
On the Impact of Bursting on TCP Performance∗

Ethan Blanton
Purdue University

eblanton@cs.purdue.edu

Mark Allman
ICIR / ICSI

mallman@icir.org

Abstract

Periodically in the transport protocol research commu-
nity, the idea of introducing aburst mitigation strategy is
voiced. In this paper we assess the prevalence and impli-
cations of bursts in the context of real TCP traffic in order
to better inform a decision on whether TCP’s congestion
control algorithms need to incorporate some form of burst
suppression. After analyzing traffic from three networks,
we find that bursts are fairly rare and only large bursts (of
hundreds of segments) cause loss in practice.

1 Introduction

Within the transport protocol research community, an idea
that crops up periodically is that of introducingburst-
ing mitigation into the standard congestion control algo-
rithms. Transport protocols can naturally send line-rate
bursts of segments for a number of reasons (as sketched
below). Studies have shown that these line-rate bursts can
cause performance problems by inducing a rapid build-up
of queued segments at a bottleneck link, and ultimately
dropped segments and a reduced transmission rate when
the queue is exhausted.

In this paper we focus on the study ofmicro-bursts
and excludemacro-bursts from consideration. A micro-
burst is a group of segments transmitted at line rate in
response to a single event (usually the receipt of an ac-
knowledgment). A macro-burst, on the other hand, can
stretch across larger time scales. For instance, while us-
ing the slow start algorithm [APS99], TCP1 increases the
congestion window (and therefore the transmission rate)
exponentially from one round-trip to the next. This is an
increase in the macro-burstiness of the connection. The
micro-burstiness, however, is unaffected as TCP sends ap-
proximately 2–3 segments per received acknowledgment
(ACK) throughout slow start (depending on whether the
receiver employs delayed ACKs [Bra89, APS99]).

∗This paper appears in the Proceedings of the Passive and Active
Measurement Workshop, March 2005.

1The measurements and discussions presented in this paper are in
terms of TCP, but also apply to SCTP [SXM+00] and DCCP’s [KHF04]
CCID 2 [FK04], since they use similar congestion control techniques.

An example of naturally occurring bursting behavior
is given in [Hay97], which shows that TCP connections
over long-delay satellite links with advertised windows
precisely tuned to the appropriate size for the delay and
bandwidth of the network path suffer from burst-induced
congestion when loss occurs. Ideally, a TCP connection is
able to send both retransmissions and new data segments
during a loss recovery phase [FF96]. However, if there
is no room in the advertised window, new segments can-
not be sent during loss recovery. Upon exiting loss re-
covery (via a large cumulative ACK), TCP’s window will
slide and a line-rate burst of segments will be transmitted.
[Hay97] shows that this burst — which is roughly half the
size of the congestion window before loss — can result
in an overwhelmed queue at the bottleneck link, causing
further loss and additional performance sacrifice. [Hay97]
also shows this bursting situation to apply to a number of
TCP variants (Reno [APS99], NewReno [Hoe96, FF96],
FACK [MM96], etc.). Finally, [Hay97] shows that bursts
can impact TCP performance, but the experiments out-
lined are lab-based and offer no insight into how often
the given situation arises in the Internet. In this paper
we assess the degree to which these micro-bursting sit-
uations arise in the wild in an attempt to inform a deci-
sion as to whether TCP should mitigate micro-bursting.
While out of scope for this paper we note that [AB04]
compares a number of burst mitigation techniques. In ad-
dition to advertised window constraints discussed above,
micro-bursts can be caused by several other conditions,
including (but not limited to):

• ACK loss. TCP uses a cumulative acknowledgment
mechanism that is robust to ACK loss. However,
ACK loss causes TCP’s window to slide by a greater
amount with less frequency, potentially triggering
longer than desired bursts in the process.

• Application Layer Dynamics. Ultimately, the ap-
plication provides TCP with a stream of data to trans-
mit. If the application (for whatever reason) provides
the data to TCP in a bursty fashion then TCP may
well transmit micro-bursts into the network. Note:
an operating system’s socket buffer provides a mech-
anism that can absorb and smooth out some amount

1

of application burstiness, especially in bulk transfer
applications. However, the socket buffer does not al-
ways help in applications that asynchronously obtain
data to send over the network.

