
A Middlebox-Cooperative TCP for a non End-to-End
Internet

Ryan Craven
Naval Postgraduate School

rcraven@nps.edu

Robert Beverly
Naval Postgraduate School

rbeverly@nps.edu

Mark Allman
ICSI

mallman@icir.org

ABSTRACT
Understanding, measuring, and debugging IP networks, par-
ticularly across administrative domains, is challenging. One
particularly daunting aspect of the challenge is the pres-
ence of transparent middleboxes—which are now common in
today’s Internet. In-path middleboxes that modify packet
headers are typically transparent to a TCP, yet can im-
pact end-to-end performance or cause blackholes. We de-
velop TCP HICCUPS to reveal packet header manipulation
to both endpoints of a TCP connection. HICCUPS per-
mits endpoints to cooperate with currently opaque middle-
boxes without prior knowledge of their behavior. For ex-
ample, with visibility into end-to-end behavior, a TCP can
selectively enable or disable performance enhancing options.
This cooperation enables protocol innovation by allowing
new IP or TCP functionality (e.g., ECN, SACK, Multipath
TCP, Tcpcrypt) to be deployed without fear of such func-
tionality being misconstrued, modified, or blocked along a
path. HICCUPS is incrementally deployable and introduces
no new options. We implement and deploy TCP HICCUPS
across thousands of disparate Internet paths, highlighting
the breadth and scope of subtle and hard to detect middle-
box behaviors encountered. We then show how path diag-
nostic capabilities provided by HICCUPS can benefit appli-
cations and the network.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—TCP ; C.4 [Computer-Communication Net-
works]: Performance of Systems—Measurement techniques

Keywords
TCP; Middlebox; Header Integrity; Header Modifications

1. INTRODUCTION
The traditional Internet architecture envisions intelligence

at the ends and simplicity in the middle [13]. This tradi-

(c) 2014 Association for Computing Machinery. ACM acknowledges that this con-
tribution was authored or co-authored by an employee, contractor or affiliate of the
United States government. As such, the United States Government retains a nonexclu-
sive, royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only.
SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.
Copyright 2014 ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626321

tional view, where the network focuses on forwarding pack-
ets, is long gone. Middleboxes now actively interpose on
communication for a multitude of reasons [9], including im-
plementing acceptable use policies, maintaining regulatory
compliance, thwarting attacks, censoring or monitoring users,
expanding address space, limiting or balancing resources,
and generating revenue. However, the functional conse-
quences of middlebox mechanisms, which are frequently de-
coupled from the end-to-end path, may be both intentional
and unintentional. The prevalence of middleboxes, and the
wide variety of behaviors they exhibit, is well-established by
previous empirical research [18, 31, 36, 40, 46].

One side effect of middleboxes is that they make the task
of debugging networks—already a difficult problem, espe-
cially across administrative domains—even harder by intro-
ducing a variety of unknowns [31]. Because of their priv-
ileged position in the network, it is important that mid-
dleboxes not adversely impact (e.g., block or degrade) the
traffic of systems or users outside of their intended scope.

Unfortunately, middleboxes have been shown to induce
not only the intended changes in traffic behavior, but also
unintended side effects. Legacy equipment, non-standard
implementations, and misconfigurations are known to inter-
act with middleboxes to mutate critical packet fields, destroy
semantics, create unintended protocol interactions, and vi-
olate the end-to-end nature of the Internet. For instance,
previous measurements have shown that middleboxes fre-
quently misconstrue and block new IP or transport func-
tionality [6, 19, 25]. Thus, an important and often under-
appreciated class of network problems are the result of non-
malicious and unintentional middlebox behavior.

While clean-slate designs (e.g., [45]) and software-defined
management (e.g., [38, 41, 42]) attempt to more cohesively
integrate middleboxes into the network, they depend on de-
ployment and use; TCPs in the wild must continue to con-
tend with a variety of middlebox behaviors. In contrast, we
advocate for empowering TCP endpoints with awareness of
middlebox packet header modifications along a path. Simi-
lar to how TCP currently infers end-to-end congestion state,
a TCP host with knowledge of the end-to-end packet header
modification state can better match its behavior to the ca-
pabilities of the path. By cooperatively adapting to middle-
boxes, TCP can improve performance. Perhaps more im-
portantly, endpoints can realize the benefits of protocol in-
novation as new TCP or IP functionality can be more safely
deployed and enabled in routers and operating systems.

We implement and deploy TCP HICCUPS (Handshake-
based Integrity Check of Critical Underlying Protocol Se-

mantics). HICCUPS permits endpoints to cooperate with
currently opaque middleboxes without prior knowledge of
their behavior. HICCUPS is incrementally deployable, back-
ward compatible, introduces no new IP or TCP options, and
adheres to all TCP/IP standards, i.e., will traverse the same
paths as traditional TCP. HICCUPS provides bidirectional
in-band measurement and feedback such that a TCP sender
can infer the state of how her packet headers were received
by the other end of the connection. With widespread deploy-
ment, HICCUPS would also enable a new general path di-
agnostic capability in the same way that ping (ICMP echo)
can be used to test paths without prior endpoint coordina-
tion. We make the following primary contributions:

1. Design of TCP HICCUPS, an incrementally deploy-
able improvement on TCP to reveal packet header ma-
nipulation to both ends of a TCP connection.

2. Real-world implementation and testing of TCP HIC-
CUPS in the Linux kernel.

3. Deployment of, and measurements from, TCP HIC-
CUPS across thousands of disparate Internet paths.

4. Demonstrable instances of degenerate middlebox be-
havior and the ways in which HICCUPS cooperation
improves transfer performance.

2. BACKGROUND
Some Internet packet headers were designed to experience

modification, for instance the IP time-to-live and checksum
are decremented and recomputed respectively at each hop.
Other fields such as the Differentiated Services Code Point
(DSCP) [37] only have significance within each transiting
network, having no guarantee to be constant along a path.

However, other fields have end-to-end significance, for ex-
ample: source and destination addresses, transport ports,
TCP flags, flow control window, and TCP options. Mod-
ifications to fields intended for interpretation only by end-
points can lead to subtle and unintentional problems. In the
worst case, traffic can be blocked. In other instances, perfor-
mance can suffer—sometimes dramatically. In this section,
we first discuss some of the impacts resulting from the cur-
rent environment of opaque middleboxes. We then examine
prior work in providing integrity and diagnostics of packet
manipulation. Lastly, we examine emerging research toward
middlebox cooperation.

