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Abstract

This paper explores the complexity and performance of the o
XML-RPC system for remote method invocation. We de-
veloped a program that can use either XML-RPC-based net-
work communication or a hand-rolled version of networking
code based on the java.net package. We first compare our two
implementations using traditional object-oriented nustriln
addition, we conduct tests over a local network and thednter
net to assess the performance of the two versions of the net-
working code using traditional internetworking metricse W
find that XML-RPC reduces the programming complexity of
the software by roughly 50% (across various metrics). On the
other hand, the hand-rolled java.net-based implementafio

fers up to an order of magnitude better network performance
in some of our tests.

1 Introduction

The notion ofremote procedure calls (RPC) was first outlined ~ ®

in [4]. The idea behind RPC is that a software developer is al-
ready familiar with the idea of making a procedure call (or

a method call in object-oriented programming vernacular).
Therefore, to make the development of distributed systems
more accessible to all programmers RPCs provide the devel-
oper an interface to communications code that is as close as
possible to simply making a procedure call. Using this no-
tion the developer does not have to write networking code, e
thus allowing programmers who do not happen to be experts
in developing network code to write large complex systems
distributed across any number of hosts on a network.

Many systems have tried to implement the notion of RPC in
various ways. Sun RPC was an early, widely deployed and
used variant of RPC, with CORBA [15], DCOM, JavaRMI,

traditional RPC systems in several ways:

In some RPC systems, such as Sun RPC, the RPC sys-
tem (with input from the programmer) generates stubs
for the programmer to call. For instance, if the program-
mer wanted to call a remote methbdo() they would

call a local method oo() which would be a stub gen-
erated by the RPC system. XML-RPC differs from such
systems, as it does not generate stubs for the program-
mer. Rather, XML-RPC provides several primitives for
programmers to use to construct method requests and
obtain the corresponding response. The XML-RPC sys-
tem reduces the work required by programmers because
the programmer does not have to tightly specify their re-
mote procedures for a stub generator. On the other hand,
XML-RPC requires developers to know more about the
underlying system than an RPC system that provides a
stub generator.

Since XML-RPC uses a standard XML encoding strat-
egy the system is highly interoperable. A system like
Sun RPC can be used across architectures, operating sys-
tems and languages. However, the programmer must
have the same RPC system on all platforms. On the other
hand, XML-RPC represents a loose coupling between
hosts. As long as the hosts both work to the specification
they can communicate trivially.

Argument marshaling is a non-issue in XML-RPC since
all data is encoded as text before transmission.

XML-RPC is easily layered on top of existing appli-
cation protocols (e.g., the HyperText Transfer Protocol
(HTTP) [3, 8]). Therefore, integrating XML-RPC with
other applications is straightforward.

SOAP [6] and many others following. While these syswhile the motivation behind RPC (and in particular XML-

tems are all meant for slightly different environments (e.gRPC) is compelling we wondered about the benefits versus
CORBA is an object-oriented version of RPC) they all sharghe costs. The XML-RPC system is quite flexible and generic

the same major goal of making distributed applicationssgasiand therefore likely not optimized for any particular sttaa.

to write and maintain. In the study presented in this paper Wg/hile this is a feature it may also be a disadvantage if an

focus on a remote procedure call system called XML-RPC implementer is trying to obtain good network performance.

At its core, XML-RPC defines a framework for transmitting 1 N 90al of this paper is to assess XML-RPC by comparing

method calls and the resulting responses between procesa@St Of simple remote procedure calls implemented in XML-

across hosts. The transactions are encoded in a standard [F&f: s Well as using hand-rolled networking code based on

using XML [7]. The XML-RPC approach differs from more the java.net package. While we use the Jaya_ version of the

XML-RPC system, we note that XML-RPC is implemented
“This paper appears in ACM Performance Evaluation ReviemcMa for many other languages.

2003.
http://www.xmlrpc.org

Our comparison of manually written networking code with
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XML-RPC-based code has two major thrusts. First, we com- server can handle vectors of arbitrary size as input. In
pare the two systems in terms of object-oriented code nsetric ~ our experiments, the client requests the log transforma-
That is, we assess the difficulty of writing and maintainimg t tion of 50,000 randomly chosen values. This method
two variants, as well as the complexity of the resulting code  represents a big request/big response transaction.

