
On the Performance of Middleboxes

Mark Allman
BBN Technologies

mallman@bbn.com

ABSTRACT
This paper presents a preliminary performan
e analysis of

a
omplex middlebox infrastru
ture in a real-world produ
-

tion environment that serves several thousand people. While

prevalent, middleboxes (�rewalls, NATs, et
.) have yet to

be systemati
ally measured. This paper makes two
ontri-

butions: (i) we outline several methodologies and metri
s

by whi
h to measure middleboxes and (ii) we o�er prelimi-

nary appli
ation-layer measurements of one parti
ular pro-

du
tion middlebox system. We show that the middlebox

infrastru
ture in question o�ers a mixed bag of performan
e

impli
ations (both positive and negative). In addition, we

quantify several failure modes introdu
ed by the middlebox

infrastru
ture.

Categories and Subject Descriptors
C.4 [Computer Systems Organization℄: Performan
e of

Systems; C.4 [Computer Systems Organization℄: Per-

forman
e of Systems; C.2.0 [Computer-Communi
ation

Networks℄: General

General Terms
Measurement, Performan
e, Experimentation, Se
urity

Keywords
�rewalls, middleboxes, TCP performan
e

1. INTRODUCTION
So-
alled \middleboxes", su
h as �rewalls, address trans-

lators and proxies (among others), are prevalent in today's

Internet ar
hite
ture. [3℄ o�ers a dis
ussion of the pros and

ons of su
h devi
es. These smart network entities are used

for a variety of reasons, for example:

� Se
urity. Among the most
ommon middleboxes is a

�rewall that is used to
ontrol traÆ
 to implement se-

urity poli
y between networks. Firewalls range from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’03, October 27–29, 2003, Miami Beach, Florida, USA.
Copyright 2003 ACM 1-58113-773-7/03/0010 ...$5.00.

simple devi
es that do not pass traÆ
 with given
har-

a
teristi
s (e.g., proto
ol number or port number) be-

tween the
onne
ted networks to
omplex devi
es that

a
t as proxies for transport layer
onne
tions. Fire-

walls are not the only type of middlebox inserted into

a path for se
urity purposes. For instan
e, traÆ
 nor-

malizers [6℄
an be used to remove ambiguities from

a traÆ
 stream so that an intrusion dete
tion system

an better predi
t the e�e
t of the traÆ
 on an end

host.

� Performan
e. A se
ond
lass of middleboxes is used

to in
rease the performan
e of standard networking

proto
ols. For instan
e, web
a
hes or
ontent delivery

networks (e.g., Akamai) are inserted into the network

su
h that users do not have to retrieve
ontent from its

original sour
e, but rather from a
loser
opy. In ad-

dition, various proposals and produ
ts allow boxes in

the middle of the network to \assist" proto
ols (e.g.,

by retransmitting dropped segments on the sender's

behalf [2℄ or
ontrolling the sending rate by manipulat-

ing TCP's advertised window [7℄). Finally, some mid-

dleboxes split an end-to-end transport
onne
tion into

two (or more)
onne
tions in an attempt to shorten

the
ontrol loop and enhan
e responsiveness on ea
h

stream (e.g., I-TCP [1℄).

� Address Translation. A �nal
ommon example mid-

dlebox is a network address translator [4℄. These boxes

hange the network layer addresses and/or transport

layer port numbers in traÆ
 passing between two net-

works. One
ommon use of this te
hnology is to allow

multiple internal hosts to share one external IP ad-

dress. The need for this te
hnique is sometimes due to

the la
k of global address spa
e allo
ated to a parti
-

ular network (and, hen
e, the desire to leverage that

address spa
e) or the desire to obfus
ate internal ad-

dresses for se
urity reasons.

While the reasons middleboxes have been added to the In-

ternet's ar
hite
ture are numerous the study of the impa
t

of these entities in produ
tion environments has not kept

up with deployment. For instan
e, several questions
ome

into play when thinking about middleboxes, su
h as: What

is the impa
t on performan
e (delay, appli
ation startup,

throughput, et
.)? What is the impa
t on the reliability

of TCP/IP proto
ols? What additional failure modes are

introdu
ed and how prevalent are these? In this paper we

des
ribe initial measurements of one parti
ular middlebox

infrastru
ture with the goals of: (i) de�ning a methodology

for testing the impa
t of middleboxes using a
tive measure-

ments and (ii) gaining preliminary insight into the e�e
t a

large, produ
tion middlebox system has on traÆ
.