2.1 TCP/IP Misinterpretation
The unintended effects and architectural issues of middle-

boxes are well-documented. Medina et al. cataloged issues
stemming from unexpected middlebox interactions [36]. Dif-
ferent behaviors were observed depending on the use of IP or
TCP options and Explicit Congestion Notification (ECN).

Measurements from Honda et al. [25] discovered paths
with middleboxes that strip both known and unknown TCP
options, perform sequence numbers translation, and even
exhibit port-dependent behavior, e.g., options removed from
packets destined to a random transport port, but not port
80. At least 25% of the paths tested traversed a middlebox
whose behavior depended on the packet’s transport-layer.
Not only is such interference detrimental to the validity of
the protocol interactions, it is difficult to diagnose—making
troubleshooting a complex endeavor.

We focus on unintentional and unintended middlebox be-
haviors. Several examples we find in the wild include:

• Sequence Number Translation: To mitigate secu-
rity issues inherent in predictable TCP sequence numbers,
some paths contain network elements that randomize and
remap sequence numbers on behalf of a host [12] (the as-
sumption being that hosts cannot be trusted to perform
proper randomization). While investigating a performance
problem at our own institution, we found that while se-
quence numbers were being remapped in the standard TCP
header, they were not being remapped in SACK blocks—
which appear in the options portion of the header. This ren-
ders selective acknowledgment information useless, impact-
ing bulk transfer performance. Diagnosing this subtle error
required trained engineers using cooperating endpoints.

• Options: TCP options—which convey information
between endpoints that is not germane to the network itself—
are frequently deleted, added, or modified, disrupting var-
ious protocol extensions. For example, some paths add a
Maximum Segment Size (MSS) if not present, or rewrite
MSS, impacting performance if the true path MSS is larger
or smaller. Other paths modify or remove the Window
Scaling option, causing a remote endpoint to misinterpret
the receiver window and incorrectly apply flow control. Not
only do these common options experience modification, newer
options are often stripped or blocked. For example, legacy
middleboxes that are unaware of Multipath TCP [20] may
strip those options, impacting performance.

• Type of Service: The original IPv4 specification in-
cludes a byte for “type-of-service.” That byte has long since
been redefined to consist of two bits for Explicit Congestion
Notification (ECN) and six bits of DSCP. Yet, a non-trivial
fraction of devices and paths still use the previous defini-
tion and rewrite or zero the entire byte. This rewriting can
prevent a TCP connection from utilizing router congestion
signals, or more seriously, cause a TCP connection to falsely
interpret congestion [6]. Managing congestion and improv-
ing TCP performance are critical to content providers and
data centers. As one large content provider stated: “we
want to enable ECN, but do not because enabling ECN
may adversely affect some of our users.” [3]

Such behavior by middleboxes can make it a challenge
to diagnose the cause of various performance and connec-
tivity issues. Even more troubling is the unintended effect
middleboxes can have on protocol innovation and adoption:
any new option, repurposed field, or otherwise unrecognized
behavior is often misunderstood or blocked [19, 25].

2.2 Integrity
Most integrity mechanisms built into Internet communi-

cation protocols are intended solely for error detection, such
as CRC and Internet checksums [43]. Such checksums must
always match integrity for a packet to be accepted, lest a
device assume the packet experienced some transmission er-
ror. By necessity, any middleboxes modifying the header
must also recompute any error detection checksums.

A natural response to the middlebox-induced cases of mis-
interpretation cited above is to employ tamper-resistant mech-
anisms (i.e. cryptography to encrypt and sign traffic) to pre-
vent alterations during transmission. Such mechanisms have
been developed for the network [28, 29], transport [8, 32,
44] and application [21] layers. At the application layer, the
use of encryption to protect payloads has been well-adopted
and is pervasive throughout the Internet. However, at the

lower layers the problems of key sharing between anonymous
hosts hinder adoption while imposing unnecessary cost on
higher layers. Furthermore, at lower layers users often desire
properly functioning middlebox intervention—e.g., to share
a single public IP address among multiple devices in their
home—and therefore have a disincentive to utilize tamper-
resistance. As we show in §3, we relax the requirements
for tamper-resistance to implement a tamper-evident design
that is more cooperative with modern middleboxes.

Tracebox is a diagnostic tool to detect changes made by
middleboxes along the forward path [17]. Using a simi-
lar methodology as traceroute, tracebox progressively incre-
ments the TTL of packets while additionally inferring the
presence of middleboxes by comparing ICMP time exceeded
quotations [5] with the originally sent packets. One draw-
back to the method are the inconsistencies involved with
ICMP router quotations [34]. Even though the approach
works for a majority of paths—Detal et al. find that≈80% of
the paths they examined contained at least one full-quoting
router—the paths that the method cannot test likely contain
the most legacy equipment that could impact TCP.

While HICCUPS and tracebox share a common goal, there
are key differences between the two approaches. Tracebox
is a measurement tool that relies on the network to produce
and respond with diagnostic feedback. Whereas HICCUPS
is in-band, tracebox requires extra diagnostic packets, un-
blocked ICMP, and router response. Further, HICCUPS is
tightly integrated into TCP, understands both the forward
and reverse path, and allows TCP to make inferences about
whether it is being misinterpreted.

2.3 Middlebox Cooperation
Middleboxes are an Internet reality. The middlebox mar-

ket, estimated to reach more than $10B by 2016 [1], is
ample evidence that middleboxes provide value. With the
prevalence and reach of middleboxes increasing, several ap-
proaches seek explicit accommodation.

Walfish et al. propose a new architecture that gives all en-
tities globally unique identifiers in a flat namespace while al-
lowing for explicit intermediate packet processing [45]. More
recent research seeks to reduce the sprawl of standalone,
non-cohesive middleboxes and employ new software-defined
approaches so they can be more easily managed [22, 38,
41, 42]. Meanwhile, multiple vendors have recognized the
problem of middlebox cooperation and have added TCP op-
tions that allow middleboxes along a path to voluntarily
participate in their transparent discovery [30]. While these
schemes make it easier to manage middlebox deployments
and keep them up-to-date, they depend on adoption and
use. Software-defined management, for example, is confined
to single administrative domains. However, TCP hosts in
the wild must contend with a wide variety of middleboxes.

