On the Performance of Middleboxes

Mark Allman
ICSI Center for Internet Research
mallman@icir.org

(Work done while with BBN Technologies)

Internet Measurement Conference
October 2003

"Holly came from Miami, FLA; Hitch-hiked her way across the USA"
"Middleboxes" have cropped up all over the Internet for a variety of reasons:

- security (firewalls, normalizers, etc.)
- performance (PEPs, TCP snoopsers, etc.)
- address translation (NATs)

Many have espoused the virtues and evilness of these entities.

But, little quantitative information about their impact in real networks.

We conducted a preliminary evaluation of one middlebox setup.
Experimental Setup

- Application measurements
 - Packet tracing and matching is future work

- Measurement period: 10/14/2002 - 1/27/2003

- Conducted in a production setting
 - A network serving thousands of users
Experimental Setup (cont.)

• Measured:
 ▶ Transaction delay
 ▶ Feedback time (aka "RTT")
 ▶ Bulk transfer
 ▶ FTP performance
 ▪ See the paper

• Also, failures.
Experimental Setup (cont.)

- Firewalls + Load Balancers = MBI
Transaction Delay

- How long does it take to start from nothing and run a transaction between a client and the server?

- Procedure:
 - A finger transaction between the client and server
 - Time the entire transaction at the application layer

- Conduct a transaction from each client roughly every 2 minutes.

- Over 75,000 transactions from each client.
• 42 failures inside the MBI; 12 failures outside the MBI
Feedback Time

• Once established, how long does it take to send a message across a TCP connection?

• Procedure:
 ▶ Open a TCP connection between the client and server
 ▶ Send "pings" from the client; echoed by the server
 ▪ Every (roughly) N seconds
 ‣ We only consider N = 30 seconds -- others are similar
 ‣ Until one of the pings does not come back in 20 seconds
 ▪ Then, start a new TCP connection and start over

• Over 303,000 pings from each client.
Failed to setup connection: 51 from inside; 46 from outside
Connection lengths are roughly twice as long from the outside as from the inside client.

- On mean and median
Bulk Transfer

• Open a TCP connection

• Send 1 MB
 ▶ Last 4 bytes are a random number
 ▶ The server echos the random number back to the client
 ▶ Measurement stops when the "ACK" arrives

• Conduct a transfer from each client roughly every 10 minutes.

• 15,000 transfers from each client
Why the bi-model distribution?

- Routing or provisioning changes
• Why the difference in performance?

 ▶ Possibility #1: Concatenated TCP connections
 ■ shorter control loop
 ■ isolate drops

 ▶ Possibility #2: Maybe a difference in TCP’s congestion control algorithms inside and outside the MBI.
Conclusions

- Performance comparison is a muddle of contradictions
 - Bulk transfer performance is enhanced by the middleboxes
 - Transaction times increase roughly 5 times when going through the middleboxes

- Failures increase when going through the middleboxes
 - But, failures are very low in all the cases (over 99.9% across all measurements).
Future Work

• Tons

• Lots of questions can be better answered if we had packet traces from various points throughout the middlebox infrastructure.
 ▶ Requires lots of analysis and correlation that may be non-trivial

• We can pin down why the performance is different
 ▶ E.g., are the MBI elements getting out of sync?
 ▶ E.g., are the firewalls dropping state?
 ▶ Etc.

• Gather data from more locations and different kinds of middleboxes