This paper is organized as follows. x 2 details our method-

ology and environment. x 3 outlines experiments involving

small transa
tions traversing the middlebox infrastru
ture.

x 4 dis
usses measurements of the delay involved in travers-

ing the middlebox. x 5 dis
usses the persisten
e of the state

required to be kept in middleboxes in the
ontext of keeping

TCP
onne
tions alive. x 6 outlines our experiments involv-

ing transmitting large data �les. x 7 dis
usses measurements

involving the File Transfer Proto
ol (FTP) [10℄. Finally, x 8

gives our
on
lusions and sket
hes future work in this area.

2. EXPERIMENTAL SETUP AND METHOD-
OLOGY

To measure the performan
e of a set of middle boxes at

one fa
ility we setup two
lient hosts at Site1

1

, whi
h is

a produ
tion network serving several thousand people. In

addition, we setup a server host at Site2, whi
h is roughly

550 miles from Site1. The \inside
lient" is lo
ated inside

the middlebox infrastru
ture (MBI) at Site1 while the \out-

side
lient" is on the WAN side of the MBI. The
lients

are identi
al Intel Pentium 4 ma
hines running Linux 2.4.9,

while the server is an Intel Pentium 3 running FreeBSD 4.6.

The server is lo
ated on the WAN side of the �rewall in-

frastru
ture at Site2. This initial study only
onsiders TCP

[9℄ traÆ
. The networking sta
ks of all ma
hines are left

in their default
on�guration (e.g., TCP option usage, ad-

vertised window size, et
.). All experiments outlined in this

paper were run
on
urrently inside and outside the MBI at

Site1.

Hub InternetRouterLB1 LB2

FW1

FW2MeasBox1 MeasBox2

Dest

Figure 1: Simpli�ed diagram of middlebox infras-

tru
ture.

Figure 1 shows the rough setup of the network (with

\MeasBox1" and \MeasBox2" being the inside and outside

lients, respe
tively). The MBI at Site1
onsists of several

identi
al �rewalls (\FW" boxes in the �gure) atta
hed to the

lo
al and wide-area networks by load balan
ers (\LB" boxes

in the �gure). The �rewalls are stateful and proxy TCP
on-

ne
tions. Therefore, the load balan
ers are also required to

keep state (to always route the same TCP
onne
tion to the

same �rewall). We measured Site1 's MBI from O
tober 14,

2002 { January 27, 2003 (roughly 105 days). The fo
us of

this paper is not on the raw measurement values obtained

in our experiments, but rather on the
omparison between

1

The sites involved in the measurements
ondu
ted for this

paper have requested anonymity.

the measurements taken inside the MBI and those taken

outside.

Also, note that in the des
riptions of the experiments in

the following se
tions we have
hosen a number of
onstants

(e.g., timeouts). These
onstants were
hosen to be rea-

sonable, but are largely arbitrarily. We believe this is �ne

be
ause both
lients share these
onstants and so the impa
t

of the
hoi
e is likely to impa
t both
lients. By
hoosing

timeouts that are too short we may be biasing the measure-

ments (e.g., if we had wat
hed a little longer we might have

seen a measurement
omplete, but rather we re
orded it as a

failure). However, we believe the
hosen
onstants are large

enough that we are not likely
oer
ing a large number of

these sorts of situations.

3. TRANSACTION DELAY
The �rst experiment's goal is to assess the impa
t of the

MBI on the transa
tion time of a small request/response

proto
ol. To measure the transa
tion time we use the �nger

proto
ol [11℄. In our experiments the
lient opens a TCP

onne
tion to the server and sends a
arriage-return and

linefeed. The server then responds by sending two
hara
ters

ba
k to the
lient. The
lient veri�es the returned
hara
ters

and then
loses the TCP
onne
tion. If the
lient does not

re
eive a response within 30 se
onds this is noted and the

transa
tion is terminated. We use
ustom-written
lient and

server
ode that timestamps ea
h event in the transa
tion.