• ACK Reordering. Reordered ACKs2 cause an ACK
stream that appears similar to a stream containing
ACK loss. If a cumulative ACK “passes” ACKs
transmitted earlier by the endpoint, then the later
ACK (which now arrives earlier) triggers the trans-
mission of a micro-burst, while the earlier ACKs (ar-
riving later) will be thrown away as “stale”.

The causes of bursting discussed above are outlined in
more detail in [JD03] and [AB04]. Also note that the
causes of bursts are not TCP variant specific, but rather
apply to all common TCP versions (Reno, NewReno,
SACK, etc.).

[JD03] also illustrates the impact of micro- and macro-
bursts on aggregate network traffic. In particular, [JD03]
finds that these source-level bursts create scaling in short
timescales and can cause increased queuing delays in in-
termediate nodes along a network path. In contrast, in this
paper we concentrate on characterizing bursts and deter-
mine the frequency of bursts. We then use the analyzed
data to inform a discussion on whether it behooves TCP
to prevent bursts from a performance standpoint, as pro-
posed in the literature (e.g., in [FF96, HTH01]).

We offer several contributions in this paper after outlin-
ing our measurement methodology in§ 2. First, we char-
acterize observed, naturally occurring micro-bursts from
three networks in§ 3. Next, we investigate the implica-
tions of the observed micro-bursts in§ 4. Finally, in § 5
we conclude with some preliminary discussion into the
meaning of the results from§ 3 and§ 4 as they relate to the
question of whether a burst mitigation mechanism should
be introduced into TCP.

2 Measurement Methodology

First, we define a “burst” for the remainder of the paper as
a sequence of at least 4 segments sent between two succes-
sive ACKs (i.e., a “micro-burst”). The “magic number” of
4 segments comes from the specification of TCP’s conges-
tion control algorithms [APS99]. On each ACK during
slow start, and roughly once every 1–2 round-trip times
(RTT) in congestion avoidance, TCP’s algorithms call for
the transmission of 2–3 segments at line-rate. Therefore,
micro-bursts of 3 or fewer segments have been deemed
reasonable in ideal TCP and are common in the network.

2Reordered data segments can also cause small amounts of bursting,
if the reordering is modest. However, if the reordering is too egregious
then false loss recovery will be induced, which is a different problem
from bursting. For a discussion of the issues caused by data segment
reordering, see [BA02, ZKFP03].

Event Number End Host Monitor

0 ACKn+1 ACKn+1

1 DATAm+1 ACKn+2

2 DATAm+2 DATAm+1

3 ACKn+2 DATAm+2

4 DATAm+3 DATAm+3

5 DATAm+4 DATAm+4

Table 1: Example of vantage point problem present in our
datasets.

We consider bursts of more than 3 segments to be “un-
expected”, in that they are caused by network and appli-
cation dynamics rather than the specification of the con-
gestion control algorithms. That is not to say that TCP
is in violation of the congestion control specification in
these circumstances — just that outside dynamics have
caused TCP to deviate from the envisioned sending pat-
tern. These unexpected bursts are the impetus for the var-
ious proposals to mitigate TCP’s burstiness, and therefore
they are the focus of our study. We do note that [AFP02]
allows TCP to transmit an initial 4 segment burst when the
maximum segment size is less than 1096 bytes. However,
this is not taken into account in our definition of a burst
since it is a one-time only allowance.

In principle, the above definition of a burst is sound.
However, in analyzing the data we found a significant
vantage point problem in simply using the number of
segments that arrive between two successive ACKs. As
shown in [Pax97] there is a general problem in TCP anal-
ysis with matching particular ACKs with the packets they
liberate — even when the monitoring point is the end host
involved in the TCP connection. However, when the mon-
itoring point is not the end host the problem is exacer-
bated. Table 1 illustrates the problem by showing the dif-
ferent order of events observed inside the TCP stack of the
end host and at our monitor point. In the second column
of this example, two ACKs arrive at the end host and each
trigger the transmission of two data segments, as dictated
by TCP’s sliding window mechanism. However, the third
column shows a different (and frequently observed) story
from the monitor’s vantage point. In this case, the moni-
tor observes both ACKs before observing any of the data
segments and subsequently notes all four data segments
transmitted. Using the notion sketched above, these four
data segments would be recorded as a burst when in fact
they were not. This scenario can, for example, be caused
by ACK compression [Mog92]. If the ACKs are com-
pressed before the monitor such that they arrive withint

seconds, wheret is less than the round-trip time (RTT)
between the monitor and the end host,r, then the situa-
tion illustrated in table 1 will be found in the traces. An
even thornier problem occurs when a group of compressed