Each of the above schemes require some form of active co-
operation by middleboxes or their operators. We emphasize
that this is different from the manner in which HICCUPS is
cooperative with middleboxes. We have designed HICCUPS
so that it does not interfere with middlebox operation. It
does not require active participation by middleboxes.

3. DESIGN SPACE
We aim to identify and address the class of problems in-

volving misconfigured, non-standards conforming, and legacy
in-path middleboxes impacting normal traffic behavior. In

the same way that TCP currently infers end-to-end conges-
tion state, a TCP instance aware of the end-to-end packet
header modification state can better match its behavior to
the capabilities of the path. For instance, TCP could im-
prove path performance by selectively enabling or disabling
extensions (e.g., ECN, SACK, Multipath TCP, etc.) when
they are at risk of being misinterpreted on a given path.

At a high-level, we desire a TCP-based integrity check to
detect in-network packet header modifications. Such modi-
fications today are opaque, e.g., Medina [36] could not dis-
ambiguate between “a middlebox stripping or mangling the
option or the web server not supporting [the option]”—our
design must provide such visibility.

The space of possible solutions is large. While seem-
ingly straightforward, no prior work accommodates all of
the properties and functionality we require:

• In-band: Many paths block out-of-band traffic (e.g.,
ICMP) or treat it differently. By having both the de-
tection and feedback mechanisms in-band, we hope to
maximize the detection rate.

• Lightweight: The design should result in a minimal
amount of overhead in terms of computation, commu-
nication, and RTTs.

• Symmetric feedback: It is important that hosts at
each end of a connection know if and how their packets
were modified in flight.

• Incrementally deployable: The design should not
interfere with endpoints that have not been upgraded,
nor require any updates to in-network elements.

• Improves TCP: The design should endow TCP end-
points with the information needed to reason about
how the options and extensions they employ are inter-
preted by the remote endpoint.

• Middlebox-cooperative: The design should not im-
pede or circumvent properly functioning middleboxes,
and not exacerbate degenerate middlebox behaviors.

• End-to-end: Paths exhibiting modifications are the
same paths most likely to block or strip any new in-
strumentation. Values should be properly communi-
cated end-to-end.

• Granularity:: Endpoints should be able to determine
which packet header fields were changed.

In addition, our design should not enable any new attacks
on the system (e.g., amplification, spoofing, flooding, etc.)

3.1 Meeting our Architectural Objectives
How well does our TCP HICCUPS (detailed in §4) meet

the aforementioned requirements? We show the degree to
which HICCUPS and other relevant prior works from §2 pro-
vide such functionality in Table 1. In particular, note that
HICCUPS represents a unique point in the design space.

A key insight enabling our solution is the fresh point of
view afforded by our security model of the inadvertent ad-
versary, a non-malicious system in the middle of a connec-
tion that is corrupting critical packet semantics. Much of
the prior research has focused on the edges of the spectrum:
protecting integrity from either transmission errors or from
strong adversaries (§2.2). When operating under the model
of the misconfiguration adversary, such solutions either fail
to expose problematic behaviors or make too many sacrifices
in pursuit of strong cryptographic assurances.

Table 1: HICCUPS in the context of existing and proposed integrity and middlebox cooperation schemes (
indicates that a scheme fully meets the criterion; indicates a scheme does not meet the criterion).

Scheme In-band Light- Symmetric Incrementally Improves Middlebox- End-to- Granularity
weight feedback deployable TCP cooperative end

Checksums [43]
Tcpcrypt [8]
Tracebox [17]
SIMPLE [38]
HICCUPS

For example, standard checksums require middleboxes to
recalculate them after changes and also provide no method
to expose results of the integrity exchange to the endpoint
initiating the connection. The lack of an explicit notifica-
tion back to the sender when its packet arrives with a bad
checksum has been a previously noted weak point [43].

HICCUPS allows both endpoints of a connection to re-
ceive feedback about the integrity of the (potentially asym-
metric) paths taken by their traffic. Working within TCP
makes checking bidirectional path integrity easier since the
notion of a conversation is already clearly defined. By equip-
ping the headers of the TCP 3WHS with integrity, we hope
to capture the majority of performance-impacting modifi-
cations by middleboxes. While some issues with extensions
would require covering the full connection to explicitly de-
tect, protecting even just the 3WHS presents a large step to-
ward making inferences that can improve performance. We
present designs for protecting the full connection in [16].

Once a system is HICCUPS-enabled, it can perform in-
tegrity checks with other HICCUPS-enabled systems through
any open remote TCP port. HICCUPS TCP stacks are in-
teroperable with non-HICCUPS TCP stacks and its traffic
appears no different to network devices from typical TCP
traffic. If widely deployed, HICCUPS would provide a gen-
eral diagnostic mechanism in a manner similar to ping and
traceroute, wherein explicit endpoint cooperation is not
required to measure a path. This “always on” property im-
plies that utility to TCP will increase with the deployment
of HICCUPS. Any HICCUPS-enabled system with an open
service, e.g., a web server with TCP port 80 open, will sup-
port a HICCUPS measurement.

In contrast to ping and traceroute (as well as other mid-
dlebox detection tools like tracebox), we do not leverage
out-of-band mechanisms (e.g., ICMP) in our design so as to
avoid complications inherent in relying on external depen-
dencies. In particular, note the difficulties with Path MTU
Discovery as TCP operation is linked with ICMP traver-
sal [33, 36]. A new method of PMTUD was later written
that did not rely on receipt of the ICMP Packet Too Big
(PTB) messages [35].

4. TCP HICCUPS
As a real-world instantiation of our architectural objec-

tives, we develop the Handshake-based Integrity Check of
Critical Underlying Protocol Semantics (HICCUPS), an en-
hancement to TCP. HICCUPS can assist TCP in determin-
ing the most appropriate set of end-to-end parameters that
best fit the middleboxes along a particular path. In particu-
lar, HICCUPS would allow a TCP instance to reason about
how the options and extensions it employs are interpreted by
a remote endpoint, and subsequently make inferences about

when it is safe to make use of new extensions. HICCUPS
benefits TCP in two primary ways:

1. Equips TCP with critical path information that would
allow it to more safely increase the use of performance-
enhancing extensions relative to ultra conservative ap-
proaches where new extensions are disabled by default
or left to run in “server-mode” à la ECN as deployed
and configured in modern operating systems1.