We insert a delay between �nger transa
tions of roughly

2 minutes (the a
tual time is determined using a Poisson

pro
ess with a mean of 2 minutes).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
D

F

Response Time (sec)

Outside
Inside

Figure 2: Distribution of response times for �nger

transa
tions.

Figure 2 shows the distribution of the response time for

both
lients. The dataset
ontains over 75,000 transa
tions

for ea
h
lient. The median transa
tion time outside the

MBI is roughly 52 mse
, while it takes roughly 253 mse

from inside the MBI. The next se
tion shows that the MBI

adds minimal delay to data
owing through an already open

TCP
onne
tion. Therefore, the �ve-fold in
rease in the

�nger transa
tion time shown in �gure 2 is likely
aused by

the time required to instantiate
onne
tion state within the

MBI.

We re
orded 42 failures

2

on the inside
lient and 12 fail-

2

There are several ways to look at the \failures" reported in

ures on the outside
lient. All the problems outside the MBI

are failures to
onne
t to the server. Meanwhile, nearly all

the problems inside the �rewall are re
orded as timeouts.

Sin
e the �rewall is proxying TCP
onne
tions this likely

translates into problems
onne
ting to the server or inter-

nal problems in the MBI

3

. Sin
e there are 3.5 times more

failures inside the MBI we believe the majority of the prob-

lems are a
tually
aused by the MBI. Finally, note that the

overall failure rate both inside and outside the middle box

infrastru
ture is quite low (under 0.1% in both
ases).

4. FEEDBACK TIME
The last se
tion fo
uses on small transa
tions and on the

osts asso
iated with initiating su
h transa
tions. This se
-

tion fo
uses on delay through the MBI on
e a
onne
tion

has been established. To a

omplish this we wrote a \TCP

ping"
lient and server. The
lient sends a small message

with a sequen
e number to the server, whi
h e
hoes the mes-

sage ba
k to the
lient via an already-established TCP
on-

ne
tion. The
lient re
ords when the request is sent and

when the response arrives. After ea
h request/response a

delay is inserted before the next request is transmitted. Our

dataset
onsists of �ve parallel pinging
onne
tions ea
h us-

ing a di�erent mean delay, x: 0, 30, 300, 1800 and 3600 se
-

onds. The a
tual delay is determined using a Poisson pro
ess

with a mean of x se
onds. In addition, if a response does

not arrive within 20 se
onds the
onne
tion is
losed and a

new
onne
tion started in its pla
e. In this paper we fo
us

only on the experiments involving the
onne
tion that uses

x = 30 se
onds due to spa
e
onstraints. The
onne
tions

that used di�erent granularities show the same basi
 results.

We note that the measured values are not ne
essarily round-

trip times, but rather appli
ation-level feedba
k times (FT).

Sin
e the pinging pro
ess is using TCP as its transport the

requests and responses are sent reliably and therefore may

in
ur retransmission delays if lost.

Figure 3 shows the distribution of FTs from inside and

outside the MBI with a mean inter-ping time of 30 se
onds.

The dataset
onsists of over 303,000 pings from ea
h
lient.

As the plot shows, the FT experien
ed on either side of the

MBI is nearly the same. The outside
lient experien
ed a

roughly 1 mse
 shorter FT on median and just over 2 mse

shorter FT on average then the inside
lient. This in
rease in

delay through the MBI is likely explained by the additional

number of lo
al hops required to traverse the MBI.

Finally, we found only two types of errors: setting up

the TCP
onne
tion and the
onne
tion being
losed due

to a timeout. We dis
uss the timeouts in the next se
tion.

The inside
lient failed to make a
onne
tion 51 times in our

dataset
ompared to 46 times on the outside
lient. Sin
e the

instan
es of failure
onne
tion failure is roughly the same in

this paper. We lump all problems experien
ed by the
lient

together as \failures". However, this does not take into a
-

ount that some failures are expe
ted (
aused by routine

and s
heduled maintenan
e of the MBI). However, we feel

that su
h maintenan
e is part of the
ost of using middle-

boxes and thus whether the failure was expe
ted or not is

not reported in our data.

