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ABSTRACT
This paper presents a preliminary performan
e analysis of

a 
omplex middlebox infrastru
ture in a real-world produ
-

tion environment that serves several thousand people. While

prevalent, middleboxes (�rewalls, NATs, et
.) have yet to

be systemati
ally measured. This paper makes two 
ontri-

butions: (i) we outline several methodologies and metri
s

by whi
h to measure middleboxes and (ii) we o�er prelimi-

nary appli
ation-layer measurements of one parti
ular pro-

du
tion middlebox system. We show that the middlebox

infrastru
ture in question o�ers a mixed bag of performan
e

impli
ations (both positive and negative). In addition, we

quantify several failure modes introdu
ed by the middlebox

infrastru
ture.

Categories and Subject Descriptors
C.4 [Computer Systems Organization℄: Performan
e of

Systems; C.4 [Computer Systems Organization℄: Per-

forman
e of Systems; C.2.0 [Computer-Communi
ation

Networks℄: General

General Terms
Measurement, Performan
e, Experimentation, Se
urity

Keywords
�rewalls, middleboxes, TCP performan
e

1. INTRODUCTION
So-
alled \middleboxes", su
h as �rewalls, address trans-

lators and proxies (among others), are prevalent in today's

Internet ar
hite
ture. [3℄ o�ers a dis
ussion of the pros and


ons of su
h devi
es. These smart network entities are used

for a variety of reasons, for example:

� Se
urity. Among the most 
ommon middleboxes is a

�rewall that is used to 
ontrol traÆ
 to implement se-


urity poli
y between networks. Firewalls range from
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simple devi
es that do not pass traÆ
 with given 
har-

a
teristi
s (e.g., proto
ol number or port number) be-

tween the 
onne
ted networks to 
omplex devi
es that

a
t as proxies for transport layer 
onne
tions. Fire-

walls are not the only type of middlebox inserted into

a path for se
urity purposes. For instan
e, traÆ
 nor-

malizers [6℄ 
an be used to remove ambiguities from

a traÆ
 stream so that an intrusion dete
tion system


an better predi
t the e�e
t of the traÆ
 on an end

host.

� Performan
e. A se
ond 
lass of middleboxes is used

to in
rease the performan
e of standard networking

proto
ols. For instan
e, web 
a
hes or 
ontent delivery

networks (e.g., Akamai) are inserted into the network

su
h that users do not have to retrieve 
ontent from its

original sour
e, but rather from a 
loser 
opy. In ad-

dition, various proposals and produ
ts allow boxes in

the middle of the network to \assist" proto
ols (e.g.,

by retransmitting dropped segments on the sender's

behalf [2℄ or 
ontrolling the sending rate by manipulat-

ing TCP's advertised window [7℄). Finally, some mid-

dleboxes split an end-to-end transport 
onne
tion into

two (or more) 
onne
tions in an attempt to shorten

the 
ontrol loop and enhan
e responsiveness on ea
h

stream (e.g., I-TCP [1℄).

� Address Translation. A �nal 
ommon example mid-

dlebox is a network address translator [4℄. These boxes


hange the network layer addresses and/or transport

layer port numbers in traÆ
 passing between two net-

works. One 
ommon use of this te
hnology is to allow

multiple internal hosts to share one external IP ad-

dress. The need for this te
hnique is sometimes due to

the la
k of global address spa
e allo
ated to a parti
-

ular network (and, hen
e, the desire to leverage that

address spa
e) or the desire to obfus
ate internal ad-

dresses for se
urity reasons.

While the reasons middleboxes have been added to the In-

ternet's ar
hite
ture are numerous the study of the impa
t

of these entities in produ
tion environments has not kept

up with deployment. For instan
e, several questions 
ome

into play when thinking about middleboxes, su
h as: What

is the impa
t on performan
e (delay, appli
ation startup,

throughput, et
.)? What is the impa
t on the reliability

of TCP/IP proto
ols? What additional failure modes are

introdu
ed and how prevalent are these? In this paper we

des
ribe initial measurements of one parti
ular middlebox

infrastru
ture with the goals of: (i) de�ning a methodology



for testing the impa
t of middleboxes using a
tive measure-

ments and (ii) gaining preliminary insight into the e�e
t a

large, produ
tion middlebox system has on traÆ
.

