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ABSTRACT

This paper presents a preliminary performance analysis of
a complex middlebox infrastructure in a real-world produc-
tion environment that serves several thousand people. While
prevalent, middleboxes (firewalls, NATSs, etc.) have yet to
be systematically measured. This paper makes two contri-
butions: (i) we outline several methodologies and metrics
by which to measure middleboxes and (i) we offer prelimi-
nary application-layer measurements of one particular pro-
duction middlebox system. We show that the middlebox
infrastructure in question offers a mixed bag of performance
implications (both positive and negative). In addition, we
quantify several failure modes introduced by the middlebox
infrastructure.

Categories and Subject Descriptors

C.4 [Computer Systems Organization|: Performance of
Systems; C.4 [Computer Systems Organization]: Per-
formance of Systems; C.2.0 [Computer-Communication
Networks]: General

General Terms

Measurement, Performance, Experimentation, Security

Keywords
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1. INTRODUCTION

So-called “middleboxes”, such as firewalls, address trans-
lators and proxies (among others), are prevalent in today’s
Internet architecture. [3] offers a discussion of the pros and
cons of such devices. These smart network entities are used
for a variety of reasons, for example:

e Security. Among the most common middleboxes is a
firewall that is used to control traffic to implement se-
curity policy between networks. Firewalls range from
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simple devices that do not pass traffic with given char-
acteristics (e.g., protocol number or port number) be-
tween the connected networks to complex devices that
act as proxies for transport layer connections. Fire-
walls are not the only type of middlebox inserted into
a path for security purposes. For instance, traffic nor-
malizers [6] can be used to remove ambiguities from
a traffic stream so that an intrusion detection system
can better predict the effect of the traffic on an end
host.

e Performance. A second class of middleboxes is used
to increase the performance of standard networking
protocols. For instance, web caches or content delivery
networks (e.g., Akamai) are inserted into the network
such that users do not have to retrieve content from its
original source, but rather from a closer copy. In ad-
dition, various proposals and products allow boxes in
the middle of the network to “assist” protocols (e.g.,
by retransmitting dropped segments on the sender’s
behalf [2] or controlling the sending rate by manipulat-
ing TCP’s advertised window [7]). Finally, some mid-
dleboxes split an end-to-end transport connection into
two (or more) connections in an attempt to shorten
the control loop and enhance responsiveness on each
stream (e.g., I'TCP [1]).

e Address Translation. A final common example mid-
dlebox is a network address translator [4]. These boxes
change the network layer addresses and/or transport
layer port numbers in traffic passing between two net-
works. One common use of this technology is to allow
multiple internal hosts to share one external IP ad-
dress. The need for this technique is sometimes due to
the lack of global address space allocated to a partic-
ular network (and, hence, the desire to leverage that
address space) or the desire to obfuscate internal ad-
dresses for security reasons.

While the reasons middleboxes have been added to the In-
ternet’s architecture are numerous the study of the impact
of these entities in production environments has not kept
up with deployment. For instance, several questions come
into play when thinking about middleboxes, such as: What
is the impact on performance (delay, application startup,
throughput, etc.)? What is the impact on the reliability
of TCP/IP protocols? What additional failure modes are
introduced and how prevalent are these? In this paper we
describe initial measurements of one particular middlebox
infrastructure with the goals of: (7) defining a methodology



for testing the impact of middleboxes using active measure-
ments and (4¢) gaining preliminary insight into the effect a
large, production middlebox system has on traffic.

This paper is organized as follows. § 2 details our method-
ology and environment. § 3 outlines experiments involving
small transactions traversing the middlebox infrastructure.
§ 4 discusses measurements of the delay involved in travers-
ing the middlebox. § 5 discusses the persistence of the state
required to be kept in middleboxes in the context of keeping
TCP connections alive. § 6 outlines our experiments involv-
ing transmitting large data files. § 7 discusses measurements
involving the File Transfer Protocol (FTP) [10]. Finally, § 8
gives our conclusions and sketches future work in this area.