3

The MBI at Site1
ompletes TCP's three-way handshake

with the
lient before ensuring that a
onne
tion
an be

made with the server. Therefore, the inside
lient
an �nish

its portion of the transa
tion before the MBI �nishes the

TCP 3-way handshake to start a
onne
tion to the server.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e-05 0.0001 0.001 0.01 0.1 1 10 100

C
D

F

RTT (sec)

R = 30

Outside
Inside

Figure 3: Distribution of feedba
k time when sam-

pling roughly every 30 se
onds.

Metri
 Inside Outside

Number of Conne
tions 42 21

Mean Length (hr) 58.82 114.99

Median Length (hr) 19.99 43.45

Max Length (hr) 425.98 593.08

Table 1: Conne
tion length statisti
s for
onne
tions

that sampled FT roughly every 30 se
onds.

both
lients the likely explanation is that the network path

between Site1 and Site2 be
ame temporarily unusable.

5. CONNECTION LENGTH
In this se
tion we dis
uss the length of the \ping"
onne
-

tions used for the FT measurements des
ribed in the last

se
tion. We are attempting to assess how often the MBI

state gets internally unsyn
hronized,
ushed or in some way

makes an established
onne
tion unusable. Again, we an-

alyzed all the
onne
tions with varying sending rates and

the results
ome out
onsistent. Therefore, as in the last

se
tion, we only present the results of the
onne
tion that

sends a request approximately every 30 se
onds.

Table 1 provides the results of our analysis. We note that

the inside
lient used twi
e as many
onne
tions as the out-

side
lient. The median
onne
tion length on the outside

lient is roughly twi
e as long as on the inside
lient. In addi-

tion, we note that the maximum
onne
tion length re
orded

on the inside
lient is roughly 21 times longer than the me-

dian
onne
tion re
orded on the inside
lient, indi
ating that

a
lient behind the MBI
an sustain long
onne
tions. Also,

the distribution of
onne
tion lengths re
orded on the inside

lient does not suggest any sort of
onne
tion timeout in the

MBI biasing the measurements

4

.

We
an further assign the blame of unne
essarily short-

ened
onne
tions to the MBI by noting that while there are

twi
e as many
onne
tions used inside the MBI the instan
es

of not being able to
onne
t to the server (as outlined in

the last se
tion) are roughly equivalent a
ross
lient. This

4

In addition, the operational se
urity team at Site1 veri�ed

that there is no intentional timeout
on�gured into the MBI

that would e�e
t these tests.

indi
ates that, in many
ases, simply making a new TCP

onne
tion (and, hen
e starting over with fresh state in the

MBI) to the server �xed the problem. These results sug-

gest that something within the MBI was
ushed or be
ame

unsyn
hronized.

6. BULK DATA TRANSFER
We wrote a simple
lient and server to test the raw TCP

transfer speed through the MBI. The
lient sends 1 MB of

data from memory to the server. The server dis
ards the

data upon re
eipt. In our experiments, we
ondu
t bulk

transfer measurements roughly every 10 minutes (where the

a
tual inter-measurement time is di
tated by a Poisson pro-

ess with a mean of 10 minutes).

The last four bytes of data transmitted by the
lient
on-

tain a random number that the server e
hoes ba
k. The

transmission time is de�ned as the time between when the

lient appli
ation sends the �rst byte of data to the operating

system for transmission until the
lient appli
ation re
eives

the random number e
hoed by the re
eiver.

Waiting until the e
hoed random number is re
eived is key

to
orre
tly measuring the end-to-end throughput. Clients,

su
h as tt
p, that measure TCP transfer speed by
onsider-

ing the transfer \done" when the last byte of data is sent

from the appli
ation to the operating system or even wait-

ing on the
lose()
all to return (after setting the so
ket

to LINGER) may overestimate the end-to-end throughput at-

tained. The problem is that the MBI proxies
onne
tions

on behalf of the end-host. So, the end host's transmission of

data bytes and their a
knowledgment have no relationship

with the ultimate re
ipient of the data (the server at Site2).

Therefore, we introdu
e an appli
ation layer a
knowledg-

ment in an e�ort to measure the time required to a
tually

transmit all the data to the ultimate re
eiver.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200000400000600000800000 1e+06 1.2e+061.4e+06

C
D

F

Throughput (bytes/sec)

Outside
Inside

Figure 4: Distribution of throughput from bulk

transfer experiments.