This paper is organized as follows. x 2 details our method-

ology and environment. x 3 outlines experiments involving

small transa
tions traversing the middlebox infrastru
ture.

x 4 dis
usses measurements of the delay involved in travers-

ing the middlebox. x 5 dis
usses the persisten
e of the state

required to be kept in middleboxes in the 
ontext of keeping

TCP 
onne
tions alive. x 6 outlines our experiments involv-

ing transmitting large data �les. x 7 dis
usses measurements

involving the File Transfer Proto
ol (FTP) [10℄. Finally, x 8

gives our 
on
lusions and sket
hes future work in this area.

2. EXPERIMENTAL SETUP AND METHOD-
OLOGY

To measure the performan
e of a set of middle boxes at

one fa
ility we setup two 
lient hosts at Site1

1

, whi
h is

a produ
tion network serving several thousand people. In

addition, we setup a server host at Site2, whi
h is roughly

550 miles from Site1. The \inside 
lient" is lo
ated inside

the middlebox infrastru
ture (MBI) at Site1 while the \out-

side 
lient" is on the WAN side of the MBI. The 
lients

are identi
al Intel Pentium 4 ma
hines running Linux 2.4.9,

while the server is an Intel Pentium 3 running FreeBSD 4.6.

The server is lo
ated on the WAN side of the �rewall in-

frastru
ture at Site2. This initial study only 
onsiders TCP

[9℄ traÆ
. The networking sta
ks of all ma
hines are left

in their default 
on�guration (e.g., TCP option usage, ad-

vertised window size, et
.). All experiments outlined in this

paper were run 
on
urrently inside and outside the MBI at

Site1.
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Figure 1: Simpli�ed diagram of middlebox infras-

tru
ture.

Figure 1 shows the rough setup of the network (with

\MeasBox1" and \MeasBox2" being the inside and outside


lients, respe
tively). The MBI at Site1 
onsists of several

identi
al �rewalls (\FW" boxes in the �gure) atta
hed to the

lo
al and wide-area networks by load balan
ers (\LB" boxes

in the �gure). The �rewalls are stateful and proxy TCP 
on-

ne
tions. Therefore, the load balan
ers are also required to

keep state (to always route the same TCP 
onne
tion to the

same �rewall). We measured Site1 's MBI from O
tober 14,

2002 { January 27, 2003 (roughly 105 days). The fo
us of

this paper is not on the raw measurement values obtained

in our experiments, but rather on the 
omparison between

1

The sites involved in the measurements 
ondu
ted for this

paper have requested anonymity.

the measurements taken inside the MBI and those taken

outside.

Also, note that in the des
riptions of the experiments in

the following se
tions we have 
hosen a number of 
onstants

(e.g., timeouts). These 
onstants were 
hosen to be rea-

sonable, but are largely arbitrarily. We believe this is �ne

be
ause both 
lients share these 
onstants and so the impa
t

of the 
hoi
e is likely to impa
t both 
lients. By 
hoosing

timeouts that are too short we may be biasing the measure-

ments (e.g., if we had wat
hed a little longer we might have

seen a measurement 
omplete, but rather we re
orded it as a

failure). However, we believe the 
hosen 
onstants are large

enough that we are not likely 
oer
ing a large number of

these sorts of situations.

3. TRANSACTION DELAY
The �rst experiment's goal is to assess the impa
t of the

MBI on the transa
tion time of a small request/response

proto
ol. To measure the transa
tion time we use the �nger

proto
ol [11℄. In our experiments the 
lient opens a TCP


onne
tion to the server and sends a 
arriage-return and

linefeed. The server then responds by sending two 
hara
ters

ba
k to the 
lient. The 
lient veri�es the returned 
hara
ters

and then 
loses the TCP 
onne
tion. If the 
lient does not

re
eive a response within 30 se
onds this is noted and the

transa
tion is terminated. We use 
ustom-written 
lient and

server 
ode that timestamps ea
h event in the transa
tion.

We insert a delay between �nger transa
tions of roughly

2 minutes (the a
tual time is determined using a Poisson

pro
ess with a mean of 2 minutes).
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Figure 2: Distribution of response times for �nger

transa
tions.

Figure 2 shows the distribution of the response time for

both 
lients. The dataset 
ontains over 75,000 transa
tions

for ea
h 
lient. The median transa
tion time outside the

MBI is roughly 52 mse
, while it takes roughly 253 mse


from inside the MBI. The next se
tion shows that the MBI

adds minimal delay to data 
owing through an already open

TCP 
onne
tion. Therefore, the �ve-fold in
rease in the

�nger transa
tion time shown in �gure 2 is likely 
aused by

the time required to instantiate 
onne
tion state within the

MBI.