2. EXPERIMENTAL SETUP AND METHOD-
OLOGY

To measure the performance of a set of middle boxes at
one facility we setup two client hosts at Sitel', which is
a production network serving several thousand people. In
addition, we setup a server host at Site2, which is roughly
550 miles from Sitel. The “inside client” is located inside
the middlebox infrastructure (MBI) at Site! while the “out-
side client” is on the WAN side of the MBI. The clients
are identical Intel Pentium 4 machines running Linux 2.4.9,
while the server is an Intel Pentium 3 running FreeBSD 4.6.
The server is located on the WAN side of the firewall in-
frastructure at Stte2. This initial study only considers TCP
[9] traffic. The networking stacks of all machines are left
in their default configuration (e.g., TCP option usage, ad-
vertised window size, etc.). All experiments outlined in this
paper were run concurrently inside and outside the MBI at

Sitel.
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Figure 1: Simplified diagram of middlebox infras-
tructure.
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Figure 1 shows the rough setup of the network (with
“MeasBox1” and “MeasBox2” being the inside and outside
clients, respectively). The MBI at Site! consists of several
identical firewalls (“FW” boxes in the figure) attached to the
local and wide-area networks by load balancers (“LB” boxes
in the figure). The firewalls are stateful and proxy TCP con-
nections. Therefore, the load balancers are also required to
keep state (to always route the same TCP connection to the
same firewall). We measured Sitel’s MBI from October 14,
2002 — January 27, 2003 (roughly 105 days). The focus of
this paper is not on the raw measurement values obtained
in our experiments, but rather on the comparison between

!The sites involved in the measurements conducted for this
paper have requested anonymity.

the measurements taken inside the MBI and those taken
outside.

Also, note that in the descriptions of the experiments in
the following sections we have chosen a number of constants
(e.g., timeouts). These constants were chosen to be rea-
sonable, but are largely arbitrarily. We believe this is fine
because both clients share these constants and so the impact
of the choice is likely to impact both clients. By choosing
timeouts that are too short we may be biasing the measure-
ments (e.g., if we had watched a little longer we might have
seen a measurement complete, but rather we recorded it as a
failure). However, we believe the chosen constants are large
enough that we are not likely coercing a large number of
these sorts of situations.

3. TRANSACTION DELAY

The first experiment’s goal is to assess the impact of the
MBI on the transaction time of a small request/response
protocol. To measure the transaction time we use the finger
protocol [11]. In our experiments the client opens a TCP
connection to the server and sends a carriage-return and
linefeed. The server then responds by sending two characters
back to the client. The client verifies the returned characters
and then closes the TCP connection. If the client does not
receive a response within 30 seconds this is noted and the
transaction is terminated. We use custom-written client and
server code that timestamps each event in the transaction.
We insert a delay between finger transactions of roughly
2 minutes (the actual time is determined using a Poisson
process with a mean of 2 minutes).
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Figure 2: Distribution of response times for finger
transactions.

Figure 2 shows the distribution of the response time for
both clients. The dataset contains over 75,000 transactions
for each client. The median transaction time outside the
MBI is roughly 52 msec, while it takes roughly 253 msec
from inside the MBI. The next section shows that the MBI
adds minimal delay to data flowing through an already open
TCP connection. Therefore, the five-fold increase in the
finger transaction time shown in figure 2 is likely caused by
the time required to instantiate connection state within the
MBI.

We recorded 42 failures® on the inside client and 12 fail-

2There are several ways to look at the “failures” reported in



ures on the outside client. All the problems outside the MBI
are failures to connect to the server. Meanwhile, nearly all
the problems inside the firewall are recorded as timeouts.
Since the firewall is proxying TCP connections this likely
translates into problems connecting to the server or inter-
nal problems in the MBI®. Since there are 3.5 times more
failures inside the MBI we believe the majority of the prob-
lems are actually caused by the MBI. Finally, note that the
overall failure rate both inside and outside the middle box
infrastructure is quite low (under 0.1% in both cases).

4. FEEDBACK TIME

The last section focuses on small transactions and on the
costs associated with initiating such transactions. This sec-
tion focuses on delay through the MBI once a connection
has been established. To accomplish this we wrote a “TCP
ping” client and server. The client sends a small message
with a sequence number to the server, which echoes the mes-
sage back to the client via an already-established TCP con-
nection. The client records when the request is sent and
when the response arrives. After each request/response a
delay is inserted before the next request is transmitted. Our
dataset consists of five parallel pinging connections each us-
ing a different mean delay, z: 0, 30, 300, 1800 and 3600 sec-
onds. The actual delay is determined using a Poisson process
with a mean of = seconds. In addition, if a response does
not arrive within 20 seconds the connection is closed and a
new connection started in its place. In this paper we focus
only on the experiments involving the connection that uses
x = 30 seconds due to space constraints. The connections
that used different granularities show the same basic results.
We note that the measured values are not necessarily round-
trip times, but rather application-level feedback times (FT).
Since the pinging process is using TCP as its transport the
requests and responses are sent reliably and therefore may
incur retransmission delays if lost.