Examples: ECN, Multipath TCP

2. Provides early warning of potential middlebox-induced
issues with an extension that is enabled by default.
TCP could proactively disable or ignore the extension
to improve performance.

Examples: SACK, Window Scaling

Our solution helps enable these performance benefits by
monitoring the state of packet headers through an in-path
integrity exchange, essentially creating a lightweight tamper-
evident seal across the headers. The results of the exchange
allow endhosts to work within the current path conditions
to tailor the set of extensions they use to the middleboxes
in the path between them.

4.1 Overview
Working within TCP to enable detection of in-path header

modifications while maintaining interoperability with cur-
rent network infrastructure and endhosts is a difficult sys-
tems problem. We first provide an overview of HICCUPS:

1. HICCUPS transmits packet header integrity informa-
tion by overloading three header fields of the TCP 3-way
handshake that can contain a flexible value: initial sequence
numbers, initial IPIDs, and initial flow control windows.
Doing so yields the highest degree of interoperability with
the widest number of paths, but places tight constraints on
the amount of information transmitted. See §4.2 for more.

2. When HICCUPS places integrity information in the
sequence number, randomness is added for spoofing protec-
tion. See §4.2 for more.

3. The integrity information transmitted by HICCUPS
includes three 12-bit hash fragments, each communicated
through one of the overloaded fields in item 1. Spreading
integrity across fields provides resilience to a single modi-
fication affecting any one of the three fields, e.g., sequence
number translation. See §4.3 for more.

4. Reverse path integrity includes status values that en-
able a HICCUPS host to discover when modifications occur
to just the forward path, just the reverse path, or to both
paths. See §4.3 for more.
1In server-mode ECN, a TCP endpoint will not initiate
ECN, but will negotiate ECN if initiated by the client.

5. HICCUPS supports granularity in its integrity checks.
A set of coverage types allows endhosts to dynamically spec-
ify subsets of fields to be protected by HICCUPS. (§4.4)

6. As an additional protection, e.g., against middleboxes
that might, in the future, actively attempt evasion, HIC-
CUPS enables applications to optionally protect integrity
with an ephemeral secret (§4.5). This secret limits false in-
ferences of integrity in the event that a change is made and
the integrity is recomputed. §4.6 provides a discussion of
how we extend the Linux socket API to provide this feature.

4.2 Overloading Header Fields
To minimize interference from legacy and non-standard

middleboxes, we avoid either redefining any field semantics
or using any new IP or TCP options. New options and/or
new semantics exacerbate middlebox incompatibility and we
want to avoid being subject to the same issues we wish to
detect. Furthermore, the TCP option space is already over-
crowded [25] with many well-established extensions. By not
competing for new space, we hope to avoid unintended in-
teractions and facilitate easier adoption.

In order to integrate the integrity check within TCP/IP,
we overload three specific fields in the headers that are al-
lowed a certain degree of flexibility: the TCP initial sequence
number (ISN), the initial IP Identification field (IPID), and
the initial TCP flow control window (RCVWIN)2. Each end
of the connection chooses its own 32-bit ISN, 16-bit IPID,
and 16-bit RCVWIN resulting in a total of 64 bits at each
end of the connection to be used by HICCUPS.

While HICCUPS adds meaning to the ISN, the ISN must
remain unpredictable to thwart spoofing and off-path packet
injection attacks. We therefore add randomness to our ISN
integrity function. The bits of randomness, or salt, are sent
in the clear to allow the remote host to verify the integrity.
We place the random salt value in the lower half of the ISN
and exclusive or (XOR)-encode the the integrity information
in the upper half of the ISN with the same salt value.

Since the new ISN is created using a function of packet
data, it will not be fully random, i.e., the probability of
an off-path attacker being able to correctly guess the ISN is
greater than 2−32. In the extreme worst case, the probability
is 2−16, but that requires an attacker know: the flow tuple
including the ephemeral port [2], the coverage type used
(§4.4), and the exact contents of any packet header fields
covered by that type. In practical use, an off-path adversary
will not know the coverage type—two of which also cover the
ephemeral port.

4.3 Integrity Exchange
Fundamental to HICCUPS is exchanging integrity and

communication of the check results. Given a safe and reli-
able transmission mechanism (§4.2), we are able to exchange
integrity, coverage, and status. Our objective is to utilize the
64 bits at our disposal in such a way as to be robust against
paths that corrupt any of the three integrity exchange fields.
In order to withstand a change to any single overloaded field,
we place a portion of the integrity information, along with
a copy of the coverage or status, in each of the three fields.

Figure 1 presents a simplified timing diagram illustrating
the exchange of integrity between two HICCUPS-enabled

2Other works leverage these fields for steganographic covert
channels [14]. In contrast, our goal is fundamentally differ-
ent: the HICCUPS algorithm and field population is public.

A B

saltA
IPID

ISNSYN

SYN-ACK

saltAp←prand()

check_hash(An)

saltBp←prand()

RWIN

fn(SYN,pcvr)cvr I
S
N

I
P
I
D

R
W
I
N

A2

A3

A1⊕saltA

saltB
IPID

ISN

RWIN

B2

B3

B1⊕saltB

StructurepofpAn:

1

Statuspofpforward
pathpmatch

fn(SYN-ACK,pcvr)

check_hash(Bn)

Bnp←phash()

ACK

StructurepofpBn:

01216

Anp←phash()

Figure 1: HICCUPS integrity exchange: A’s SYN
overloads random fields with integrity and coverage
flags. B’s SYN-ACK encodes reverse path integrity and
forward path status.

hosts, A and B. Unless otherwise noted, HICCUPS fol-
lows the TCP standard and uses standard congestion con-
trol algorithms (e.g., our implementation retains Linux CU-
BIC behavior). Host A initiates the active open with B.
Both SYNs of the three-way handshake (3WHS) utilize the
ISN, IPID, and RCVWIN fields to transmit up to 16 bits
each of integrity information, denoted in the figure as An

and Bn where n = 1...3 and represents the ISN, IPID, and
RCVWIN, respectively. Note that A1 and B1 are encoded
with their respective 16-bit random salts.