We re
orded 42 failures

2

on the inside 
lient and 12 fail-

2

There are several ways to look at the \failures" reported in



ures on the outside 
lient. All the problems outside the MBI

are failures to 
onne
t to the server. Meanwhile, nearly all

the problems inside the �rewall are re
orded as timeouts.

Sin
e the �rewall is proxying TCP 
onne
tions this likely

translates into problems 
onne
ting to the server or inter-

nal problems in the MBI

3

. Sin
e there are 3.5 times more

failures inside the MBI we believe the majority of the prob-

lems are a
tually 
aused by the MBI. Finally, note that the

overall failure rate both inside and outside the middle box

infrastru
ture is quite low (under 0.1% in both 
ases).

4. FEEDBACK TIME
The last se
tion fo
uses on small transa
tions and on the


osts asso
iated with initiating su
h transa
tions. This se
-

tion fo
uses on delay through the MBI on
e a 
onne
tion

has been established. To a

omplish this we wrote a \TCP

ping" 
lient and server. The 
lient sends a small message

with a sequen
e number to the server, whi
h e
hoes the mes-

sage ba
k to the 
lient via an already-established TCP 
on-

ne
tion. The 
lient re
ords when the request is sent and

when the response arrives. After ea
h request/response a

delay is inserted before the next request is transmitted. Our

dataset 
onsists of �ve parallel pinging 
onne
tions ea
h us-

ing a di�erent mean delay, x: 0, 30, 300, 1800 and 3600 se
-

onds. The a
tual delay is determined using a Poisson pro
ess

with a mean of x se
onds. In addition, if a response does

not arrive within 20 se
onds the 
onne
tion is 
losed and a

new 
onne
tion started in its pla
e. In this paper we fo
us

only on the experiments involving the 
onne
tion that uses

x = 30 se
onds due to spa
e 
onstraints. The 
onne
tions

that used di�erent granularities show the same basi
 results.

We note that the measured values are not ne
essarily round-

trip times, but rather appli
ation-level feedba
k times (FT).

Sin
e the pinging pro
ess is using TCP as its transport the

requests and responses are sent reliably and therefore may

in
ur retransmission delays if lost.

Figure 3 shows the distribution of FTs from inside and

outside the MBI with a mean inter-ping time of 30 se
onds.

The dataset 
onsists of over 303,000 pings from ea
h 
lient.

As the plot shows, the FT experien
ed on either side of the

MBI is nearly the same. The outside 
lient experien
ed a

roughly 1 mse
 shorter FT on median and just over 2 mse


shorter FT on average then the inside 
lient. This in
rease in

delay through the MBI is likely explained by the additional

number of lo
al hops required to traverse the MBI.

Finally, we found only two types of errors: setting up

the TCP 
onne
tion and the 
onne
tion being 
losed due

to a timeout. We dis
uss the timeouts in the next se
tion.

The inside 
lient failed to make a 
onne
tion 51 times in our

dataset 
ompared to 46 times on the outside 
lient. Sin
e the

instan
es of failure 
onne
tion failure is roughly the same in

this paper. We lump all problems experien
ed by the 
lient

together as \failures". However, this does not take into a
-


ount that some failures are expe
ted (
aused by routine

and s
heduled maintenan
e of the MBI). However, we feel

that su
h maintenan
e is part of the 
ost of using middle-

boxes and thus whether the failure was expe
ted or not is

not reported in our data.

3

The MBI at Site1 
ompletes TCP's three-way handshake

with the 
lient before ensuring that a 
onne
tion 
an be

made with the server. Therefore, the inside 
lient 
an �nish

its portion of the transa
tion before the MBI �nishes the

TCP 3-way handshake to start a 
onne
tion to the server.
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Figure 3: Distribution of feedba
k time when sam-

pling roughly every 30 se
onds.

Metri
 Inside Outside

Number of Conne
tions 42 21

Mean Length (hr) 58.82 114.99

Median Length (hr) 19.99 43.45

Max Length (hr) 425.98 593.08

Table 1: Conne
tion length statisti
s for 
onne
tions

that sampled FT roughly every 30 se
onds.

both 
lients the likely explanation is that the network path

between Site1 and Site2 be
ame temporarily unusable.