The second area for comparison is in terms of the network

performance attained by the two variants. Most of the code in the testing programs is the same regard-
The remainder of this paper is organized as follov&.out-  less of which mechanism is being used to communicate over
lines our testing program and the environment in which ouhe network. For instance, the code that actually perfohas t
tests were conducted§ 3 outlines the results of applying above actions is implemented irPar f Act i ons class and
object-oriented metrics to both versions of the communicas shared.

tions subsystem that we implementé&d! outlines the results

of applying traditional network performance metrics to our Client Server
two versions of networking codej 5 discusses using com-

pression techniques to reduce the size of XML-RPC transac-

tions — which is found to be a major cause of performance Comm Comm
problems for XML-RPC. Finally§ 6 gives our conclusions

and outlines future work in this area. ) _
Figure1: Layout of testing programs.

2 Test Environment

To examine the differences between our manually writteThe general program flow is shown in figure 1. As shown,
code based on the java.net package and XML-RPC code Wweth the client and server applications communicate tHroug
wrote two modest testing programs (a client and a serveshme communications system which, in turn, exchanges mes-
that perform a number of operations. The client can use tkages over some network. The communication system used
java.netor XML-RPC code to call on the server to perform thin our test program depends on command-line input from the
requested operations based on command-line options giveser. The three currently implemented subsystems are a hand
by the user. The server program receives requests from thgled application layer protocol based on java.net, an XML
client, performs the requested operation and returns the IRPC-based system for remote method invocation and a mech-
sults. Like the client, the server can use either the jata.neanism that simply invokes the methods locally rather than ru
based or XML-RPC code for communication. ning the method on another host (for debugging purposes).

The four operations the program performs were chosen The first two subsystems are explained in the following sub-

use different kinds of requests and responses. While we ori§ctions-
scratch the surface of all possible method calls and regisons, 4 javanet Code

we believe the following _methods offer a_‘ useful explora'uorr.he first communication subsystem we discuss is based on the
of the space. The operations we use are: java.net package. We use tBecket andSer ver Socket
classes to setup a separate connection for each transaction
e bool ean IsPrine (int n) In principle, we can leave the connection open to serve more
This function determines whether the given integer ishan one transaction. However, as an initial study, we did
prime and returns this determination. This method remot want to call multiple methods through a single connexctio
resents a small request/small response transaction.  (likewise, we did not use XML-RPC’soxcar or multi-call
e doubl e Average (Vector nunbers) feature). We used the Transmission Control Protocol (TCP)
This function returns the average of the given vector diL4] to ensure reliable data delivery across the network. In

double-precision numbers. The server can handle a vedddition, in some of our tests (as outlined;i.3) we increase
tor of arbitrary size. In the tests reported in this papetrhe size of the send and receive socket buffers to 60 KB.

we use a list of 50,000 randomly chosen numbers. Thige jmplement the client networking code in one class and
method represents a big request/small response transifs server code in another. In addition, we use a third class
tion. for generic networking routines to implement three methods

e Vector Cet RandNuns (int n) needed by both the client and server. A longer discussion of
This function returns a vector ef double-precision ran- the complexity of the implementation is given§r3.

dom numbers. In the tests reported in this paper e jmplement our own simple application layer protocol to

client requests 50,000 random numbers. This methqdy,q ¢t the transactions. The first item sent from the client

represents a small request/big response transaction. o 5 byte short integer identifying the remote method we
e Vector LogTransform (Vector nunbers) wish to invoke. Everything sent after this identifier in btk

This function takes a vector of double-precision numrequest and the response is specific to the particular method

bers, performs a log transformation on each value aruking invoked. For example, thesPri ne() request sends

returns a vector containing the transformed values. Thee4 byte integer after the 2 byte method identifier and reseive
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a 1 byte response from the server (whether the given integato two parts. The first subsection presents a brief side-by
is prime). side comparison of one of the stubs in the communications
subsystem to give the reader a feel for the code. The second

