Measuring End-to-End Bulk Transfer Capacity

Mark Allman
NASA GRC/BBN
mallman@grc.nasa.gov

SIGCOMM Internet Measurement Workshop
November 2001
Overview

- Background on Bulk Transfer Capacity (BTC)
- Tools and Methodology
- Preliminary Validation Results
BTC is defined in RFC 3148 as:

- Roughly, Bulk Transfer Capacity (BTC) is a measure of the throughput that a standards-compliant implementation of TCP’s congestion control algorithms would obtain over a given path at a given time.

- But, TCP allows implementers a bit of slack in some of the details in the CC algorithms.

- However, BTC metrics must nail down all these details.
Related Work

- Lots of work on measuring the raw bandwidth and the available bandwidth of links and network paths.
 - pathchar, cprobe, bprobe, pchar, clink, etc., etc.

- The BTC does not attempt to measure either raw or available bandwidth.
- But, we hope BTC is a better predictor of what a user might experience when using the network.

Allman IMW 2001
BTC Motivation

・BTC has been envisioned as a user-level process that would implement CC according to the TCP specification.

・Possible uses for such a tool:
 ▶ Find and diagnose problems in a given network path.
 ▶ Measure BTC uniformly -- without relying on underlying operating system quirks.
 □ (Can’t completely factor out the OS, but we can try to minimize its impact.)
 ▶ Attractive for researching new congestion control mechanisms and tweaks.
 □ Development is likely easier.
 □ Deployment for wide-scale testing is easier.
BTC Motivation (cont.)

- BTC uses (cont.):
 - Provides a way to probe the network for various details on the same timescales as apps are likely to observe these characteristics.
 - e.g., loss
 - e.g., reordering
 - e.g., packet duplication
 - The rate at which we send traffic to determine this is "safe"

Allman IMW 2001
The goal of this work is to see how the performance measured by a BTC application compares to the performance of a stock TCP implementation.
We developed a BTC tool called cap.

- Uses two programs (cap and capd) that send and sink data respectively.
 - Really just an exchange of UDP packets
 - CC algorithms written to the specification (RFC 2581) not necessarily attempting to mimic any particular TCP implementation.

- cap was deployed on the NIMI mesh of measurement hosts.
- At the time the measurements were taken the NIMIs were all some form of FreeBSD or NetBSD.
We scheduled measurements at random times between random NIMIs.

Each measurement consists of 2 back-to-back transfers of roughly 1 MB of data.

We hope that these two transfers behave about the same since they are closely spaced.

(And, we understand that this is bogus!)

The method (cap or TCP) for each transfer is chosen randomly (with replacement).
After scrubbing the data we ended up with over 100 measurements for each of these categories:

- TCP / TCP
- cap / cap
- cap / TCP or TCP / cap

(This is not enough and we plan to collect a new dataset whenever we get all the tools working under NIMI again.)
Results

Stability of back-to-back transfers:

CDF

Throughput Difference (bytes/second)

TCP cap

Allman IMW 2001
Throughput distribution:

Throughput (bytes/second)

CDF

TCP

cap

Allman

IMW 2001
Conclusions

- A tool that implements BTC is attractive for several reasons.
- We have some preliminary results that show that accurately measuring BTC with an application layer process seems possible.

Future work includes:
- Validating these preliminary results with more tests over more network paths.
- Digging a bit deeper into the data to make sure things like loss rates and RTT measurements are being done in a similar fashion to those obtained by TCP.