Figure 4 shows the distribution of throughput obtained in

our bulk transfer experiments. Our dataset
ontains over

15,000 transfers from ea
h
lient. The �gure o�ers two

immediate results. First, we note that the distribution of

throughput attained (by both
lients) is bi-modal. In ad-

dition, we observe that the inside
lient a
hieves higher

throughput than the outside
lient.

The bi-modal distribution of throughput likely
omes from

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 2000 4000 6000 8000 10000120001400016000

T
hr

ou
gh

pu
t (

by
te

s/
se

c)

Transfer Number

Figure 5: Throughput over time for transfers from

the inside
lient.

hanges in the path between Site1 and Site2. Figure 5 is a

s
atter plot of the throughput for ea
h transfer
ondu
ted

from the inside
lient as a fun
tion of the transfer number.

The plot
learly shows distin
t
hanges in the maximum

throughput attained during various periods of our dataset.

The distin
t
hanges in the upper bound on performan
e

ould be
aused by
hanges in the route between Site1 and

Site2 or a
hange in some rate-limiting poli
y along the

path. Without further measurements (e.g., tra
eroutes) we

annot say with
ertainty exa
tly what
aused the
hange.

(A like plot from the outside
lient shows the same pattern

in throughput
hanges.)

The se
ond item we noti
e from �gure 4 is that the in-

side
lient obtains better throughput than the outside
lient.

Looking at roughly the midpoint of ea
h part of the distri-

bution we see a di�eren
e in throughput of roughly 3.4% (at

the 33

rd

per
entile) and 16.0% (at the 85

th

per
entile). This

e�e
t is diÆ
ult to explain without ri
h pa
ket-level tra
ing

at numerous points throughout the MBI. However, we of-

fer a
ouple of possibilities. First, di�erent variants of TCP

o�er di�erent performan
e
hara
teristi
s (e.g., see [5℄ for a

omparison of loss re
overy te
hniques and their impa
t on

performan
e). Without pa
ket-level tra
es we
annot quan-

tify the impa
t of any di�eren
es that exist in the end-host

TCP and the MBI's TCP implementation, however we be-

lieve the di�eren
e
ould explain some of the di�eren
e in

the throughput measured. In addition, we note that the

TCP model [8℄ o�ers insight into the throughput attained

by
on
atenated TCP
onne
tions.

For our
omparison the TCP model for throughput, T ,

distills down to:

T /

1

R

p

p

(1)

where R is the round-trip time and p is the loss rate. The

rest of the parameters in the model (e.g., the MSS) are stati

a
ross
onne
tions in our experimental setup. From equa-

tion 1 it follows that redu
tions in either the RTT or the

loss rate in
rease the throughput. For
on
atenated TCP

onne
tions we
an use the model for ea
h
onne
tion be-

tween the
lient and the server with the ultimate throughput

di
tated by the minimum of the throughputs
al
ulated.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06 1e+07 1e+08

C
D

F

Throughput (bytes/sec)

Outside
Inside

(a) File retrieval.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06 1e+07

C
D

F

Throughput (bytes/sec)

Outside
Inside

(b) File transmission.

Figure 6: Distribution of FTP throughput.

From the setup of the MBI we know that there are several

lo
al hops between the inside
lient and the �rewall that

inter
epts the end-to-end TCP
onne
tion and initiates a

new
onne
tion to the server. And, from the FT analysis

presented in x 4 we know that the median RTT is roughly

25 mse
. Therefore, eliminating several lo
al hops from the

RTT
ould easily redu
e the RTT of the TCP
onne
tion

that ultimately
onne
ts the MBI to the server at Site2 by

5{10% { thus yielding a like in
rease in throughput. This

ould a

ount for mu
h of the di�eren
e in throughput ob-

served. However, future work in this area (using pa
ket tra
e

information) to
on�rm our sket
h would be useful.

7. FTP
Next we look at a set of transfers made using FTP [10℄

between Site1 and Site2. The MBI transparently inter
epts

FTP sessions initiated inside the MBI and silently proxies

all
onne
tions. We used a modi�ed BSD FTP
lient in our

experiments and the standard FreeBSD FTP daemon on the

server. The
lient was instrumented to dump timestamps of

all events (request transmission, response arrival, et
.) dur-

ing the session. In addition, we added a \sleep"
ommand to

the FTP
lient that sleeps for a random amount of time
ho-

sen using a Poisson pro
ess with a mean given by the user.