2

Dataset Start Duration Servers Clients (/24s) Conns. Bogus

Anon 7/24/03 ≈26 hours 1,202 5,319 (4,541) 295,019 5,955 (2.0%)
LBNL 10/22/03 ≈11 hours 947 22,788 (19,689) 196,085 2,362 (1.2%)
ICSI1 1/4/04 ≈14 days 1 24,752 (21,571) 223,906 221 (0.1%)
ICSI2 9/18/04 ≈14 days 1 23,956 (20,874) 198,935 114 (0.1%)

Table 2: Dataset characteristics.

ACKs arrives over an interval a bit longer thanr. In this
case, the overlap between noting ACKs and data packets
makes it nearly impossible to untangle the characteristics
of the bursts (or, even their presence).

We cope with this problem byaccumulating the ACK
information. For instance, in table 1 since two ACKs
without any subsequent data segments are recorded our
analysis allows up to 6 data segments to be sent before de-
termining a burst occurred. This heuristic does not always
work. For instance, if 6 data segments were observed be-
tween two subsequent ACKs in a trace file there is no way
to conclusively determine that 3 data segments were sent
per ACK. The case when the first ACK triggered 2 data
segments and the second ACK triggered 4 data segments
(a burst) is completely obfuscated by this heuristic. An-
other problem is that ACKs could conceivably be lost be-
tween the monitor and the end host which would likewise
cause the analysis to mis-estimate the bursting character-
istic present on the network. In our analysis, if we note
more than3N segments sent in response toN ACKs we
determine a burst has been transmitted. The length of this
burst is simply recorded as the number of segments noted.
In other words, we do not attempt to ascribe some of the
data segments to each ACK. This is surely an overesti-
mate of the size of the burst. However, as will be shown
in the following sections, this small vantage point prob-
lem is unlikely to greatly impact the results because the
results show that the difference between bursts of sizeM

and bursts of sizeM±x for some small value ofx (e.g., 1–
10) is negligible. Therefore, while the numbers reported
in this paper are slight mis-estimates of the true picture of
bursting in the network we believe theinsights are solid.

To assess the prevalence and impact of micro-bursting,
we gathered four sets of packet traces from three different
networks. We analyze those connections involving web
servers on the enterprise network. That is, we focus on
local web servers’ sending patterns, rather than the send-
ing patterns of remote servers that are responding to local
web clients’ requests. The characteristics of the four trace
files used in our study are given in table 2. The first trace,
denoted Anon, consists of roughly 26 hours of web traf-
fic recorded near web servers at a biology-related research
facility that asked not to be identified. The tracing archi-
tecture is, however, outlined in [MHK+03]. The second
trace represents roughly 11 hours of web server traffic at

the Lawrence Berkeley National Laboratory (LBNL) in
Berkeley, CA, USA. The final two datasets represent re-
quests to a single web server at the International Computer
Science Institute (ICSI), also in Berkeley, during two dif-
ferent two week periods in 2004.

These packet traces are analyzed with a custom-written
tool called conninfo, which analyzes the data-carrying
segments sent by web servers on the enterprise network.
Conninfo mainly tracks the number of data segments sent
between two subsequent pure acknowledgment (ACK)
segments as sketched above. In addition to recording
micro-burst sizes,conninfo also records which (if any)
segments within a burst are retransmitted. Finally,con-
ninfo records several ancillary metrics such as the total
data transfer size, the duration of the connection, etc.

