hand, the
attacker loses the game when the ADNS randomly chooses to return
a (small) challenge at the same point the attacker chooses to spoof
the source address. In this case, the attacker has sent the ADNS
more traffic across multiple requests and challenge-responses than
the ADNS sends to the victim in the form of a single challenge.
In both cases the challenge chain ends because the victim will not
respond. Our approach is to set the probability of returning the
ultimate answer such that the attacker’s wins are offset by losses
and therefore there is no amplification benefit over the large number
of transactions required to mount a DoS attack.

Consider the case when an attacker is simulating an RDNS pool
that uses distinct IP addresses to respond to challenges from an
ADNS. Let n be the number of challenges sent by the ADNS and
answered by the attacker in a given challenge chain. Also, let Sq and
Sa be the size of the original DNS query and the ultimate answer,
respectively. Including the original query, the attacker has sent a
total of T = Sq · (n+ 1) bytes.13 At this point, assume the attacker
has decided to spoof a challenge response such that the ADNS will
send the subsequent response to the victim of the attack. The ADNS
will send the ultimate answer (Sa bytes) with probability P and
another challenge (Sq bytes) with probability 1 − P . To balance
wins and losses, we must choose a P that satisfies equation 1, which
we subsequently re-arrange (after substituting T with its expression
above) as a calculation of P in equation 2.

T = P · Sa + (1− P) · Sq (1)

P =
Sq · n

Sa − Sq
(2)

Note that the ADNS always sends at least one challenge as P = 0
when no challenges have been completed (i.e., when n = 0).

To evaluate the probabilistic approach we use trace-driven simula-
tion that leverages all DNS queries from ICSI’s recursive resolvers
to remote ADNSes on September 26, 2016. Our simulations make
the worst case assumption that ICSI uses infinite RDNS pools that
never query from the same IP address twice. Table 2 shows the
cumulative percentage of queries that complete after a given chal-

13In our implementation, the size of the challenges are larger than
the original DNS request as they slowly grow with the length of the
challenge chain. We performed an analysis taking this in account and
the results are very close to those using the simplifying assumption
that all requests are of size Sq bytes.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 3, July 2018

REQUEST PADDING
Padding requests by a resolver can reduce the
time required to nullify a response (e.g. using
the EDNS(0) Padding Option). There are two op-
tions:
Explicit padding padding size is signaled by
Auth server.

©2018 AKAMAI | FASTER FORWARDTM

Recursive Resolvers pool

Authoritative

Server
1.2.3.4

1.2.3.5

Response

size: 100B
1

www.foo.com CNAME 01020304.HMAC.www.foo.com
2

01020304.HMAC.www.foo.com RR?

01020304.HMAC.www.foo.com RR

3

4

Explicit Padding

www.foo.com RR?

Padding size: 50B

Padding Request
Total bytes

received:100

Implicit padding padding size is decided by the
RDNS.

©2018 AKAMAI | FASTER FORWARDTM

Recursive Resolvers pool

Authoritative

Server
1.2.3.4

1.2.3.5

Response

size: 90B
1

2

www.foo.com RR

Implicit Padding

www.foo.com RR?

Padding size: 70B

Total bytes

received:95

Using one day of DNS transactions between

ICSI’s resolvers and the queried Auth. shows

that padding requests by 70 bytes would

immediately nullify 50% of the responses

REFERENCES
For more details, please refer to our paper:
Rami Al-Dalky, Michael Rabinovich, Mark All-
man. Practical Challenge-Response for DNS.
ACM Computer Communication Review, 48(3),
July 2018. (to appear)