Figure 3 shows the distribution of FTs from inside and
outside the MBI with a mean inter-ping time of 30 seconds.
The dataset consists of over 303,000 pings from each client.
As the plot shows, the F'T experienced on either side of the
MBI is nearly the same. The outside client experienced a
roughly 1 msec shorter FT on median and just over 2 msec
shorter F'T' on average then the inside client. This increase in
delay through the MBI is likely explained by the additional
number of local hops required to traverse the MBI.

Finally, we found only two types of errors: setting up
the TCP connection and the connection being closed due
to a timeout. We discuss the timeouts in the next section.
The inside client failed to make a connection 51 times in our
dataset compared to 46 times on the outside client. Since the
instances of failure connection failure is roughly the same in

this paper. We lump all problems experienced by the client
together as “failures”. However, this does not take into ac-
count that some failures are expected (caused by routine
and scheduled maintenance of the MBI). However, we feel
that such maintenance is part of the cost of using middle-
boxes and thus whether the failure was expected or not is
not reported in our data.

3The MBI at Sitel completes TCP’s three-way handshake
with the client before ensuring that a connection can be
made with the server. Therefore, the inside client can finish
its portion of the transaction before the MBI finishes the
TCP 3-way handshake to start a connection to the server.
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Figure 3: Distribution of feedback time when sam-
pling roughly every 30 seconds.

| Metric | Inside | Outside |
Number of Connections 42 21
Mean Length (hr) 58.82 114.99

Median Length (hr) 19.99 43.45
Max Length (hr) 425.98 593.08

Table 1: Connection length statistics for connections
that sampled FT roughly every 30 seconds.

both clients the likely explanation is that the network path
between Sitel and Site2 became temporarily unusable.

5. CONNECTION LENGTH

In this section we discuss the length of the “ping” connec-
tions used for the FT measurements described in the last
section. We are attempting to assess how often the MBI
state gets internally unsynchronized, flushed or in some way
makes an established connection unusable. Again, we an-
alyzed all the connections with varying sending rates and
the results come out consistent. Therefore, as in the last
section, we only present the results of the connection that
sends a request approximately every 30 seconds.

Table 1 provides the results of our analysis. We note that
the inside client used twice as many connections as the out-
side client. The median connection length on the outside
client is roughly twice as long as on the inside client. In addi-
tion, we note that the maximum connection length recorded
on the inside client is roughly 21 times longer than the me-
dian connection recorded on the inside client, indicating that
a client behind the MBI can sustain long connections. Also,
the distribution of connection lengths recorded on the inside
client does not suggest any sort of connection timeout in the
MBI biasing the measurements®.

We can further assign the blame of unnecessarily short-
ened connections to the MBI by noting that while there are
twice as many connections used inside the MBI the instances
of not being able to connect to the server (as outlined in
the last section) are roughly equivalent across client. This

*In addition, the operational security team at Sitel verified
that there is no intentional timeout configured into the MBI
that would effect these tests.



indicates that, in many cases, simply making a new TCP
connection (and, hence starting over with fresh state in the
MBI) to the server fixed the problem. These results sug-
gest that something within the MBI was flushed or became
unsynchronized.

6. BULK DATA TRANSFER

We wrote a simple client and server to test the raw TCP
transfer speed through the MBI. The client sends 1 MB of
data from memory to the server. The server discards the
data upon receipt. In our experiments, we conduct bulk
transfer measurements roughly every 10 minutes (where the
actual inter-measurement time is dictated by a Poisson pro-
cess with a mean of 10 minutes).

The last four bytes of data transmitted by the client con-
tain a random number that the server echoes back. The
transmission time is defined as the time between when the
client application sends the first byte of data to the operating
system for transmission until the client application receives
the random number echoed by the receiver.