The internal structure of each 16-bit integrity field An

and Bn is shown below the timing diagram in Figure 1.
Integrity values in the forward path from A contain a 12-
bit hash “fragment” and a 4-bit coverage type (cvr). The
coverage type communicates which portions of the packet
header are to be tested, and the same value is copied to
each An. Coverage types are detailed in §4.4.

Similarly, integrity values sent from B each contain a 12-
bit hash fragment over packet header fields in the SYN-ACK,
and 3 bits to return the forward path integrity results to A.
A examines these status bits in the received SYN-ACK to
infer how its SYN arrived at B. To minimally impact the
initial flow control window, the highest order bit of B3 can
be set to correspond to the true receive window. HICCUPS
does not overload the window size field outside of the 3WHS.

In this paper, we abstract the integrity functions used to
compute each 12-bit hash fragment as fn(·). Thus fn(SY N, cvr)
is the n’th integrity over the cvr fields in the SYN packet.
The integrity function must be public, allowing the host at
the other end of the connection, B, to check the integrity
value it receives. Our experimentally validated [16] imple-
mentation in Linux uses a combination of truncated CRC32
and Murmur3 [4]. However, HICCUPS could be standard-
ized to use different functions in the future, based on diffu-
sion and collision-resistance requirements.

Table 2 lists possible inferences A and B can make during
connection establishment. When B receives the SYN from
A, it recomputes each A′n using the SYN header fields as re-

Table 2: Possible knowledge gained by each host
performing the integrity check

At B after receiving SYN Inference
|A′n = An| ≥ 2 ∀n covered SYN fields un-

modified
else SYN modified

or A not capable

At A after SYN-ACK recv’d Inference
|B′n = Bn| ≥ 2 ∀n SYN-ACK unmodified∑

statusi ≥ 2 ∀status ∈ Bn SYN unmodified
Both cases above SYN & SYN-ACK un-

modified
else SYN & SYN-ACK mod-

ified; or B not capable

ceived for each of the specified coverage types. The received
integrity A′n matches the sent integrity if A′n = An. If at
least two of the three recalculated hashes match the received
hashes, B infers that the covered fields in A’s packet header
were unmodified in transit.

Next, B generates its own (different) salt and integrity
values for the return SYN-ACK packet. B’s results from
verifying each A′n are echoed back to A by the inclusion
of boolean flags for each of ISN, IPID, and RCVWIN in
the SYN-ACK integrity Bn. When A receives the SYN-
ACK reply from B, it can also check the integrity values. A
examines the forward path status bits to determine whether
the SYN experienced manipulations.

Using n = 3 integrity fields and a combination of hash
functions is crucial given the size limits (12 bits each). HIC-
CUPS infers a packet as HICCUPS-capable when any two
integrity values match the locally computed integrity (A′n =
An). Thus, the probability of a pre-image other than the
original generating the same hash with two different hash
functions is 2−24, or approximately one in 16M. While this
rate is non-negligible, it is low enough for practical use.
Measurement instances requiring higher precision can run
a HICCUPS integrity test multiple times.

4.4 What Header Field Was Modified
HICCUPS allows the connection initiator to specify which

packet header field or subset of fields the handshake should
check. For instance, a HICCUPS-enabled host opening a
new connection could choose to only check the TCP MSS
option, or it could focus on just the ECN flags. Each in-
dividual connection enabled with HICCUPS specifies which
fields to check from a pre-defined list. HICCUPS currently
supports the 16 coverage types shown in Table 3. A type
that covers both the IP and TCP options blocks can be
used to check other options. Our primary reasoning behind
these design choices is directed by the highly constrained
amount of space (we require the upper bits of Bn for forward
path status) and the initiator being the party that typically
chooses which options to negotiate for the connection.

All header fields, except for those that are expected to
change in transit (e.g., TTL) or fields used to carry integrity,
can be covered by HICCUPS. These immutable fields are
denoted with a solid gray background in Figure 2. The HFULL
type is the broadest and covers all of the immutable fields.
The remainder of the coverage types we have implemented
are proper subsets of these fields.

In order to check multiple types, a progression of HIC-
CUPS connections can be performed between two endpoints.
In this progression, each individual connection uses one of

Table 3: Pre-defined coverage sets
Coverage
Type

Header fields that are covered

0 HNONAT Everything, minus IPs and ports
1 HFULL Everything
2 HNAT IPs and ports
3 HNOOPT HNONAT minus any IP or TCP options
4 HONLYOPT IP and TCP options
5 HECNIP ECN IP codepoint
6 HECNTCP ECE and CWR TCP flags
7 HLEN Length fields
8 HMSS TCP MSS option
9 HWINSCL TCP Window Scaling option
10 HTSTAMP TCP Timestamp option
11 HMPTCP TCP Multipath option
12 HEXOPT An unused TCP option (kind = 99)
13 HFLAGS IP DF, non-ECN TCP flags, and TCP

SACK Permitted option
14 HSAFE Reserved fields, protocol, and version
15 HNULL Nothing (compatibility check)

the pre-defined coverage sets. The simplest approach is to
check all possible coverages in order. Such an approach
would require a separate connection for each, but could be
done in parallel to reduce the latency of multiple RTTs wait-
ing for results. Alternatively, the inferences might occur
during the natural interaction and multiple connections be-
tween hosts. A smarter algorithm that could reduce the
total number of connections required is described in §5.5.

Selection of a coverage type for a given connection can
be done manually by an application (§4.6) or automatically
by the TCP stack. Once a type has been selected, we con-
catenate the covered packet header fields as input to the
HICCUPS integrity functions fn(·). The only exception is
the two bits in the IP header that represent an ECN code-
point. For these two bits, we include their bitwise OR as
input. Routers are allowed to modify this field, but only by
turning an ECT0,1 codepoint into a CE codepoint. Nothing
should set both bits to zero if either one was originally set
high by an endpoint (an aberration observed in [6]).

Because a field carrying the integrity, An, could be modi-
fied, the endpoint analyzing the SYN must test all the cov-
erage types it sees in the received A′n. Ideally, none of An

will have been overwritten meaning all three coverage values
are the same and only one check must be done. The worst
case is that three checks must be done in the event that one
or more of An were overwritten. If the receiving endpoint
finds a match, it must use the same coverage type when cal-
culating Bn for the SYN/ACK. Should the receiver fail to
find a match (meaning part of the SYN was modified), a
majority rule is used on the three coverage types listed in
A′n to determine the coverage to use for Bn. If a majority is
not found, a special coverage type is used in Bn to indicate
to host A that at least two of An were modified.

