
Determining the N-th Prime Number Using a Network of

Workstations

Mark Allman

School of Electrical Engineering and Computer Science

Ohio University

mallman@cs.ohiou.edu

June 7, 1996

Abstract

Workstations connected by local area networks

are now common. Using these resources to speed

up processor intensive tasks is an important area

of study. This paper demonstrates an almost

linear speedup as workstations are added to the

task of determining the N-th prime integer.

1 Introduction

Powerful workstations connected to local area

networks (LANs) are now common. Using these

resources to build a parallel computing environ-

ment can be less expensive than buying addi-

tional hardware made for parallel processing. In

addition, using existing workstations in parallel

can increase the useful life of the equipment.

Prime numbers have a number of proper-

ties which play a crucial role in number theory

[CLR90] and therefore, generating prime num-

bers is a critical task. An integer x is said to be

prime if x > 1 and the only factors of x are 1 and

x. Any integer which is not prime is composite,

with the exception of 1, which is said to be unit.

In order to determine whether or not a given

integer x is prime takes O(

1

2

d

p

xe) steps in the

worst case. If x is even, one of it's factors is 2,

making it composite. The exception to this is 2,

which is prime since it's only factors are 1 and 2.

Since all even numbers except 2 are composite,

only half of all integers need to be checked. Each

composite number xmust have at least one factor

y such that y � d

p

xe. Therefore, an odd integer

xmust be divided by each odd integer y such that

y � d

p

xe until a factor is found. If no factor is

found x is prime.

This study involves determining the N-th

prime number using multiple workstations con-

nected by a LAN. Determining the N-th prime

number involves checking consecutive odd inte-

gers until N prime numbers have been found.

2 Sequential Implementation

2.1 Algorithm

A program called sprime was written to deter-

mine the N-th prime number sequentially using

a single workstation. Sprime treats 2 as a spe-

cial case and starts with 3, checking every other

integer. Once it has been determined that a

given number is prime, a counter is incremented.

When this counter reaches N, the current num-

ber is the N-th prime integer.

Each odd integer x is checked for factors using

the method outlined in section 1. That is, by

starting at 3 and dividing by odd integers until

either a factor is found or each odd integer y such

that y � d

p

xe has been checked. If a factor is

not found, x is prime.

2.2 Results

Using an otherwise idle SparcStation 4 run-

ning Solaris 2.5, sprime is able to generate the

1



500,000th prime number in 8 minutes and 28 sec-

onds. This will be used as the benchmark in the

following tests.

3 Parallel Implementation

3.1 Algorithm

The multi-processor version of sprime was writ-

ten in two halves. A server, called pprimed, runs

on each machine which has been designated a

processor. A client, called pprime, runs on a ma-

chine which has been designated the coordina-

tor. The coordinator is connected to the proces-

sors via a LAN. The Transmission Control Pro-

tocol (TCP) [Pos81] provides reliable communi-

cation between the coordinator and the proces-

sors. All data sent between the coordinator and

the processors will �t in one TCP segment and

therefore TCP's congestion control mechanisms

[JK88] should not inuence performance.

3.1.1 Coordinator

The coordinator schedules the activity of each

processor. The coordinator sends messages to

each processor giving a range of integers to check,

as well as, the maximum number of primes the

processor should detect. Each time the coordina-

tor receives a response from a processor, it deter-

mines whether or not the N-th prime number has

been found by summing the number of primes

found in all ranges which have been checked. If

the total number of primes detected is less than

N, the coordinator immediately sends a request

containing a new range of numbers to the pro-

cessor. If the total number of primes detected is

greater than N, the coordinator backtracks. That

is, it sends a new request to the processor con-

taining the same range of integers but a smaller

maximum number of primes to detect.

Each processor will take a di�erent amount

of time to return an answer to the coordina-

tor because of di�ering range sizes and com-

plexities. Therefore, the coordinator uses asyn-

chronous calls to communicate with each proces-

sor to ensure all processors remain independent.

The range of integers given to each processor

by the coordinator is critical. If this range is

too large, the processors will check too many in-

tegers and backtracking will be expensive. On

the other hand, if the range is too small, the

communication time will increase which will hurt

performance. The coordinator solves this prob-

lem by using large ranges for the �rst requests

and reducing the range for each additional re-

quest. The coordinator uses the number of

primes which have not yet been detected as the

range. A minimum range of 25,000 is used to

ensure that the communication time never dom-

inates the execution time. This minimum range

ensures that backtracking will be needed. How-

ever, this backtracking will not be expensive,

since the range will be relatively small.

3.1.2 Processors

Each processor accepts requests from the coor-

dinator containing a range of integers to check

and a maximum number of primes to detect.

The processor uses the algorithm outlined in

section 2.1 to either detect the maximum al-

lowed number of primes or check the entire

range, whichever happens �rst. The processor

then sends the coordinator the number of primes

found in the range and the last prime number

found.

3.2 Results

The parallel processor version of this program

was tested by calculating the 500,000th prime

number using multiple SparcStation 4 worksta-

tions which were otherwise idle. These machines

are identical to those used in the single processor

experiment. Each workstation is connected to a

network hub using 10BaseT. At the time of the

tests, the network was uncongested. The round

trip time (RTT) between the machines is 18 ms.

The parallel processor version of this program

shows nearly a linear speedup over the single pro-

cessor version. The speedup and processor uti-

lization are shown in table 1. The speedup and

utilization are less than ideal because of the com-

munication time involved and the added com-

plexity introduced in the parallel version. While

2



Processors Time (sec) Speedup Utilization

1 508 { {

2 257 1.98 0.99

3 173 2.94 0.98

4 130 3.91 0.98

5 105 4.84 0.97

6 91 5.58 0.93

Table 1: Speedup and Utilization

the absolute communication time remains ap-

proximately the same across all multiple proces-

sor tests, it constitutes a larger percentage of the

total running time, as the number of processors

is increased. Therefore, both speedup and uti-

lization deviate from ideal more as the number

of processors is increased.

4 Future Work

The algorithm used by the coordinator to sched-

ule the processors should be studied further. A

better scheduling algorithm is needed to yield

better utilization as the number of processors

grows. The well known Prime Number Theorem

[CLR90] can approximate the number of primes

in the range 1{x for any su�ciently large x. This

could lead to a scheduling algorithm which yields

results which are closer to optimal.

5 Conclusions

This study has shown that a series of worksta-

tions connected by a standard LAN can be used

in parallel to increase the speed of a CPU inten-

sive task, such as determining the N-th prime

number. This is an important result, as it shows

that common resources can be combined to pro-

duce dramatic performance gains. Such parallel

processing systems can also extend the useful life

of workstations.

References

[CLR90] Thomas H. Cormen, Charles E. Leis-

erson, and Ronald L. Rivest. Introduc-

tion to Algorithms. McGraw Hill, 1990.

[JK88] Van Jacobson and Michael J. Karels.

Congestion Avoidance and Control. In

ACM SIGCOMM, 1988.

[Pos81] Jon Postel. Transmission Control Pro-

tocol, September 1981. RFC 793.

3


