
INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. • Suite 600 • Berkeley, California 94704-1198 • (510) 666-2900 • FAX (510) 666-2956

Using Spurious Retransmissions to

Adapt the Retransmission

Timeout

Josh Blanton∗ Ethan Blanton†

Mark Allman‡

TR-08-005

August 2008

Abstract

This report describes a method for using spurious retransmission timeouts to determine when

the retransmission timeout is not accurately capturing the delay variance in the network. We

account for this by adapting the way TCP’s retransmission timeout is computed in an effort to

avoid subsequent unnecessary retransmissions.

∗Ohio University
†Purdue University
‡International Computer Science Institute



ii



Background

This technical report contains material that was is-
sued in Internet-Draft form but never adopted by the
IETF. This report is published in the hopes of both
(i) capturing the ideas for anyone who is interested
in exploring them in the future and (ii) as potentially
helpful to the standards process at some point in the
future.

1 Introduction

Various studies have shown that TCP’s retransmis-
sion timeout (RTO) estimator specified in [PA00] can
trigger spurious retransmissions. [AP99] shows that
such unnecessary retransmissions are generally fairly
rare. However, [LK00] shows that in some networks
(e.g., wireless networks) spurious retransmissions are
more frequent due to occasional delay spikes that are
not well predicted by TCP’s RTO estimator. In this
report we outline one possible approach to mitigate
the impact of pre-mature RTO firings by altering the
RTO estimator specified in [PA00].

Several methods for detecting spurious timeouts
have been developed [LM03, BA04, SK05]. Addition-
ally, [LG05] outlines one possible response to detecting
spurious timeouts. This report outlines an alterna-
tive to [LG05]. In general terms, [LG05] specifies two
actions upon the detection of an unnecessary RTO-
based retransmission. First, the sending rate prior to
the spurious retransmission is restored. Furthermore,
the RTO is adapted by re-initializing the RTO estima-
tor with the long round-trip time (RTT) measurement
that caused the spurious RTO. The approach given
in [LG05] is reasonable if the underlying cause of the
problem is a shift in the path RTT. For instance, if the
route a TCP connection is traversing changes and the
new path’s RTT is significantly longer than the pre-
vious path’s RTT then simply re-initializing the RTO
is a reasonable action.

As specified in the next section, we take a different
approach than [LG05]. Generally, we use the failure
of the RTO to wait long enough before triggering a
retransmit as an indication that the RTO estimator
itself is not properly capturing the variance present in
the RTTs experienced by the TCP connection. There-
fore, this report calls for an additive contribution to
the variance component in the RTO estimator upon
the detection of retransmission timeouts in an effort
to cope. This change represents a preference to try
to avoid future spurious timeouts rather than simply
reacting to each spurious retransmission.

We note that TCP implementations using the
RTTM mechanism [JBB92] to assess the RTT mul-

tiple times per RTT with the standard exponentially-
weighted moving average (EWMA) gains from [PA00]
retain less RTT history than when taking one RTT
measurement per RTT. [AP99] shows that such “fast”
EWMAs yield more spurious retransmissions than
when using the standard gains with one RTT sample
per RTT. Therefore, an orthogonal change to TCP
implementations that use RTTM and may prevent
spurious RTOs is to set the EWMA gains based on
the number of RTT samples taken per RTT such that
the amount of history kept, in terms of time, is the
same regardless of the number RTT samples taken
[Flo98, LS00].

This report was originally written as a standards
contribution and therefore uses standards language.
The key words ”MUST”, ”MUST NOT”, ”RE-
QUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”,
”SHOULD NOT”, ”RECOMMENDED”, ”MAY”,
and ”OPTIONAL” in this report are to be interpreted
as described in [Bra97].

The reader is expected to be familiar with the algo-
rithm and terminology from [PA00].

2 Algorithmic Changes

As the basis for the changes proposed below, a TCP
MUST support a spurious timeout detection method.
Several such methods exist, including [LK00], [LM03],
[BA04] and [SK05].

We also note that [PA00] explicitly allows for an
RTO estimator that is more conservative than that
given in [PA00] (which this report specifies). There-
fore, we believe that any TCP implementation can use
the changes specified in this report without being non-
compliant with regards to the current specification.