2.2 XM L_'RPC Code o subsection uses object-oriented metrics to quantify tme-co
Next we implement a communication subsystem for our tes slexity of the code for each communications subsystem.
ing program based on XML-RPC. TCP is used by XML-RP

for reliable data delivery. In addition, the HyperText Tsan 31 Qualitative Comparison

fer Protocol (HTTP) [3, 8] is used as the application protocqy, this subsection we examine the client-side stubs for both
due to its vast deployed base. The data portion of the payloggs java.net and XML-RPC based implementations. Figure 2
is an XML request to run a particular method with the giveyhows the java.net-based stub for thegTr ansf or ()
parameters or an XML response that encodes the results 8fhod and figure 3 shows the XML-RPC version of the same
the remote method call. As with the implementation basegl,,. The first thing we note is that the java.net code repre-
on the java.net package, the XML-RPC code uses one T(Rts more work for the application designer than the XML-
connection per transaction. Future work in this area shoullbc code because the programmer has to implement all the
include reusing TCP connections and assessing the impactgfails of the transactions. In the java.net code we explic-
conducting multiple transactions in short amounts of time. itly open and close the TCP connection (via alternate meth-
Unlike our hand-rolled java.net-based implementation we dods that we also must implement). In addition, as discussed
not have to specify the application layer protocol used bip § 2 we implement our own application protocol, sending
XML-RPC. As discussed irf 4 we captured the packets the identification number for the remote method we want ex-
involved in the XML-RPC transactions to measure perforecuted followed by the parameters for the method. While
mance. A side-effect of this is that we are able to show we slightly generalized the parameter passing for lists of
sample of an XML-RPC transaction from our tests, which iglouble-precision numbers by using the two generic methods
given belov: Wit eDoubl eVect or () and ReadDoubl eVect or ()

the code cannot be made arbitrarily reusable since each re-
mote method will have its own set of arguments and will re-
Content-Length: 164 turn its own set of results. In addition, note that if we wahte
Cont ent - Type: text/xm to pass a vector of integers we would have to add new meth-

User - Agent: Javal.3.0 ods to the java.net code to accomplish this task (leading to
Host: mercedes: 8081 more complexity).

Accept: text/htm, image/gif, [...]

POST / RPC2/ HTTP/ 1.1

Connection: keep-alive On the other hand, the XML-RPC code is short and easy to
understand, even without studying XML-RPC. All parame-
<?xm version="1.0" encodi ng= ters are inserted into a vector that is then passed to the XML-
"] SO-8859- 1" ?> RPC system with the name of the remote method to be in-
<met hodCal | > voked (“act.LogTransform” in the case shown). The results
<met hodName>act . | SPri me</ net hodName> are passed back in a table that provides easy access forthe de
<par ans> veloper. The client and server must agree on a naming scheme
<par anp for the remote method and the results. However, this is true
<val ue><i nt >82</ i nt ></ val ue> no matter what type of system is used for communication.
</ par an» Also note that in both versions of the networking code
</ par ans> presented we have shownsab for LogTr ansf or n()
</ met hodCal | > method. However, unlike systems like Sun RPC we are not
required to have a stub for the remote methods in XML-RPC.
3 Object Oriented Metrics In Sun RPC the program calls a stub rather than the desired

In thi . th lexity of the i method. However, in XML-RPC (and our hand-rolled ver-
n this section we compare the complexity of the JaVa'netéion) the programmer can use the primitives to directly @all

based and XML-RPC-based communications code. Note thal, 0 1ethod without writing a stub (or having a tool write
we only consider the networking code developed by the app [ stub)

cation designer in this section since the non-communinatio
code is the same regardless of communication subsystegrb Quantitative Comparison

Also, we dp not con5|d_er t_he und_erlymg c_omplexny of the\/Ve now focus on using coding metrics to assess the two ver-
XML-RPC implementation itself, since that is not of CONCEMinns of the communications code. The first metric we use

to the application programmierThis section is divided of the to compare our java.net and XML-RPC code is the number

2Note that the XML has been reformatted for presentation imphaper.  Of lines of code required to implement the required function
The line breaks are not present in the code that is transhatteoss the net-  glity,. The number of lines of code required is a first-order

work. . . . .
SHowever, the complexity of the underlying code will impaoe tperfor- examination of the complexity of the code and of how diffi-

mance of the XML-RPC-based system and therefore of intenete appli-  CUlt tO main_tain that code may be- In this paper, we report the
cation programmer. This is discussed in more detafl4n number of lines of code containing actpabgram statements
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public Vector LogTransform (Vector nuns)