Waiting until the echoed random number is received is key
to correctly measuring the end-to-end throughput. Clients,
such as ttcp, that measure TCP transfer speed by consider-
ing the transfer “done” when the last byte of data is sent
from the application to the operating system or even wait-
ing on the close() call to return (after setting the socket
to LINGER) may overestimate the end-to-end throughput at-
tained. The problem is that the MBI proxies connections
on behalf of the end-host. So, the end host’s transmission of
data bytes and their acknowledgment have no relationship
with the ultimate recipient of the data (the server at Site2).
Therefore, we introduce an application layer acknowledg-
ment in an effort to measure the time required to actually
transmit all the data to the ultimate receiver.
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Figure 4: Distribution of throughput from bulk
transfer experiments.

Figure 4 shows the distribution of throughput obtained in
our bulk transfer experiments. Our dataset contains over
15,000 transfers from each client. The figure offers two
immediate results. First, we note that the distribution of
throughput attained (by both clients) is bi-modal. In ad-
dition, we observe that the inside client achieves higher
throughput than the outside client.

The bi-modal distribution of throughput likely comes from
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Figure 5: Throughput over time for transfers from
the inside client.

changes in the path between Site! and Site2. Figure 5 is a
scatter plot of the throughput for each transfer conducted
from the inside client as a function of the transfer number.
The plot clearly shows distinct changes in the maximum
throughput attained during various periods of our dataset.
The distinct changes in the upper bound on performance
could be caused by changes in the route between Sitel and
Site2 or a change in some rate-limiting policy along the
path. Without further measurements (e.g., traceroutes) we
cannot say with certainty exactly what caused the change.
(A like plot from the outside client shows the same pattern
in throughput changes.)

The second item we notice from figure 4 is that the in-
side client obtains better throughput than the outside client.
Looking at roughly the midpoint of each part of the distri-
bution we see a difference in throughput of roughly 3.4% (at
the 337 percentile) and 16.0% (at the 85" percentile). This
effect is difficult to explain without rich packet-level tracing
at numerous points throughout the MBI. However, we of-
fer a couple of possibilities. First, different variants of TCP
offer different performance characteristics (e.g., see [5] for a
comparison of loss recovery techniques and their impact on
performance). Without packet-level traces we cannot quan-
tify the impact of any differences that exist in the end-host
TCP and the MBI’s TCP implementation, however we be-
lieve the difference could explain some of the difference in
the throughput measured. In addition, we note that the
TCP model [8] offers insight into the throughput attained
by concatenated TCP connections.

For our comparison the TCP model for throughput, T,
distills down to:

T R (1)
where R is the round-trip time and p is the loss rate. The
rest of the parameters in the model (e.g., the MSS) are static
across connections in our experimental setup. From equa-
tion 1 it follows that reductions in either the RTT or the
loss rate increase the throughput. For concatenated TCP
connections we can use the model for each connection be-
tween the client and the server with the ultimate throughput
dictated by the minimum of the throughputs calculated.
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Figure 6: Distribution of FTP throughput.

From the setup of the MBI we know that there are several
local hops between the inside client and the firewall that
intercepts the end-to-end TCP connection and initiates a
new connection to the server. And, from the FT analysis
presented in § 4 we know that the median RTT is roughly
25 msec. Therefore, eliminating several local hops from the
RTT could easily reduce the RTT of the TCP connection
that ultimately connects the MBI to the server at Site2 by
5-10% - thus yielding a like increase in throughput. This
could account for much of the difference in throughput ob-
served. However, future work in this area (using packet trace
information) to confirm our sketch would be useful.

7. FTP

Next we look at a set of transfers made using FTP [10]
between Site! and Site2. The MBI transparently intercepts
FTP sessions initiated inside the MBI and silently proxies
all connections. We used a modified BSD FTP client in our
experiments and the standard FreeBSD FTP daemon on the
server. The client was instrumented to dump timestamps of
all events (request transmission, response arrival, etc.) dur-
ing the session. In addition, we added a “sleep” command to
the FTP client that sleeps for a random amount of time cho-
sen using a Poisson process with a mean given by the user.
We initiated FTP sessions approximately every 5 minutes
(based on a Poisson process). In addition, between each
FTP command we slept for approximately 2 seconds. Each
FTP session consists of 35 commands and 4 file transfers
(of 100 KB each). The client used both data connections
opened actively and passively (using the “PORT” and “PASV”
FTP commands) and both transmitted and retrieved files.
The commands issued on the FTP control connection are as
follows:

1. The “USER” and “PASS” commands to login to the FTP
server.

2. The following 6 commands are issued (separated by ap-
proximately 2 seconds) prior to each file transfer: TYPE
A, CWD /, PWD, STAT, TYPE I, MDTM. The next com-
mand sets up the data connection (either a “PORT”
or “PASV” command), followed by either a “STOR” or

“RETR” command to initiate the file transfer. This step
is repeated for each file transfer (i.e., 4 times).