Also we note that, given that a TCP implementa-
tion is savvy enough to untangle needed and unneeded
retransmission timeouts, the TCP does not need to
use Karn’s algorithm [KP87, PA00] and can accurately
determine the RTT that causes spurious retransmis-
sions.

The general idea behind the mechanism is to intro-
duce an additive variance term, V , in addition to the
multiplier K which is applied to RTTVAR in the RTO
calculation given in step (2.3) of [PA00], to allow for
additional variance in the path’s RTT. The specific
mechanism for TCPs using this change is:

1. A TCP using this method MUST replace the cal-
culation of RTO in step (2.3) of [PA00] with:

RTO← SRTT+max(G, K∗RTTVAR)+V (1)

to include the additional variance term.
1



2. When a TCP connection is initiated, V is set to
0. I.e., until we observe otherwise we assume the
standard estimator can handle the delay variance
across the network path.

3. Upon the first expiration of the retransmission
timer for a given sequence number, the values
of SRTT and RTTV AR MUST be saved as
SRTTprev and RTTV ARprev, respectively.

4. Upon detecting that a previous RTO-based re-
transmission was spurious, a TCP MUST calcu-
late a V ′ using the RTT sample R′, which is the
time between when the original transmission of
the given segment was sent and when the that
original transmission is acknowledged, as follows:

V ′
← R′

−SRTTprev+max(G, K∗SRTTV ARprev)
(2)

V ′ then becomes the difference between the pre-
viously calculated RTO and the RTO value which
would have prevented the spurious retransmis-
sion.

The value of V ′ MUST NOT be reduced for the
remainder of the connection (as discussed in more
detail below).

5. The values of SRTT and RTTV AR in use when
the spurious retransmit occurred MUST replace
the current values:

SRTT ← SRTTprev (3)

RTTV AR← RTTV ARprev (4)

6. The R′ RTT sample MUST be used to adjust
SRTT and RTTV AR and therefore the RTO,
per [PA00].

The actual V that is used in the RTO calculation
is determined by the size of the congestion window.
When a TCP has only a small number of outstand-
ing segments, advanced loss recovery that relies on
the receipt of three duplicate acknowledgments as a
recovery trigger is not as effective as when the con-
gestion window is larger. Therefore, TCP relies more
heavily on the RTO in this regime. Furthermore, the
impact caused by spurious timeouts in this situation—
in terms of congestion window reduction and resource
wastage by go-back-N transmission—is small. Hence,
when the congestion window is less than or equal to
4*SMSS bytes then a V of 0 SHOULD be used when
calculating the RTO. Once the congestion window size
grows beyond 4*SMSS bytes, the calculated value of
V ′ SHOULD be used in the calculation of the RTO.

This specification explicitly offers no way to reduce
V ′ after it has been inflated. V ′ is never reduced
because the presence of spurious timeouts which in-
flated V ′ indicates that the standard estimator is in-
adequate for accurately estimating the variance of the
RTT across the network path and therefore reducing
V ′ would increase the chances of further spurious re-
transmissions.

Finally, we note that bounding V ′ is not advisable.
Say V ′ would be set to 20 via equation 2. If V ′ were,
instead, bound to 10 then legitimate RTOs would be
forced to wait longer without offering solid protection
against delay spikes (given that delay spikes that a V ′

of 10 will not handle have been observed).

3 Advantages

The advantage of tuning the RTO calculation to
be more conservative after detecting spurious RTO-
based retransmissions is in preventing further spuri-
ous RTOs and their attendant performance impact.
In addition, spurious RTOs can cause go-back-N be-
havior [LK00] which can also be avoided by adapting
the RTO to be more conservative.

4 Disadvantages

The disadvantage of tuning the RTO calculation to be
more conservative is that legitimate RTO firings take
longer and could hurt performance. However, an im-
portant note is that the RTO should not be TCP’s pri-
mary loss recovery strategy. [FHG04] and [BAFW03]
provide methods for TCP to effectively repair multi-
ple lost segments from a single window of data without
falling back to using the RTO. Further, research shows
that these changes are widely implemented [MAF05].
Therefore, making TCP’s RTO calculation more con-
servative should not hinder performance under normal
circumstance. Put differently, when using advanced
loss recovery techniques the firing of the RTO should
be an indication that the congestion situation in the
network is fairly bad. In this case, it may well be that
making the RTO estimator more conservative is the
right general approach.