{

Vector newnuns = null;

try
{
open_conn ();
out.witeShort (PerfActions.LogTrans);
out.witelnt (nuns.size ());
NM sc. Wit eDoubl eVect or (out, nums);
out.flush ();
newnuns = NM sc. ReadDoubl eVector (in, nuns.size ());
cl ose_conn ();

}
catch (Exception e)
{

Systemerr.println ("LogTransform " + e.toString());

return (newnums);

}
Figure 2: The java.net-based version of the client stub forltbg Tr ansf or n{) method.

public Vector LogTransform (Vector numns)

{

Vect or params = new Vector ();
Vector In_nums = null;
Hasht abl e resul t;

par ans. addEl ement (nuns) ;
try

result = (Hashtabl e)server.execute ("act.LogTransforni, parans);
In_nuns = (Vector)result.get ("logtrans");

}
catch (Exception e)
Systemerr.println ("LogTransform " + e.toString());

return (I n_nuns);

}
Figure 3: The XML-RPC-based version of the client stub for thegTr ansf or m() method.

| Program | java.net | XML-RPC | | Program | java.net | XML-RPC |
Client 110 93 Client 1,8,5 1,6,2
Server 136 76 Server 1,7,6 1,6,2
Generic 39 0 Generic | 1,3,1 0,0,0
Total 285 169 Total 3,17,12| 2,11,4

Table 1: Lines of code in each communication subsystem (excludFable 2: Number of classes, methods and data members needed to
ing blank lines and lines containing only comments). each communication subsystem.

(i.e., not counting blank lines and lines that contain moghi than the java.net code. At a minimum the client and server

but comments). class must each have five methods (according to the interface
v&gey implement). Of these, four methods act as stubs for the
E1‘{:)ur operations outlined if 2. Further, the client is required

code is a factor of nearly 1.7 larger in total lines of codd&® implement a method that returns a string identifying the

when compared to XML-RPC. Most of the savings realizeyP® of _networking be?ng used (for logging purposes) an_d the
by XML-RPC comes from the server code and the lack of re2STVeris required to implementS art () method that is

quiring the generic routines used in the java.net versidhef used to begm gtransacﬂon (but, is different from the con-
code. structor which is used to setup the parameters of the trans-

action, but not any particular transaction). Given these re
Next, table 2 takes a deeper look into the complexity anguirements XML-RPC uses one method more than the mini-
manageability of the code. This table shows the number @ium in both the client and the server (the constructor in both
classes, methods and data members required to implemggses). Meanwhile, the java.net implementation requees s
each version of the communication subsystem. As with thera| additional methods (e.g., open a TCP connection).,Also
above discussion of the number of lines of code, in all metricas noted above, the java.net code requires 3 generic methods
presented in table 2 XML-RPC appears to be less complexed by both the client and server code and statically defined

Table 1 shows the lines of code required to implement the t
forms of communication. As show in the table, the java.n
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| Program [ javanet [ XML-RPC | plementations access. As shown, the total number of classes

Client 76 42 that the java.net-based implementation communicatesisvith
Server 77 33 higher than that of the XML-RPC version of the code by a
Generic 15 0 factor of 2. This indicates that the java.net code is more de-
Total 168 75 pendent on other portions of the system and therefore may
Mean/Class 56.0 37.5 be more difficult to maintain due to changes in the outside
Mean/Method| 9.5 7.0 classes.
Table 3: Cyclomatic Complexity of both versions of the networking 4 Network Performance
code. 4.1 Methodology
| Program | java.net | XML-RPC | We performed two sets of experiments to assess the network
Client 13 ) performance of the java.net and XML-RPC based communi-
Server 13 8 cation systems. The first set of experiments involves a local
Generic 6 0 10 Mbps Ethernet network with only a simple hub between
Total 32 16 the client and server. The second set of measurements are

from transactions over the Internet between NASAs Glenn
Table 4: Amount of coupling between the networking code andResearch Center (GRC) and Ohio University (OU). The path
outside classes. between the client and server encompassed roughly 15 router
hops at the time of our experiments (although, as shown in
in a non-instantiated generic class. The XML-RPC code hg$3] routes can change arbitrarily and so our measure of the
no such dependency. Finally, note that the number of daggp-count may not be accurate for the entire test periodd. Th
members used by the java.net code is three times higher thagsts used in the local network tests were Pentium Il 400
those kept by the XML-RPC code. This is caused by thgihz FreeBSD 4.4 machines. In the Internet tests, a Pentium
need for the java.net code to handle all the networking o 400 Mhz FreeBSD 4.4 machine at NASA GRC was used
jects, while XML-RPC abstracts these details from the progs the client, while the server at OU was a dual-processor Sun
grammer. Enterprise 250 running Solaris 8.