3. The “QUIT” command to terminate the session.

Figure 6 shows the throughput distribution for the trans-
mission and reception of files via FTP inside and outside
the MBI. The “PASV” command is used to setup the data
connection® We make the following observations from the
plots:

e The file retrievals perform comparably regardless of
the location of the client®.

e The throughput when transmitting files is higher when
inside the MBI by nearly a factor of three at the me-
dian point. This is largely explained by the way FTP
works and the MBI proxying the TCP connections.
Since the proxy terminates the connection to the client
and starts a new connection to the server the transfer
becomes a LAN transfer from the client’s perspective.
Further, FTP does not include an application level ac-
knowledgment (as the tests in the last section did).
Therefore, as soon as the FTP client sends the last
byte of data it considers the transmission finished even
though all of the data has not yet arrived at the re-
ceiver.

e The throughputs obtained by the two sets of file re-
trievals and the file transmission from the outside client
are comparable underscoring the fact that these trans-
missions are experiencing dynamics based on travers-
ing the Internet while the file transmission from the
inside client is only experiencing local network dynam-
ics.

e Finally, we note that in the F'TP tests the throughput
obtained did not reach the upper bound of the lower

®The results for using “PORT” to setup the data connection
are omitted due to space considerations, but are consistent
with the “PASV” results presented in this paper.
SUnfortunately, our data is not rich enough to determine
the cause of the knee in the plot around y = 0.55.



mode of the available bandwidth shown in the last sec-
tion. Therefore, the distribution does not show the bi-
model characteristic that the bulk transfer results illus-
trated. This is explained by the file size difference for
the two transfers. In the FTP tests we used a 100 KB
transfer, as opposed to the the bulk throughput tests
that used a 1 MB transfer. The 100 KB tests did not
afford enough time or data to open TCP’s congestion
window to fully utilize the available bandwidth.

Next we observe the time required for responses to com-
mands sent on the control connection to arrive at the client.
Figure 7 shows the distribution of the feedback time. The
results are similar to the ping tests outlined in § 4, with both
clients showing largely the same delay distribution. We note
one glaring difference between the inside and outside clients
at the low end of the distribution, where the inside client
shows lower delay than the outside client. This anomaly is
caused by the FTP implementation in the MBI, which does
not understand the “MDTM” command (used to determine
the modification time of a given file). Therefore, the inside
client receives an error from the MBI for these commands —
which experiences only local network delays, while the out-
side client receives the correct response from the server —
incurring the Internet path delays.
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Figure 7: Distribution of time required for com-
mands on FTP control connection.

The success rate of both the inside and outside FTP trans-
fers is over 99.99% for over 121,000 file transfers. The most
prevalent problem encountered was with the data connec-
tion not being available. This problem was encountered in
roughly the same number of cases for the inside and out-
side client and so does not appear to be a problem with the
MBI. Finally, we note that each client issued just over one
million commands on the control connection. Every com-
mand issued completed successfully on the outside client.
Two commands failed on the inside client (not counting the
“MDTM” failures discussed above).

8. CONCLUSIONS AND FUTURE WORK

From the results presented in this paper we find that
the measured MBI offers a mixed bag of performance costs
and benefits. For instance, we note that setting up a short
transaction takes roughly 5 times longer when traversing the

MBI. However, once a TCP connection is setup, the added
delay required to traverse the MBI is small (1 to 2 msec).
Additionally, transmitting files from inside the MBI to a
server across the network is faster than transfering the data
from outside the MBI. Therefore, our conclusion is that the
impact of the MBI on performance is application depen-
dent. Finally, we note that the MBI generally increases the
instances of failures in the network across all of our experi-
ments. However, the application success rate is over 99.9%
in all of our experiments. So, even though the MBI in-
creases the failure rate by several times in some cases the
overall success rate is high.

We see two major areas for future work in the area of
measuring middleboxes: (7) measuring a larger number of
production environments to assess whether the results from
Sitel’s network are representative and (i7) capturing packets
at each step through an MBI and reconstructing the events
to determine the root causes of the performance costs and
benefits, as well as the failures noted in our results.
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