4.5 AppSalt Protection
HICCUPS is designed to be cooperative with middleboxes.

Unlike with checksums, packets will not be rejected by a host
due to incorrect HICCUPS integrity. Our primary goal is
to allow TCP endpoints to choose their extensions based on
whether the path will support their correct interpretation
end-to-end. By not providing middleboxes with a reason
to disrupt HICCUPS, overwriting and recomputation of the
integrity fields by middleboxes should be uncommon.

Source6Port Destination6Port

Acknowledgement6Number

Urgent6Pointer

TCP6Options

qyM6

Checksum

Offset Rsvd S
Y
N

C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

F
I
N

N
SL L L

VersV IHL DiffServ
Code6Points Total6Length

D
F

Fragment6Offset

TTL Protocol Header6Checksum

Source6IP6Address

Destination6IP6Address

IP6Options

qyM6
E
C
N

R
M
F

Covered6by
HFULL6type

Used6to
transmit
integrity

Sequence6Number

Identification

Window6Size

Figure 2: Header coverage by the HFULL probe

However, we recognize that future middleboxes, armed
with knowledge of HICCUPS, may attempt to recompute
hashes in an effort to induce endpoints into a false inference
of path integrity. As a result, we designed HICCUPS with
an optional, enhanced mode that we term “AppSalt.”

AppSalt aims to make undetectable packet header manip-
ulation expensive for a middlebox. With AppSalt, a middle-
box must either (i) bear the cost of circumvention, (ii) reveal
the modifications it makes to the endpoints or (iii) simply
stop meddling in the communication. The value proposition
of such a protocol is that (i) presents a high enough cost
that the middlebox naturally chooses approach (ii) or (iii).

A middlebox, M , could disguise a packet header modifica-
tion by rewriting the integrity values on SYNs from host A.
Should M also want to modify the SYN-ACK response, it
would perform its changes and then recalculate new integrity
for the SYN-ACK sent by B. This situation could lead to
the reduced effectiveness of HICCUPS at detecting poten-
tial extension compatibility issues as middleboxes adjust to
evade HICCUPS, but then either fail to properly support
newer extensions or suffer from a future misconfiguration.

Since our design constraints preclude the use of a stronger
construction, e.g., a keyed-HMAC, we cannot outright pre-
vent M from splitting the connection and recalculating valid
integrity values for arbitrary packet header manipulations.

Instead, in AppSalt mode, HICCUPS protects integrity
values by encoding them with a property of the connection
that is only revealed after the 3WHS is complete. Such an
“ephemeral secret” could be any property of a connection
known only to the sender at the start of the connection.

From the perspective of the middlebox and receiver, the
encoded integrity values in the three HICCUPS fields remain
indistinguishable from random numbers until the ephemeral
secret is revealed later in the connection. Thus, we are able
to force a middlebox seeking to recompute our hashes to
commit to a strategy before it even knows if the connection
is HICCUPS-enabled. Since a HICCUPS-enabled TCP need
not necessarily perform HICCUPS with every connection
request, it is difficult for a middlebox to know when it should
try to recompute new hashes. We thus add protection to the
integrity while imposing as little of the increased burden
as possible on the endhosts. The sending host only has to
encode the integrity value and the receiving host only has
to store the received integrity until the secret is revealed.

Both the future timing of packets and the number of pack-
ets in a flow are possible ephemeral secrets, yet those are
difficult to control. Our HICCUPS implementation protects
the SYN integrity values with future application-layer con-
tent from a data packet yet to be sent, an ephemeral secret

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

Flows with Observed AppSalt

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

v
e
 F

ra
c
ti

o
n

 o
f

A
p

p
S

a
lt

s

20 Bytes

40 Bytes

80 Bytes

120 Bytes

Figure 3: Cumulative fraction of application-layer
payloads (“AppSalts”) of different lengths versus
number of flows in which the AppSalt appears.

that is difficult for a middlebox to reliably determine a pri-
ori. As in §4.3, the integrity values are placed in the ISN,
IPID, and RCVWIN of the SYN, but now the receiving end-
host, as well as any middleboxes, must know the contents of
future application data in order to interpret the integrity.

For the ephemeral application-layer secret, we use a small
portion of the data contained in the first data packet to
make it simple for the receiver to locate and extract the
AppSalt secret. We therefore examined the initial appli-
cation payload of each flow in a full day of border traffic
from our organization. Among application data payloads of
6,742,466 flows, we find 5,377,440 (≈ 80%) where the first
40 bytes are unique. The 99th percentile of the distribu-
tion is that payloads appear twice, implying that 40 bytes
of ephemeral secret is a reasonable lower-bound to prevent
trivial guessing. Figure 3 shows the distributions for various
lengths across a 30 minute capture.

To illustrate AppSalt operation, we present a scenario
where a client connects to a webserver by performing the
3WHS and issues an HTTP GET request for a specific re-
source. Neither the remote server nor any in-path middle-
boxes can reliably determine the application data at the time
the SYN is observed. Only the client knows with certainty
the initial HTTP application data that will be sent. In this
example, the application layer data might contain such items
as the GET URL, the host parameter, and the user agent
string as shown in the example of Figure 4.

Since the application data needed to properly decode the
SYN’s integrity is not available to M at the time the SYN is
received, it is difficult for M to make an undetectable header
modification or even just to check whether the connection
is HICCUPS-enabled. The ephemeral secret forces M to
process the SYN packet before it can observe the application
data. Otherwise, M has two remaining options if its goal is
to modify the packet headers and evade detection: make
a best guess of the application data, or perform a man-in-
the-middle (MITM) attack and fake a SYN-ACK response,
inducing A to expose the application data secret.
M may attempt to guess the unseen application data, e.g.,

by using a profile of prior connections from A to B. However,
M is unlikely to guess correctly for every connection between
all pairs of hosts. If M guesses incorrectly, integrity values
will not validate and the manipulations can be detected. Of
course, M could later change the actual application data

Figure 4: HICCUPS AppSalt protection: the
integrity values in the SYN are encoded with
application-layer data yet to be sent, forming an
ephemeral secret that raises the bar on middleboxes
attempting to evade HICCUPS diagnostics.

to match its guess, but doing so fundamentally alters the
application-layer behavior of the connection.