Conninfo attempts to process each connection in the
dataset. However, as indicated in the last column of ta-
ble 2, a small fraction of connections were removed from
each dataset. These connections exhibit strange behav-
ior thatconninfo either does not or cannot understand; for
example, several “connections” (which are perhaps some
sort of attack or network probe) consist of a few random
data segments with noncontiguous sequence numbers. As
the table shows, the fraction of connections removed from
further analysis is relatively small and, therefore, we do
not believe this winnowing of the datasets biases the over-
all results presented in this paper.

3 Characterizing Bursts

In this section we provide a characterization of the bursts
observed in the traces we studied. Figure 1 shows the dis-
tributions of burst sizes in each of the datasets in terms of
both segments, bytes and time. Figure 1(a) shows that the
distribution of burst sizes when measured in terms of seg-
ments is similar across all datasets. In addition, the figure
shows that over 90% of the bursts are less than 15 seg-
ments in length. Figure 1(b) shows the burst size in terms
of bytes per burst. This distribution generally follows
from the segment-based distribution if 1500 byte seg-
ments are assumed. While the LBNL and ICSI datasets
are similar in terms of byte-based burst size, the Anon
distribution indicates smaller bursts. Since we did not ob-
serve smaller bursts in the Anon dataset when measuring

3

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

C
D

F

Burst length (segments)

Anon
LBNL
ICSI1
ICSI2

(a) Segments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000

C
D

F

Burst length (bytes)

Anon
LBNL
ICSI1
ICSI2

(b) Bytes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

C
D

F

Burst length (seconds)

Anon
LBNL
ICSI1
ICSI2

(c) Time

Figure 1: Distribution of burst sizes.

in terms of segments, it appears that the segment sizes
used in the Anon network are generally smaller than at

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
D

F

Bursts per connection

Anon
LBNL
ICSI1
ICSI2

Figure 2: Distribution of bursts per connection.

LBNL and ICSI. We generated packet size distributions
for all networks and there is a clear mode of 20% in the
Anon dataset at 576 bytes that is not present in either the
ICSI or LBNL datasets. Otherwise, the distributions of
packet sizes are roughly the same, thus explaining the dis-
crepancy in figure 1.

Figure 1(c) shows the distribution of the amount of
elapsed time covered by each burst. This plot confirms
that the vast majority of bursts happen within a short
(less than 10 msec) window of time. This is essentially a
double-check that our methodology of checking data be-
tween subsequent ACKs and our analysis tool are both
working as envisioned. While we found bursts that en-
compass a fairly long period of time (over a second) these
are the exception rather than the rule and upon close ex-
amination of the time-sequence plots these look to be
artifacts of network dynamics mixing with application
sending patterns that are difficult to systematically de-
tect. Therefore, we believe that our analysis techniques
are overall sound.

Next we turn our attention to the prevalence of bursts.
Figure 2 shows the distribution of the number of bursts per
connection in our four datasets. The figure shows that the
burst prevalence is roughly the same across datasets. As
shown, over 75% of the connections across all the datasets
experienced no bursts of 4 or more segments. However,
note that many of the connections that did not burst could
not because of the limited amount of data sent or because
TCP’s congestion window never opened far enough to al-
low 4 or more segments to be transmitted.

Next we look beyond the on-the-wire nature of bursts
and attempt to determine theroot cause of the bursts. Ta-
ble 3 shows the determined causes of the bursts found in
each dataset. First, the second column of the table shows
that each dataset contains a wealth of bursts. Next, the
third column of the table shows that 1–6% of the bursts are
observed in the initial window of data transmission. The

4

Dataset Bursts Initial Exit Loss Stretch Window App. Unknown
Window Recovery ACKs Opening Pattern

Anon 274,880 1.8 0.2 26.3 5.0 17.0 49.6
LBNL 187,176 0.9 0.3 22.9 3.1 32.8 40.0
ICSI1 165,023 6.4 0.7 23.5 4.8 24.0 40.6
ICSI2 228,063 4.2 5.1 22.4 4.5 23.3 45.1

Table 3: Percentage of bursts triggered by the given root cause.

fourth column shows a similarly small amount of burst-
ing caused by the sender being limited by the advertised
window during loss recovery and then transmitting a burst
upon leaving loss recovery (when a large amount of the
advertised window is freed by an incoming ACK). These
first two causes of loss account for a small fraction of the
bursts, but the fraction does vary across datasets. We have
been unable to derive a cause for this difference and so
ascribe it to the heterogeneous nature of the hosts, oper-
ating systems, routers, etc. at the various locations in the
network.