5. CONNECTION LENGTH
In this se
tion we dis
uss the length of the \ping" 
onne
-

tions used for the FT measurements des
ribed in the last

se
tion. We are attempting to assess how often the MBI

state gets internally unsyn
hronized, 
ushed or in some way

makes an established 
onne
tion unusable. Again, we an-

alyzed all the 
onne
tions with varying sending rates and

the results 
ome out 
onsistent. Therefore, as in the last

se
tion, we only present the results of the 
onne
tion that

sends a request approximately every 30 se
onds.

Table 1 provides the results of our analysis. We note that

the inside 
lient used twi
e as many 
onne
tions as the out-

side 
lient. The median 
onne
tion length on the outside


lient is roughly twi
e as long as on the inside 
lient. In addi-

tion, we note that the maximum 
onne
tion length re
orded

on the inside 
lient is roughly 21 times longer than the me-

dian 
onne
tion re
orded on the inside 
lient, indi
ating that

a 
lient behind the MBI 
an sustain long 
onne
tions. Also,

the distribution of 
onne
tion lengths re
orded on the inside


lient does not suggest any sort of 
onne
tion timeout in the

MBI biasing the measurements

4

.

We 
an further assign the blame of unne
essarily short-

ened 
onne
tions to the MBI by noting that while there are

twi
e as many 
onne
tions used inside the MBI the instan
es

of not being able to 
onne
t to the server (as outlined in

the last se
tion) are roughly equivalent a
ross 
lient. This

4

In addition, the operational se
urity team at Site1 veri�ed

that there is no intentional timeout 
on�gured into the MBI

that would e�e
t these tests.



indi
ates that, in many 
ases, simply making a new TCP


onne
tion (and, hen
e starting over with fresh state in the

MBI) to the server �xed the problem. These results sug-

gest that something within the MBI was 
ushed or be
ame

unsyn
hronized.

6. BULK DATA TRANSFER
We wrote a simple 
lient and server to test the raw TCP

transfer speed through the MBI. The 
lient sends 1 MB of

data from memory to the server. The server dis
ards the

data upon re
eipt. In our experiments, we 
ondu
t bulk

transfer measurements roughly every 10 minutes (where the

a
tual inter-measurement time is di
tated by a Poisson pro-


ess with a mean of 10 minutes).

The last four bytes of data transmitted by the 
lient 
on-

tain a random number that the server e
hoes ba
k. The

transmission time is de�ned as the time between when the


lient appli
ation sends the �rst byte of data to the operating

system for transmission until the 
lient appli
ation re
eives

the random number e
hoed by the re
eiver.

Waiting until the e
hoed random number is re
eived is key

to 
orre
tly measuring the end-to-end throughput. Clients,

su
h as tt
p, that measure TCP transfer speed by 
onsider-

ing the transfer \done" when the last byte of data is sent

from the appli
ation to the operating system or even wait-

ing on the 
lose() 
all to return (after setting the so
ket

to LINGER) may overestimate the end-to-end throughput at-

tained. The problem is that the MBI proxies 
onne
tions

on behalf of the end-host. So, the end host's transmission of

data bytes and their a
knowledgment have no relationship

with the ultimate re
ipient of the data (the server at Site2 ).

Therefore, we introdu
e an appli
ation layer a
knowledg-

ment in an e�ort to measure the time required to a
tually

transmit all the data to the ultimate re
eiver.
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Figure 4: Distribution of throughput from bulk

transfer experiments.

Figure 4 shows the distribution of throughput obtained in

our bulk transfer experiments. Our dataset 
ontains over

15,000 transfers from ea
h 
lient. The �gure o�ers two

immediate results. First, we note that the distribution of

throughput attained (by both 
lients) is bi-modal. In ad-

dition, we observe that the inside 
lient a
hieves higher

throughput than the outside 
lient.

The bi-modal distribution of throughput likely 
omes from
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Figure 5: Throughput over time for transfers from

the inside 
lient.


hanges in the path between Site1 and Site2. Figure 5 is a

s
atter plot of the throughput for ea
h transfer 
ondu
ted

from the inside 
lient as a fun
tion of the transfer number.

The plot 
learly shows distin
t 
hanges in the maximum

throughput attained during various periods of our dataset.

The distin
t 
hanges in the upper bound on performan
e


ould be 
aused by 
hanges in the route between Site1 and

Site2 or a 
hange in some rate-limiting poli
y along the

path. Without further measurements (e.g., tra
eroutes) we


annot say with 
ertainty exa
tly what 
aused the 
hange.

(A like plot from the outside 
lient shows the same pattern

in throughput 
hanges.)

The se
ond item we noti
e from �gure 4 is that the in-

side 
lient obtains better throughput than the outside 
lient.