In order to know the application data with certainty, M
must act as a TCP-terminating proxy, a behavior that is
detectable based on timing and by issuing connections to
known unreachable hosts as shown in [31]. This MITM be-
havior, whereby M falsely claims to be B, spoofs the SYN-
ACK and intercepts the resulting traffic, permits M to re-
build the original SYN with an updated integrity value and
forward it along to the true destination. The non-spoofed
SYN-ACK from B must be intercepted and the cached data
from A could be sent. This situation is more complicated
than just rebuilding the integrity values; the middlebox has
broken a connection and now has to marshal data between
them, in addition to sending spoofed packets and buffering
data. Further, the middlebox must do this for all connec-
tions, potentially representing many endpoints.

AppSalt represents our proactive approach to ensuring the
continued effectiveness of HICCUPS once its algorithms and
protocol become widely known. Another possible disruption
technique is to perform a downgrade attack by arbitrarily
overwriting all fields used by HICCUPS for integrity. This
does not circumvent the tamper-evidence, however, and the
downgrade fails when there is outside a priori knowledge
that the remote end is performing HICCUPS.

4.6 API
We have implemented HICCUPS as a patch to Linux ker-

nel 3.9 [15]. We allow applications to request a certain cov-
erage via a setsockopt() call specifying their desired cov-
erage type (§4.4). Similarly, applications can read results of
a HICCUPS diagnostic from the kernel with getsockopt().

The use of AppSalt mode requires a minor change to the
sockets API. Traditionally, a client program issues a series
of socket calls: socket(), connect(), and send(). However,
with AppSalt, connect() cannot be called first as it will ini-
tiate the 3WHS and send the SYN before the kernel has the
necessary application data over which to calculate integrity.

We therefore leverage the same socket API changes imple-
mented by TCP Fast Open (TFO), a TCP modification that

similarly requires data be known at the time of connection
initiation [39]. Programs that use TFO initiate all connec-
tions using sendto() or sendmsg() with the MSG_FASTOPEN
flag, as opposed to the typical connect() and send() se-
quence. In this way, the kernel can embed data in the SYN
for connections with a valid TFO cookie.

To allow a client program to request AppSalt-mode HIC-
CUPS, we add a new message flag within the framework
established by TFO: “MSG_HICCUPS.” This implementation
style makes the addition of HICCUPS support trivial for ap-
plications that already support TFO, e.g., Google Chrome [23].
If application data cannot be used, i.e., a program does not
use the new socket calls or it is a TFO connection with data
in the SYN, plain HICCUPS is used instead (as in Figure 1).

5. RESULTS
This section details results from running HICCUPS in the

wild. We examine the types, frequencies, and symmetry of
HICCUPS-inferred modifications and give examples of how
a TCP HICCUPS instance can adjust its behavior based
on path inference to improve performance. Last, we dis-
cuss HICCUPS overhead, including the empirical number of
RTTs for full-path characterization.

5.1 Controlled Environment
To test the validity of HICCUPS inferences, we validated

against known ground truth in a controlled laboratory envi-
ronment. Using NFQUEUE [10] and Scapy [7], we simulated
a middlebox that makes a variety of packet header modifi-
cations [16]. On virtual machines running the HICCUPS
kernel we performed 50,000 trials that established 3.2 mil-
lion TCP connections—all traversing the middlebox simula-
tor. Automated verification found that HICCUPS properly
inferred the path behavior for 100% of the connections.

5.2 Overhead
We examined server-side overhead associated with HIC-

CUPS using the Linux kernel’s ftrace facility. Taking the av-
erage over 1000 connection attempts, we compared the total
time spent processing a SYN/ACK between the HICCUPS-
patched kernel and a vanilla kernel. We found that the av-
erage overhead added by our unoptimized implementation
is about 8.5% of the compute time in the vanilla kernel.

Should a server begin to exhaust its resources (possibly
due to a SYN flood or denial-of-service attack), mitigation
methods are already available in the kernel to reduce this
overhead. As the connection backlog fills, Linux can switch
from processing HICCUPS checks on incoming SYNs to cre-
ating SYN cookies. While SYN cookies and HICCUPS can-
not be used at the same time, they can still gracefully coexist
since the situations where they perform best do not overlap.

5.3 Surveying Internet Paths with HICCUPS
While previous research (e.g., [6, 17, 25, 31, 36]) examined

real Internet paths to catalog various forms of packet header
modifications, these efforts required some degree of interac-
tion external to the operating systems. To our knowledge,
HICCUPS is the first solution to both capture measurements
of packet header modifications within TCP and expose the
results directly through the operating system itself. For ex-
ample, the servers in our measurement infrastructure do not
run any specialized server application. Instead, we simply
start a standard HTTP daemon that listens on the desired

Table 4: Top ASNs represented
Servers PlanetLab Ark

AS16509 6 AS680 13 AS22773 3
. . . 1 ea. AS2200 6 AS1213 2

AS766 6 . . . 1 ea.
. . . <6 ea.

Total 7 Total 154 Total 53

Table 5: Geographic distribution
Location PlanetLab Ark Servers
Europe 101 18 1
N. America 75 25 7
Asia 26 9 2
S. America 10 1 1
Oceania 6 0 1
Africa 0 3 0
Total 218 56 12

port(s). With a HICCUPS-enabled kernel, no extra support
is required to perform HICCUPS and expose path behaviors
to the operating system and applications.

Using HICCUPS-enabled hosts, we survey a diverse set of
real Internet paths. We employ 218 Planetlab [11] nodes,
56 Archipelago (Ark) [26] nodes, and 12 distributed HIC-
CUPS servers; the Autonomous System (ASN) and geo-
graphic distribution of our infrastructure is given in Tables 4
and 5. This infrastructure enables us to run HICCUPS be-
tween 3,288 pairs of distinct hosts, testing 26,304 directed
path/port pairs.