The fifth column in table 3 shows that roughly 20–
25% of the bursts are caused by stretch ACKs (acknowl-
edgments that newly ACK more than 2 times the num-
ber of bytes in the largest segment seen in the connec-
tion). Stretch ACKs arrive for a number of reasons. For
instance, some operating systems generate stretch ACKs
[Pax97] in the name of economy of processing and band-
width. In addition, since TCP’s ACKs are cumulative in
nature simple ACK loss can cause stretch ACKs to arrive.
Finally, ACK reordering can cause stretch ACKs due to
an ACK generated later passing an earlier ACK. The ori-
gin of each stretch ACK is therefore ambiguous given our
limited vantage point, and hence we did not try to untan-
gle the possible root causes.

The sixth column represents a somewhat surprising
bursting cause that we did not expect. From the server’s
vantage point we observe ACKs arriving from the web
client that acknowledge the data transmitted as expected
but that do not free space in the advertised window —
and, hence, do not trigger further data transmission when
the sender is constrained by the advertised window. When
an ACK that opens advertised window space finally does
arrive a burst of data is transmitted. This phenomenon
happens in modest amounts (3–5% of bursts) in all the
datasets we examined.

The seventh column in the table shows the percentage
of bursts caused by the application’s sending pattern. We
expected this cause of bursts to be fairly low since our
mental model of web transfers is that objects are pushed
onto the network as fast as possible. However, 17–33%
of the bursts happened after all transmitted data was ac-
knowledged and no other bursting scenario explained the
burst, indicating that the data was triggered by the applica-

tion rather than being clocked out by the incoming ACKs.
This could be explained by a persistent HTTP connec-
tion that did not use pipelining [FGM+97] — or, which
was kept open while the user was viewing a given web
page and then re-used to fetch another item from the same
server.

Finally, the last column of the table is the most trou-
bling in that it indicates that we could not accurately de-
termine the cause of 40–50% of the bursts across all the
datasets. Part of the future work in this area will be to de-
velop additional techniques to determine why this burst-
ing is happening. However, the problem is daunting in
that we examined a large number of time-sequence plots
for connections containing the unknown burst causes and
at times we could not figure out why the burst happened
ourselves — let alone design a heuristic to detect it!

4 Implications of Bursts

In this section we explore the implications of the burst-
ing uncovered in the last section on the TCP connections
themselves. It is beyond our scope (and data) to evalu-
ate the implications the bursting has on competing traffic
and the network itself. Figure 3 shows the probability of
losing at least one segment in a burst as a function of the
burst size (in segments) for each of our datasets. The fig-
ure shows that for modest burst sizes (tens of segments
or less) that the probability of losing a segment from the
burst is fairly low (roughly less than 5%). As the burst size
increases, the likelihood of experiencing a drop within a
burst also increases. Bursts on the order of hundreds of
segments in our datasets are clearly doomed to overwhelm
intervening routers and experience congestion. One inter-
esting note is in the shape of the plots. The Anon dataset
shows a fairly smooth ramp-up in the probability of loss
in a burst as the burst size increases. However, in both the
LBNL and ICSI datasets there is a clear point at which the
chances of losing at least one segment in a burst jumps
from less than 5% to over 20% and often to 100%. In
the LBNL dataset this happens when burst size reaches
approximately 60 segments and in the ICSI dataset when
the burst size reaches roughly 50 segments. These results
may indicate a maximum queue size at or near LBNL and

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
ro

ba
bi

lit
y

of
 lo

ss

Burst length (segments)

(a) Anon

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
ro

ba
bi

lit
y

of
 lo

ss

Burst length (segments)

(b) LBNL

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
ro

ba
bi

lit
y

of
 lo

ss

Burst length (segments)

(c) ICSI1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
ro

ba
bi

lit
y

of
 lo

ss

Burst length (segments)

(d) ICSI2

Figure 3: Probability of losing at least one segment in a burst as a function of burst size (in segments).