Looking at roughly the midpoint of ea
h part of the distri-

bution we see a di�eren
e in throughput of roughly 3.4% (at

the 33

rd

per
entile) and 16.0% (at the 85

th

per
entile). This

e�e
t is diÆ
ult to explain without ri
h pa
ket-level tra
ing

at numerous points throughout the MBI. However, we of-

fer a 
ouple of possibilities. First, di�erent variants of TCP

o�er di�erent performan
e 
hara
teristi
s (e.g., see [5℄ for a


omparison of loss re
overy te
hniques and their impa
t on

performan
e). Without pa
ket-level tra
es we 
annot quan-

tify the impa
t of any di�eren
es that exist in the end-host

TCP and the MBI's TCP implementation, however we be-

lieve the di�eren
e 
ould explain some of the di�eren
e in

the throughput measured. In addition, we note that the

TCP model [8℄ o�ers insight into the throughput attained

by 
on
atenated TCP 
onne
tions.

For our 
omparison the TCP model for throughput, T ,

distills down to:

T /

1

R

p

p

(1)

where R is the round-trip time and p is the loss rate. The

rest of the parameters in the model (e.g., the MSS) are stati


a
ross 
onne
tions in our experimental setup. From equa-

tion 1 it follows that redu
tions in either the RTT or the

loss rate in
rease the throughput. For 
on
atenated TCP


onne
tions we 
an use the model for ea
h 
onne
tion be-

tween the 
lient and the server with the ultimate throughput

di
tated by the minimum of the throughputs 
al
ulated.
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(b) File transmission.

Figure 6: Distribution of FTP throughput.

From the setup of the MBI we know that there are several

lo
al hops between the inside 
lient and the �rewall that

inter
epts the end-to-end TCP 
onne
tion and initiates a

new 
onne
tion to the server. And, from the FT analysis

presented in x 4 we know that the median RTT is roughly

25 mse
. Therefore, eliminating several lo
al hops from the

RTT 
ould easily redu
e the RTT of the TCP 
onne
tion

that ultimately 
onne
ts the MBI to the server at Site2 by

5{10% { thus yielding a like in
rease in throughput. This


ould a

ount for mu
h of the di�eren
e in throughput ob-

served. However, future work in this area (using pa
ket tra
e

information) to 
on�rm our sket
h would be useful.

7. FTP
Next we look at a set of transfers made using FTP [10℄

between Site1 and Site2. The MBI transparently inter
epts

FTP sessions initiated inside the MBI and silently proxies

all 
onne
tions. We used a modi�ed BSD FTP 
lient in our

experiments and the standard FreeBSD FTP daemon on the

server. The 
lient was instrumented to dump timestamps of

all events (request transmission, response arrival, et
.) dur-

ing the session. In addition, we added a \sleep" 
ommand to

the FTP 
lient that sleeps for a random amount of time 
ho-

sen using a Poisson pro
ess with a mean given by the user.

We initiated FTP sessions approximately every 5 minutes

(based on a Poisson pro
ess). In addition, between ea
h

FTP 
ommand we slept for approximately 2 se
onds. Ea
h

FTP session 
onsists of 35 
ommands and 4 �le transfers

(of 100 KB ea
h). The 
lient used both data 
onne
tions

opened a
tively and passively (using the \PORT" and \PASV"

FTP 
ommands) and both transmitted and retrieved �les.

The 
ommands issued on the FTP 
ontrol 
onne
tion are as

follows:

1. The \USER" and \PASS" 
ommands to login to the FTP

server.

2. The following 6 
ommands are issued (separated by ap-

proximately 2 se
onds) prior to ea
h �le transfer: TYPE

A, CWD /, PWD, STAT, TYPE I, MDTM. The next 
om-

mand sets up the data 
onne
tion (either a \PORT"

or \PASV" 
ommand), followed by either a \STOR" or

\RETR" 
ommand to initiate the �le transfer. This step

is repeated for ea
h �le transfer (i.e., 4 times).

3. The \QUIT" 
ommand to terminate the session.

Figure 6 shows the throughput distribution for the trans-

mission and re
eption of �les via FTP inside and outside

the MBI. The \PASV" 
ommand is used to setup the data


onne
tion

5

We make the following observations from the

plots:

� The �le retrievals perform 
omparably regardless of

the lo
ation of the 
lient

6

.

� The throughput when transmitting �les is higher when

inside the MBI by nearly a fa
tor of three at the me-

dian point. This is largely explained by the way FTP

works and the MBI proxying the TCP 
onne
tions.