In summary, table 2 shows that the java.net code is more Cofye invoke all four methods using both the java.net and XML-

plex code that will be more difficult to implement, test andRpC based communication framework at roughly 30 second
maintain when compared to the XML-RPC implementatiofhtervals (the exact interval is determined using a Poisson
— which nicely abstracts the networking code away from thﬁrocess with a mean of 30 seconds). The testing program
application developer. wrapped around the communication systems takes times-

We nextwe use the Cyclomatic Complexity (CC) [9] to gaugéamps before and after the transaction_ to measure the Ieﬁg_th
the complexity and amount of testing required for the mettihe remote method call from the application’s vantage point
ods in each implementation of the communication subsyste#. addition, we captured all packets transmitted by thenttie

Given a method flow graph, the Cyclomatic Complexity is deusing tcpdump?”. The packet traces show the length of time
fined as: eachnetwork transaction takes (e.g., without accounting for

o the time needed for pre- or post-processing as the apglicati

V@) =e-ntp+l @ level measurement includes). We also use the packet traces t
wheree is the number of edges in the graphis the number determine the number of data bytes sent by each version of
of nodes in the graph andis the number of connected com-the networking codeTcpdump indicated that no packet filter
ponents found in the graph. We calculate CC for each metheliops occurred during our experiments.
in our code.

) - 4.2 Local Network Tests

Table 3 shows the CC for the java.netand XML-RPC versionne distributions of the transaction times for both the jaes
of the code. As shown, the java.net-based code has higher farseq and XML-RPC-based implementations for the tests
tal complexity (by more than a factor of 2). But, thisis ldsge yer the local network are shown in figure 4. From the figure
because the java.net implementation has more methods tha@ opserve that the performance does not vary much between
the XML-RPC version of the code as indicated by the meag,ns. This is expected due to relatively static conditiothef
CC per method — 9.5 for the java.net code versus 7.0 for th§cal network. In addition, we see that the java.netimpleme
XML-RPC code. So, on a per-method basis the java.net Coglgion of the networking code always outperforms the XML-
involves a more c_o_mpllcated flow graph than the XI\/_IL-RPCRPC code. With the exception of calling thePr i me()
code (more conditionals, more loops and more reliance Qfethod, the java.net transactions takes roughly an order of
other methods). Using XML-RPC abstracts the details of thﬁlagnitude less time than the XML-RPC transactions.

conditionals, loops, etc. from the developer. _ _
For the smallest transactiohsPri ne(), the XML-RPC

Finally, we examine the coupling required between our comeansactions take roughly 70 ms. While this is slightly more
munication subsystem and outside classes. Table 4 shows the

number of outside classes that each of our networking im- “http://www-nrg.ee.lbl.gov or http:/Awww.tcpdump.org
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Figure4: Distribution of the transaction times for the local netwesperiments.

than than the time required by the java.net version of the cothe java.net version, which explains some of the overall dis
which takes roughly 60 ms) the difference is likely not sigparity between the two communication systems.

gnly y gP Y
nificantin syste_zms mvplvmg human |ntera(_:t|on. For ms’g’s,n A large disparity (a factor of roughly 50 to over 300) in trans
when conducting a single small transaction a user will n ction size between the twicsPr i me() versions is shown
perceive the difference between the two versions of the.co R table 5. However. the difference between the median 4rans

However, if many small transactions are performed baCk't%(ction times is only about 10 ms because both transactions

b:\gk eg. by ;E a:Jhtor?(T\\;eLdngétem) _the ilfﬂctzrzeaseéj amoupl small enough to fit in a single packet. So, even though
of ime required by the AML- Version of In€ code May,q y 1| -RPC transaction is larger none of TCP’s congestion
add up to an interval that is perceptible and meaningful Qontrol algorithms [2] come into play in either case.

the user. Furthermore, the extra time required for the XML- _ _ _
RPC transactions may hinder the performance of automatbgxt, we examine the overhead incurred by the two versions

systems that utilize numerous RPC calls in completing theftf the code that happens before or after the transactiomts se
across the network. Table 6 shows the median transaction

task.