ICSI that ultimately limits the burst size that can be ab-
sorbed. The Anon network may be more congested than
the ICSI or LBNL networks and therefore the chances of
a non-empty queue vary with time and hence the ability to
absorb bursts likewise varies over time. Alternatively, the
Anon results could indicate the presence of active queue
management, whose ability to absorb bursts depends on
the traffic dynamics at any given point in time.

The analysis above assesses the question of whether
bursts causesome loss. Next we focus our attention on
the amount of loss caused by bursts. In other words we
address the question: is the loss rate higher when bursting
than when not bursting? Given the information at hand
we cannot determine precise loss rates and therefore use
the retransmission rate as an indicator (understanding that
the retransmission rate and the loss rate can be quite dif-
ferent depending on loss patterns, TCP variant used, etc.
[AEO03]). We first winnow each dataset to connections
that experience both bursting and retransmissions to allow
for a valid comparison. This has the effect of making the

reported ratesappear to be much higher than loss rates
measured in previous network studies (e.g., [AEO03])
because we are disregarding all connections that experi-
enced no loss. Table 4 shows the results of our analysis.
When comparing this table with tables 2 and 3 it is ap-
parent that only a small minority of the connections from
each dataset contain both bursting and retransmissions.
The table shows the aggregate retransmission rate to be
higher when connections are bursting than when connec-
tions are not bursting. The change in the retransmission
rate ranges from nearly non-existent in the LBNL dataset
to a roughly 75% increase in the Anon dataset. The large
increase in the Anon network agrees with the results pre-
sented above that the network is generally more congested
and the bottleneck queue closer to the drop point than the
other networks we studied. Therefore, bursts cause a large
increase in the loss rates experienced in this network while
the other networks were better able to absorb the bursts.

6

Dataset Conns. Bursts Burst Loss Rate (%) Non-Burst Loss Rate (%)

Anon 4,233 69,299 70.9 41.2
LBNL 5,685 45,282 23.0 22.9
ICSI1 4,805 39,832 16.1 14.5
ICSI2 8,201 72,069 26.6 20.5

Table 4: Retransmission rates observed inside and outside bursts.

5 Conclusions and Future Work

The work in this paper is focused on the impact of burst-
ing on TCP connections themselves. From the above pre-
liminary data analysis we note that micro-bursts are not
frequent in TCP connections — with over 75% of the con-
nections in the three networks studied showing no burst-
ing. When bursting does occur, burst sizes are predomi-
nantly modest with over 90% of the bursts are less than
15 segments across the datasets we studied. Furthermore,
in these modest bursts the probability of experiencing loss
within the burst is small (generally less than 5% across
datasets). However, bursts of hundreds of segments do oc-
cur and such large bursts nearly always experience some
loss. We analyzed the cause of bursts and found the two
predominant known causes of bursting to be the reception
of stretch ACKs and application sending patterns. Un-
fortunately, our analysis techniques also failed to find the
cause of 40–50% of the bursts we observed. An area for
future work will be to further refine the analysis to gain
further insights into these unclassified bursts (however, as
described in§ 3 this is a challenging task). Finally, we find
an increase in the loss rate experienced within bursts with
the loss rate experienced outside of bursts. The increase
ranged from slight to approximately 75% depending on
the network in question.

A key piece of future work is in understanding how the
results given in [JD03] relate to those given in this paper.
That is, the preliminary results of this paper indicate that
micro-bursting is not likely to hurt performance, while
[JD03] shows that the network impact of bursting is non-
trivial. Before applying a mitigation to TCP to smooth or
reduce bursts it would be useful to correlate the network
issues found in [JD03] with specific bursting situations.
For instance, if only particular kinds of bursting are yield-
ing the scaling behavior noted in [JD03] then mitigating
only those bursting situations may be a desirable path for-
ward.

Acknowledgments

Andrew Moore and Vern Paxson provided the Anon and
LBNL datasets, respectively. Sally Floyd, Vern Paxson
and Scott Shenker provided discussions on this study. The

anonymous reviewers provided good feedback on the sub-
mission of this paper and their comments improved the
final product. This work was partially funded by the
National Science Foundation under grant number ANI-
0205519. Our thanks to all!