We initiated FTP sessions approximately every 5 minutes

(based on a Poisson pro
ess). In addition, between ea
h

FTP
ommand we slept for approximately 2 se
onds. Ea
h

FTP session
onsists of 35
ommands and 4 �le transfers

(of 100 KB ea
h). The
lient used both data
onne
tions

opened a
tively and passively (using the \PORT" and \PASV"

FTP
ommands) and both transmitted and retrieved �les.

The
ommands issued on the FTP
ontrol
onne
tion are as

follows:

1. The \USER" and \PASS"
ommands to login to the FTP

server.

2. The following 6
ommands are issued (separated by ap-

proximately 2 se
onds) prior to ea
h �le transfer: TYPE

A, CWD /, PWD, STAT, TYPE I, MDTM. The next
om-

mand sets up the data
onne
tion (either a \PORT"

or \PASV"
ommand), followed by either a \STOR" or

\RETR"
ommand to initiate the �le transfer. This step

is repeated for ea
h �le transfer (i.e., 4 times).

3. The \QUIT"
ommand to terminate the session.

Figure 6 shows the throughput distribution for the trans-

mission and re
eption of �les via FTP inside and outside

the MBI. The \PASV"
ommand is used to setup the data

onne
tion

5

We make the following observations from the

plots:

� The �le retrievals perform
omparably regardless of

the lo
ation of the
lient

6

.

� The throughput when transmitting �les is higher when

inside the MBI by nearly a fa
tor of three at the me-

dian point. This is largely explained by the way FTP

works and the MBI proxying the TCP
onne
tions.

Sin
e the proxy terminates the
onne
tion to the
lient

and starts a new
onne
tion to the server the transfer

be
omes a LAN transfer from the
lient's perspe
tive.

Further, FTP does not in
lude an appli
ation level a
-

knowledgment (as the tests in the last se
tion did).

Therefore, as soon as the FTP
lient sends the last

byte of data it
onsiders the transmission �nished even

though all of the data has not yet arrived at the re-

eiver.

� The throughputs obtained by the two sets of �le re-

trievals and the �le transmission from the outside
lient

are
omparable unders
oring the fa
t that these trans-

missions are experien
ing dynami
s based on travers-

ing the Internet while the �le transmission from the

inside
lient is only experien
ing lo
al network dynam-

i
s.

� Finally, we note that in the FTP tests the throughput

obtained did not rea
h the upper bound of the lower

5

The results for using \PORT" to setup the data
onne
tion

are omitted due to spa
e
onsiderations, but are
onsistent

with the \PASV" results presented in this paper.

6

Unfortunately, our data is not ri
h enough to determine

the
ause of the knee in the plot around y = 0:55.

mode of the available bandwidth shown in the last se
-

tion. Therefore, the distribution does not show the bi-

model
hara
teristi
 that the bulk transfer results illus-

trated. This is explained by the �le size di�eren
e for

the two transfers. In the FTP tests we used a 100 KB

transfer, as opposed to the the bulk throughput tests

that used a 1 MB transfer. The 100 KB tests did not

a�ord enough time or data to open TCP's
ongestion

window to fully utilize the available bandwidth.

Next we observe the time required for responses to
om-

mands sent on the
ontrol
onne
tion to arrive at the
lient.

Figure 7 shows the distribution of the feedba
k time. The

results are similar to the ping tests outlined in x 4, with both

lients showing largely the same delay distribution. We note

one glaring di�eren
e between the inside and outside
lients

at the low end of the distribution, where the inside
lient

shows lower delay than the outside
lient. This anomaly is

aused by the FTP implementation in the MBI, whi
h does

not understand the \MDTM"
ommand (used to determine

the modi�
ation time of a given �le). Therefore, the inside

lient re
eives an error from the MBI for these
ommands {

whi
h experien
es only lo
al network delays, while the out-

side
lient re
eives the
orre
t response from the server {

in
urring the Internet path delays.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000

C
D

F

Response Time (sec)

Outside
Inside

Figure 7: Distribution of time required for
om-

mands on FTP
ontrol
onne
tion.