. . . .time for the XML-RPC code measured by the application, as
We now turn our attention to explaining the discrepancy 'Well as the median difference between the transaction time
per.formance between the java.net and XML-RPC COMMUNG e asured by the application process and the length of the TCP
cation systems. Table 5 shows the number of unique byt((':,‘8nnection measured from the packet traces. From this table
transmitted for each transactfonWwith the exception of the we make several observations:
I sPri ne() method call the results show that the XML-RPC '
version of the program sends roughly six times more data than

e There is little pre- or post-processing overhead involved

inthel sPri me() method call.

5The java.net version transfers numbers as binary data @neffte the

transaction is always the same size. However, XML-RPC tnissa tex-
tual representation of the data and therefore the size ofréimsaction can
vary from run to run (e.g., one run might send “3.1” while thexinsends
“541.78234", yielding a difference of six bytes between tve numbers.
Therefore, the XML-RPC results presented represent theameize of the
all the runs and therefore are denoted as approximate imlthe t

e TheAver age() andGet RandNuns() methods take
roughly the same amount of time to execute when mea-
sured by the application. This is expected as roughly the
same amount of data is exchanged in both cases — just in
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Transaction | Request Size (bytes) | Response Size (bytes) |

IsPrime — java.net 6 1
IsPrime — XML-RPC ~ 339 ~ 332
Average — java.net 400,006 8
Average — XML-RPC ~ 2,513,756 ~ 334
GenRandNums — java.net 6 400,000
GenRandNums — XML-RP( ~ 346 ~ 2,513,812
LogTransform — java.net 400,006 400,000
LogTransform — XML-RPC ~ 2,459,521 ~ 2,466,477

Table 5: Transaction sizes in bytes. The numbers designated asxapgte represent the median number of bytes transferre@d.ctEx
numbers of bytes are given where the number of bytes doesanpteross transfers.

M ethod Transaction | Time Delta ply multiply the transaction time experienced by the jaga.n
Time (sec) (sec) by 6.15 we expect an XML-RPC transaction time of just over
IsPrime () 0.069 0.003 24 seconds. Combining the expected transfer tim@4 sec-
Aver age () 46.787 16.559 onds) with the encoding/decoding tinre 66 seconds) we get
Get RandNuns () 47.242 0.065 an expected transaction time of 90 seconds. Even if this anal
LogTransform () 95.303 16.706 ysis is a bit off we believe that the XML-RPC processing and

the added bytes that XML-RPC sends across the network ex-
Table 6: Comparison of median time required for XML-RR@g-  plain the majority of the performance difference between th
Transforn() transaction and the difference betweenywo communication systems.
the total elapsed time of the transaction and the time re-

quired by the underlying TCP connection. 4.3 Internet Tests
_ o We now describe measurements taken on the Internet path be-
different directions. tween NASA GRC and Ohio University. We tested both the

e We observe a difference of over 16.5 seconds bdava.netand XML-RPC communication subsystems over the
tween the total transaction time and the network tran®2th as described above (sgd.1). Preliminary measure-
fer time in theAver age() andLogTransforn() Mments illustrated a performance problem across the Irtterne
calls. In these two calls the client encodes a vector &aused by FreeBSD's default TCP advertised window size,
50,000 numbers before starting the TCP connection af§ich in some cases was too small to fully utilize the avail-
pushing the data over the network. able bandwidth Therefore, for our Internet tests we added a

variant of the hand-rolled java.net code, denoted “jaua’he

e We note little difference (roughly 65 ms) betweeny i jncreases the socket buffer sizes (and, therefore!STCP
the total transaction length and the duration of th%dvertised window)

TCP connection for theGet RandNuns() method

call. As noted above, the total transaction time ford CP throughput]', is ultimately limited based on the size of
the Get RandNums() call is similar to that of the the advertised window}’, and the round-trip timeR7"T", of
Aver age() call. However, theGet RandNuns() the network path, as follows [14]:

function cannot encode data before the start of the TCP

connection because the server creates the vector of data _w @)
based on input from the client. RTT