References

[AB04] Mark Allman and Ethan Blanton. Notes
on Burst Mitigation for Transport Protocols.
December 2004. Under submission.

[AEO03] Mark Allman, Wesley Eddy, and Shawn
Ostermann. Estimating Loss Rates with
TCP. ACM Performance Evaluation Review,
31(3), December 2003.

[AFP02] Mark Allman, Sally Floyd, and Craig Par-
tridge. Increasing TCP’s Initial Window, Oc-
tober 2002. RFC 3390.

[APS99] Mark Allman, Vern Paxson, and W. Richard
Stevens. TCP Congestion Control, April
1999. RFC 2581.

[BA02] Ethan Blanton and Mark Allman. On Mak-
ing TCP More Robust to Packet Reorder-
ing. ACM Computer Communication Re-
view, 32(1):20–30, January 2002.

[Bra89] Robert Braden. Requirements for Inter-
net Hosts – Communication Layers, October
1989. RFC 1122.

[FF96] Kevin Fall and Sally Floyd. Simulation-
based Comparisons of Tahoe, Reno, and
SACK TCP.Computer Communications Re-
view, 26(3), July 1996.

[FGM+97] R. Fielding, Jim Gettys, Jeffrey C. Mogul,
H. Frystyk, and Tim Berners-Lee. Hyper-
text Transfer Protocol – HTTP/1.1, January
1997. RFC 2068.

[FK04] Sally Floyd and Eddie Kohler. Pro-
file for DCCP Congestion Control ID 2:
TCP-like Congestion Control, November

7

2004. Internet-Draft draft-ietf-dccp-ccid2-
08.txt (work in progress).

[Hay97] Chris Hayes. Analyzing the Performance of
New TCP Extensions Over Satellite Links.
Master’s thesis, Ohio University, August
1997.

[Hoe96] Janey Hoe. Improving the Start-up Behavior
of a Congestion Control Scheme for TCP. In
ACM SIGCOMM, August 1996.

[HTH01] Amy Hughes, Joe Touch, and John Heide-
mann. Issues in TCP Slow-Start Restart
After Idle, December 2001. Internet-
Draft draft-hughes-restart-00.txt (work in
progress).

[JD03] Hao Jiang and Constantinos Dovrolis.
Source-Level IP Packet Bursts: Causes and
Effects. InACM SIGCOMM/Usenix Internet
Measurement Conference, October 2003.

[KHF04] Eddie Kohler, Mark Handley, and Sally
Floyd. Datagram Control Protocol (DCCP),
November 2004. Internet-Draft draft-ietf-
dccp-spec-09.txt (work in progress).

[MHK +03] Andrew Moore, James Hall, Christian
Kreibich, Euan Harris, and Ian Pratt. Ar-
chitecture of a Network Monitor. InPas-
sive & Active Measurement Workshop 2003
(PAM2003), April 2003.

[MM96] Matt Mathis and Jamshid Mahdavi. For-
ward Acknowledgment: Refining TCP Con-
gestion Control. InACM SIGCOMM, Au-
gust 1996.

[Mog92] Jeffrey C. Mogul. Observing TCP Dynam-
ics in Real Networks. InACM SIGCOMM,
pages 305–317, 1992.

[Pax97] Vern Paxson. Automated Packet Trace Anal-
ysis of TCP Implementations. InACM SIG-
COMM, September 1997.

[SXM+00] Randall Stewart, Qiaobing Xie, Ken
Morneault, Chip Sharp, Hanns Juergen
Schwarzbauer, Tom Taylor, Ian Rytina,
Malleswar Kalla, Lixia Zhang, and Vern
Paxson. Stream Control Transmission
Protocol, October 2000. RFC 2960.

[ZKFP03] Ming Zhang, Brad Karp, Sally Floyd, and
Larry Peterson. RR-TCP: A Reordering-
Robust TCP with DSACK. InProceedings of
the Eleventh IEEE International Conference

on Networking Protocols (ICNP), November
2003.

8