The common exception to the above argument is
when the congestion window is small, such that these
advanced loss recovery algorithms do not work effec-
tively. The mechanism in this report explicitly takes
this case into account by not using the more conser-
vative RTO estimate when the congestion window is
small.

2



5 Summary

This report specifies a small change that makes the
RTO calculation given in [PA00] more conservative
upon the detection of spurious RTO-based retrans-
missions. The root cause of spurious retransmits is an
inaccurate assessment of the network conditions (in
this case, of the RTT). Therefore, we tackle this by
making the RTO calculation take into account an ad-
ditional variance term. While this does lengthen the
time required for legitimate retransmissions to fire,
the RTO should not be TCP’s primary means for re-
transmitting data and therefore this lengthened inter-
val should only minimally impact overall performance
and should only come into play when conditions along
the network path have deteriorated significantly. Fi-
nally, we note that this report makes the estimator
given in [PA00] strictly more conservative and is there-
fore allowed via [PA00].

Acknowledgments

This report has benefited from discussions with Ted
Faber, Aaron Falk, Joseph Ishac, Janardhan Iyengar,
Sally Floyd, Vern Paxson and Joe Touch. This work
was in part funded by grant ITR/ANI-0205519 from
the National Science Foundation.

References

[AP99] Mark Allman and Vern Paxson. On Esti-
mating End-to-End Network Path Prop-
erties. In ACM SIGCOMM, September
1999.

[BA04] Ethan Blanton and Mark Allman. Us-
ing TCP Duplicate Selective Acknowl-
edgement (DSACKs) and Stream Con-
trol Transmission Protocol (SCTP) Du-
plicate Transmission Sequence Numbers
(TSNs) to Detect Spurious Retransmis-
sions, February 2004. RFC 3708.

[BAFW03] Ethan Blanton, Mark Allman, Kevin Fall,
and Lili Wang. A Conservative Selective
Acknowledgment (SACK)-based Loss Re-
covery Algorithm for TCP, April 2003.
RFC 3517.

[Bra97] Scott Bradner. Key Words for Use in
RFCs to Indicate Requirement Levels,
March 1997. RFC 2119.

[FHG04] Sally Floyd, Tom Henderson, and An-
drei Gurtov. The NewReno Modification

to TCP’s Fast Recovery Algorithm, April
2004. RFC 3782.

[Flo98] Sally Floyd. Comments on RFC1323.bis,
TCP-LW mailing list,, May 1998.

[JBB92] Van Jacobson, Robert Braden, and David
Borman. TCP Extensions for High Per-
formance, May 1992. RFC 1323.

[KP87] Phil Karn and Craig Partridge. Improv-
ing Round-Trip Time Estimates in Reli-
able Transport Protocols. In ACM SIG-

COMM, pages 2–7, August 1987.

[LG05] Reiner Ludwig and Andre Gurtov. The
Eifel Response Algorithm for TCP, Febru-
ary 2005. RFC 4015.

[LK00] Reiner Ludwig and Randy Katz. The
Eifel Algorithm: Making TCP Robust
Against Spurious Retransmissions. Com-

puter Communication Review, 30(1), Jan-
uary 2000.

[LM03] Reiner Ludwig and Michael Meyer. The
Eifel Detection Algorithm for TCP, April
2003. RFC 3522.

[LS00] Reiner Ludwig and Keith Sklower. The
Eifel Retransmission Timer. ACM Com-

puter Communication Review, 30(3), July
2000.

[MAF05] Alberto Medina, Mark Allman, and Sally
Floyd. Measuring the Evolution of Trans-
port Protocols in the Internet. ACM

Computer Communication Review, 35(2),
April 2005.

[PA00] Vern Paxson and Mark Allman. Comput-
ing TCP’s Retransmission Timer, Novem-
ber 2000. RFC 2988.

[SK05] Pasi Sarolahti and Markuu Kojo. For-
ward RTO-Recovery (F-RTO): An Algo-
rithm for Detecting Spurious Retransmis-
sion Timeouts with TCP and the Stream
Control Transmission Protocol (SCTP),
August 2005. RFC 4138.

3