Throughput can be further limited by TCRsngestion win-
From the above table we can sketch a back-of-the-envelogew [10, 2] which is based on the measured load on the net-
analysis to measure the difference between the java.Rgérk. When a TCP connection fills the entire advertised win-
and XML-RPC versions in terms of network usage for thejow with data the sendenay be able to achieve higher per-
LogTransforn() method. We know that encoding aformance if the advertised window were increased. In the
vector of 50,000 values takes roughly 16.5 seconds frofava.net+ variant in our measurements the advertised windo

the above table. So, approximately 33 seconds of theincreased from the default (32 KB) to 60 KB.

LogTr ansf or transaction are spent encoding data tq.. o L
g ) P 9 Tlgure 5 shows the distributions of transaction times fer th

Qr method calls across the Internet path. When compared to
dhe local network tests, the Internet measurements shoa mor

onds for decoding for theogTr ansf or n{) routine. So, of variabi!ity, as expectgd. Again the plot shows that (with th
the roughly 95 seconds that the transaction takes (on m)edia'ﬁ%(cept'On ofthd sPri me() method) the XML-RPC trans-

66 seconds are spent encoding/decoding the data. We s jons take routhy an order O.f magn_itude longer th_an the
know (from table 5) that the XML-RPC code sends roughI)Jf’]‘V"’l‘net (and java.net+) transactions. Given the analjsie

6.15 times as much data as the java.net code. So, if we Sim-®Note that [1] shows that this situation is not rare on therhree

be transmitted. If we assume that parsing the incoming XM
and adding the values to the vector takes the same amoun
time as encoding the data for transit we need another 33 s
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Figure5: Distribution of the transaction times for the Internet evipents.

transaction sizes and the processing overhead preseriter inpacket trace. While we are only analyzing a single transac-
last subsection these results are not surprising. In additie  tion we note that the request/response size in this trangact
see that using larger TCP window sizes increases the perf@-ess than 0.04% different from the median transactiogssiz
mance over the stock TCP configuration. This shows thatraported in table 5 if§ 4.2.

programmer who knows_, hO.W to tune the SOCRW induce . Table 7 shows the sizes of the XML-RPC request and re-
petter performance, .Wh'Ch IS a dOWT‘S'de of using Somem”‘égbonse for the chosen transaction, as well as the sizes of
like XML-RPC that hides these details from the programmey, java.net requests and responses for comparison. The
Finally, we note that the performance of the smalfirst compression technique we use is to simgip the re-

I sPrine() transaction is generally invariant of the un-quest/response. This reduces the size of the requesth®sspo
derlying communications scheme used. Since this transdo-less than a quarter of the size of the original XML-RPC
tion involves only one-segment in each direction for both thtransaction. However, the transaction size ofgkeped ver-
java.net and XML-RPC code the performance is dominatesion is still on the order of 25% larger than the java.netdran

by the latency between NASA GRC and Ohio University. action. On the Pentium Ill FreeBSD machines we ran our
tests on theyzip operation took a little over 1 second, with

5 Compression the de-compression taking just under 0.25 seconds. There-
As discussed in the last section, one of the largest perfdRre, we believe that usingzip to compress the transactions
mance problems with XML-RPC lies with the number ofwould be a net win for large transactions. For comparison we
bytes transmitted into the network. Therefore, we now lyrieflgZipped the java.net transaction byte streams. The gain for the

analyze the usefulness abbreviations and compression in ~ Java.net-based transaction is not as substantial as foexte
mitigating this performance barrier. For our analysis wekto Pased XML-RPC-based transactions, only yielding a savings

one of our XML-RPCLogTr ansf or n() transactions and ©f roughly 6% over the uncompressed version.