The su

ess rate of both the inside and outside FTP trans-

fers is over 99.99% for over 121,000 �le transfers. The most

prevalent problem en
ountered was with the data
onne
-

tion not being available. This problem was en
ountered in

roughly the same number of
ases for the inside and out-

side
lient and so does not appear to be a problem with the

MBI. Finally, we note that ea
h
lient issued just over one

million
ommands on the
ontrol
onne
tion. Every
om-

mand issued
ompleted su

essfully on the outside
lient.

Two
ommands failed on the inside
lient (not
ounting the

\MDTM" failures dis
ussed above).

8. CONCLUSIONS AND FUTURE WORK
From the results presented in this paper we �nd that

the measured MBI o�ers a mixed bag of performan
e
osts

and bene�ts. For instan
e, we note that setting up a short

transa
tion takes roughly 5 times longer when traversing the

MBI. However, on
e a TCP
onne
tion is setup, the added

delay required to traverse the MBI is small (1 to 2 mse
).

Additionally, transmitting �les from inside the MBI to a

server a
ross the network is faster than transfering the data

from outside the MBI. Therefore, our
on
lusion is that the

impa
t of the MBI on performan
e is appli
ation depen-

dent. Finally, we note that the MBI generally in
reases the

instan
es of failures in the network a
ross all of our experi-

ments. However, the appli
ation su

ess rate is over 99.9%

in all of our experiments. So, even though the MBI in-

reases the failure rate by several times in some
ases the

overall su

ess rate is high.

We see two major areas for future work in the area of

measuring middleboxes: (i) measuring a larger number of

produ
tion environments to assess whether the results from

Site1 's network are representative and (ii)
apturing pa
kets

at ea
h step through an MBI and re
onstru
ting the events

to determine the root
auses of the performan
e
osts and

bene�ts, as well as the failures noted in our results.

Acknowledgments
This paper has bene�ted from the
ontributions of a number

of people. Engineers at Site1 and Site2 aided in the setup

and design of the experiments presented in this paper. In

addition, Vern Paxson provided en
ouragement and useful

onversation throughout the work. My thanks to all!

9. REFERENCES
[1℄ A. Bakre and B. R. Badrinath. I-TCP: Indire
t TCP

for Mobile Hosts. In Pro
eedings of the 15th

International Conferen
e on Distributed Computing

Systems (ICDCS), May 1995.

[2℄ H. Balakrishnan, S. Seshan, E. Amir, and R. Katz.

Improving TCP/IP Performan
e Over Wireless

Networks. In ACM MobiCom, Nov. 1995.

[3℄ J. Border, M. Kojo, J. Griner, G. Montenegro, and

Z. Shelby. Performan
e Enhan
ing Proxies Intended to

Mitigate Link-Related Degradations, June 2001. RFC

3135.

[4℄ K. B. Egevang and P. Fran
is. The IP Network

Address Translator (NAT), May 1994. RFC 1631.

[5℄ K. Fall and S. Floyd. Simulation-based Comparisons

of Tahoe, Reno, and SACK TCP. Computer

Communi
ations Review, 26(3), July 1996.

[6℄ M. Handley, V. Paxson, and C. Kreibi
h. Network

Intrusion Dete
tion: Evasion, TraÆ
 Normalization,

and End-to-End Proto
ol Semanti
s. In Pro
eedings of

USENIX Se
urity Symposium, 2001.

[7℄ S. Karandikar, S. Kalyanaraman, P. Bagal, and

B. Pa
ker. TCP Rate Control. ACM Computer

Communi
ation Review, 30(1):45{58, Jan. 2000.

[8℄ J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.

Modeling TCP Throughput: A Simple Model and its

Empiri
al Validation. In ACM SIGCOMM, Sept. 1998.

[9℄ J. Postel. Transmission Control Proto
ol, Sept. 1981.

RFC 793.

[10℄ J. Postel and J. Reynolds. File Tranfer Proto
ol

(FTP), O
t. 1985. RFC 959.

[11℄ D. Zimmerman. The Finger User Information

Proto
ol, De
. 1991. RFC 1288.