Sin
e the proxy terminates the 
onne
tion to the 
lient

and starts a new 
onne
tion to the server the transfer

be
omes a LAN transfer from the 
lient's perspe
tive.

Further, FTP does not in
lude an appli
ation level a
-

knowledgment (as the tests in the last se
tion did).

Therefore, as soon as the FTP 
lient sends the last

byte of data it 
onsiders the transmission �nished even

though all of the data has not yet arrived at the re-


eiver.

� The throughputs obtained by the two sets of �le re-

trievals and the �le transmission from the outside 
lient

are 
omparable unders
oring the fa
t that these trans-

missions are experien
ing dynami
s based on travers-

ing the Internet while the �le transmission from the

inside 
lient is only experien
ing lo
al network dynam-

i
s.

� Finally, we note that in the FTP tests the throughput

obtained did not rea
h the upper bound of the lower

5

The results for using \PORT" to setup the data 
onne
tion

are omitted due to spa
e 
onsiderations, but are 
onsistent

with the \PASV" results presented in this paper.

6

Unfortunately, our data is not ri
h enough to determine

the 
ause of the knee in the plot around y = 0:55.



mode of the available bandwidth shown in the last se
-

tion. Therefore, the distribution does not show the bi-

model 
hara
teristi
 that the bulk transfer results illus-

trated. This is explained by the �le size di�eren
e for

the two transfers. In the FTP tests we used a 100 KB

transfer, as opposed to the the bulk throughput tests

that used a 1 MB transfer. The 100 KB tests did not

a�ord enough time or data to open TCP's 
ongestion

window to fully utilize the available bandwidth.

Next we observe the time required for responses to 
om-

mands sent on the 
ontrol 
onne
tion to arrive at the 
lient.

Figure 7 shows the distribution of the feedba
k time. The

results are similar to the ping tests outlined in x 4, with both


lients showing largely the same delay distribution. We note

one glaring di�eren
e between the inside and outside 
lients

at the low end of the distribution, where the inside 
lient

shows lower delay than the outside 
lient. This anomaly is


aused by the FTP implementation in the MBI, whi
h does

not understand the \MDTM" 
ommand (used to determine

the modi�
ation time of a given �le). Therefore, the inside


lient re
eives an error from the MBI for these 
ommands {

whi
h experien
es only lo
al network delays, while the out-

side 
lient re
eives the 
orre
t response from the server {

in
urring the Internet path delays.
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Figure 7: Distribution of time required for 
om-

mands on FTP 
ontrol 
onne
tion.

The su

ess rate of both the inside and outside FTP trans-

fers is over 99.99% for over 121,000 �le transfers. The most

prevalent problem en
ountered was with the data 
onne
-

tion not being available. This problem was en
ountered in

roughly the same number of 
ases for the inside and out-

side 
lient and so does not appear to be a problem with the

MBI. Finally, we note that ea
h 
lient issued just over one

million 
ommands on the 
ontrol 
onne
tion. Every 
om-

mand issued 
ompleted su

essfully on the outside 
lient.

Two 
ommands failed on the inside 
lient (not 
ounting the

\MDTM" failures dis
ussed above).

8. CONCLUSIONS AND FUTURE WORK
From the results presented in this paper we �nd that

the measured MBI o�ers a mixed bag of performan
e 
osts

and bene�ts. For instan
e, we note that setting up a short

transa
tion takes roughly 5 times longer when traversing the

MBI. However, on
e a TCP 
onne
tion is setup, the added

delay required to traverse the MBI is small (1 to 2 mse
).

Additionally, transmitting �les from inside the MBI to a

server a
ross the network is faster than transfering the data

from outside the MBI. Therefore, our 
on
lusion is that the

impa
t of the MBI on performan
e is appli
ation depen-

dent. Finally, we note that the MBI generally in
reases the

instan
es of failures in the network a
ross all of our experi-

ments. However, the appli
ation su

ess rate is over 99.9%

in all of our experiments. So, even though the MBI in-


reases the failure rate by several times in some 
ases the

overall su

ess rate is high.

We see two major areas for future work in the area of

measuring middleboxes: (i) measuring a larger number of

produ
tion environments to assess whether the results from

Site1 's network are representative and (ii) 
apturing pa
kets

at ea
h step through an MBI and re
onstru
ting the events

to determine the root 
auses of the performan
e 
osts and

bene�ts, as well as the failures noted in our results.
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