extracted the data bytes (excluding protocol headers)fhem Qur results show benefits to usiggp for XML-RPC trans-
"There are additional socket changes that could be madesisemsiflisting aC“Q”S- However, there are also dlsqdvantages, Suf:h as ob-

the advertised window size based on the application at had @isabling  SCUring the payload such that debugging XML-RPC is more

the Nagle algorithm [12]).
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Technique

| Request Size (bytes) | Response Size (bytes) |

XML-RPC 2,459,472 2,466,521
java.net 400,006 400,000
GZipped XML-RPC 527,105 495,890
GZipped java.net 376,967 375,040
Abbreviate 1,559,465 1,566,506
Abbreviate/Combing 1,309,472 1,316,521
New XML Tag 1,159,472 1,166,521
New XML Tag/Gzip 478,021 451,236

Table 7: Impact of compression on thegTr ansf or n{) transaction size.

difficult and added reliance by XML-RPC on another librarybe replaced, just augmented to support any of the techniques
So, we next look at three techniques that can be completedytlined in this section. A method for the client to ask the
implemented in XML-RPC. server if the new technique is supported would have to be

First, as shown if§ 2.2 XML-RPC is verbose with respect to added to XML-RPC. One migration path may be to query

the parameters being passed to a method. In the case oftlaﬁ server only for large transactions that would benefinfro

vector of double precision numbers every number is transmﬁendlng S|gp!f|cantly smaller transactions. For mstap_ag,—
; . Ing the additional RTT cost to query the server for its sup-
ted as a string of the form: : .
ported techniques would not seem to be worth it when exe-
cuting thel sPri me() method, but may well allow a perfor-
mance improvement for a method likeogTr ansf or m()
One possible extension to XML-RPC is to wbreviations.  when working on a large list of numbers.

As shown in table 7, abbreviating “value” with “v” and “dou- . . .
. ! " Also, note that the size of transactions impacts the endshost
ble” with “d” results in transmitting over 900,000 fewer legt : )
RAM usage. As shown in the last section, requests are en-

0 4 : L
f:c())rrr:gggehclﬁgigncg :ﬁ:éﬁ?jﬁ;iﬁggﬂ:‘ each direction Wherc]oded before being transferred over the network. There-

fore, these transactions require a user-space memoryrigtag
The next row of the table shows the size of the transactionsdfea”. In addition, since XML-RPC connections last longer
XML-RPC were toabbreviate and combine the “value” and than hand-rolled java.net-based transactions kernel memo
“double” tags to be transmitted like: for TCP’s retransmission buffer is also required for a lange
amount of time (potentially impacting other network apatic
tions).

<val ue><doubl e>NN. NN</ doubl e></ val ue>

<vd>NN. NN</ vd>

When compared to abbreviations alone this reduces ti#énally, we note that TCP/IP header compression [11, 5] can
amount of transmitted data by roughly 200,000 bytes. Whediso be employed at various links across a network path to re-
compared to standard XML-RPC using this technique reducesice the number of bytes that must be transmitted. However,
the transfer size by more than 1.1 MB. since TCP/IP headers generally represent a small fracfion o
me bytes transmitted in the course of a long transfer (3-8%)
compressing only the headers leads to only modest decreases
in transfer time. Also note that the W3C’s Web Services Ini-
tiative® is also investigating ways to compress “on the wire”

XML.
This new tag saves 3 bytes per double-precision numbertrans

mitted when compared to the abbreviate and combine tech-
nique. Further, the new-style tag represents less than 20%
of the overhead imposed by the current XML-RPC techniquehe following are the major conclusions from our study of

(6 bytes as opposed to 32 bytes). remote method invocation using the java.net package and the

As a last step we examine the efficacygafpping transac- XML-RPC system:
tions that use the new-style tag introduced above. As the ta-

ble shows, using the new tag wiglaip reduces the transaction o The java.net implementation is roughly 50% more com-
sizes by roughly 9% over usinggip on the standard encod- plex to code and maintain when compared the the XML-

ing. However, the resulting transaction is still largernthie RPC code across a variety of coding metrics.
java.net encoding.

Next we introduce a new (abbreviated) tag with an argume
instead of using begin and end tags to get encoding like:

<v d=NN. NN>

6 Conclusionsand Future Work

) o o ] e The time required for small transactions is roughly the
Since all the abbreviations and tag combinations introduce  ¢5me regardless of underlying communication system

above are new (i.e., not understood by XML-RPC) they can  5:r0ss both the local network and the Internet.
be added without breaking any of the current functionality.
That is, the current tags used by XML-RPC do not need to S8http:/iww.w3c.org/2002/ws/
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