5.3.1 Experimental Infrastructure
Our HICCUPS-enabled Linux kernel runs on 12 systems:

four at the authors’ institutions and one at each of the eight
Amazon EC2 infrastructure sites. To run HICCUPS from
PlanetLab (where installing a custom Linux kernel is not
possible), we duplicate the connection initiation portion of
TCP with HICCUPS into a user-space client that employs
raw sockets to craft HICCUPS-enabled SYNs.

In selecting PlanetLab nodes, we used PlanetLab’s man-
agement API to use a single node per site. Thus, all 218
Planetlab nodes we use represent distinct sites. The Planet-
Lab nodes were distributed both geographically and logically
around the Internet. The Planetlab and Ark nodes reside in
207 distinct ASNs. Geographically, our Planetlab nodes are
situated in five continents and 37 different countries, while
the Ark nodes are spread across 28 countries.

5.3.2 Experimental Parameters
From each PlanetLab and Ark vantage point, we execute

SYN exchanges with each server on four different TCP ports
to capture port-specific behavior: 22, 80, 443, and 34343.
The first three are common service ports; port 34343 is used
for consistency with [25]. We send 16 SYNs to each of the
four ports, with each SYN covering one of the different cov-
erage types listed in Table 3. Note that not all paths require
all 16 connections to fully ascertain the path conditions from
HICCUPS; ∼90% of paths can be fully characterized in two
RTTs. We examine this aspect further in §5.5.

To make middlebox modification behaviors visible, we must
enable different TCP and IP extensions during the connec-
tion setup. Table 6 lists the sets of options we use in our ex-
periments, including MSS, SACK permitted, Window Scale,
Timestamp [27], Multipath TCP MPCAPABLE [20], and a
non-standard experimental option with a kind value of 99.

Table 6: Experimental parameters for each trial
SACK Win Time MP- Exp

Trial MSS ECN Permit Scale stamp TCP
1 1460 Y 7 Y Y
2 1460 Y 7 Y Y
3 1460 Y 7 Y
4 1460 Y
5 480
6 1460
7 1600
8 None

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of nodes

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n

 o
f

p
ro

b
e
s
 t

h
a
t

m
a
tc

h
e
d

 i
n

te
g

ri
ty

No modifications

H
IC

C
U
P
S
 d

e
te

ct
e
d
 m

o
d
s

Both paths

Fwd. path only

Rev. path only

Figure 5: Distribution of matching probes, by path
direction. NAT modifications have been excluded.

5.4 Detected Modifications
Following the inference procedure in §4.3 and Table 2, we

use HICCUPS to detect a variety of packet header manip-
ulations. If a probe passes integrity checks at the receiver
and the forward path status bits return intact, the TCP ini-
tiator infers that its packets (on the forward path) arrive
without modification. Similarly, if the integrity checks on
the SYN-ACK match, the initiator infers that the reverse
path does not modify headers. All data we present in this
section comes from the clients on PlanetLab and Ark.

Figure 5 displays the cumulative fraction of probes per
host with passing integrity versus the fraction of nodes (Plan-
etLab and Ark nodes combined with NAT results excluded).
The common case is that both the forward and reverse paths
experience no modifications. For approximately half of the
nodes, all probes match integrity, while approximately 80%
of the nodes have 99% of their probes match integrity. The
distributions for the two asymmetrical integrity results are
visible in the lower-right of the figure. Approximately 80%
of nodes never experience this case.

Table 7 summarizes the probe results according to cov-
erage type. The most common modification is paths that
add or change MSS values. The HNAT—and consequently
the inclusive HFULL probe—fails for the large majority of
paths. This is unsurprising as address translation is per-
formed near the server for 9 of our 12 servers. We verified
that while our Amazon EC2 servers experienced NAT, they
made no other header modifications. In the following sub-
sections, we more closely examine specific modifications.

5.4.1 ISN translation
We find incidences of sequence number translation in tests

from 24 of 218 Planetlab nodes (11.0%). The ISNs are trans-

Table 7: Summary of results by coverage type
Integrity Match

Coverage Both Fwd Rev Neither Timeout
HFULL 21867 597 985 80931 836
HNAT 25286 2 0 79129 799

HNONAT 91214 2397 2459 8329 817
HNOOPT 100535 71 2050 1732 828

HONLYOPT 92948 2542 1162 7736 828
HECNIP 102066 69 1693 572 816

HECNTCP 103777 10 47 585 797
HLEN 103451 17 359 574 815
HMSS 93365 2545 855 7632 819

HWINSCL 103685 16 5 690 820
HTSTAMP 103834 27 7 539 809
HMPTCP 103023 20 837 551 785
HEXOPT 102907 12 888 564 845
HFLAGS 102591 18 76 1719 812
HSAFE 103824 16 0 551 825
HNULL 103752 21 0 563 880
Total 1458125 8380 11423 192397 13131

lated in both directions on 20 nodes, while for four nodes,
just the forward path translates sequence numbers. Only
one of the Ark nodes is subject to ISN translation that oc-
curs on forward path only.

The frequent occurrence of sequence number translation
motivates in part our choice to use three hash fragments,
as detailed in §4.3. If, for instance, the ISN alone carried
integrity, HICCUPS would not work for 25 of our 274 nodes
and we would be unable to detect any header modifications
beyond ISN translation. In contrast, HICCUPS can with-
stand a single modification to any one of the three integrity-
carrying fields (ISN, IPID, and RCVWIN).

However, should any pair of the three fields be modified,
HICCUPS loses the capability to detect specific field modi-
fications, only noting that a change occurred to at least one
pair of the three integrity fields. Table 8 lists paths where
this behavior occurs under the heading“HICCUPS not capa-
ble.” 68 flows from PlanetLab (0.7%) and 4 flows from Ark
(0.2%) saw two or more integrity fields overwritten. Since
we control all the nodes, we performed post-mortem analysis
of packet captures taken during measurement and see that
the TCP receive window is artificially lowered in-path. In
practical use, however, HICCUPS cannot obtain any fine-
grained information for such paths.

5.4.2 ECN
We monitor behavior of the ECN fields in both the IP and

TCP headers. Figure 6 shows the results of each probe ar-
ranged by host in the combined PlanetLab and Ark datasets.
Each of the three plots in the figure represents the results
from probing each of the 48 server ports from each of the 274
nodes. Each plot is sorted so that primary result types are
grouped together. The first plot shows the behavior when
ECN was disabled, while the lower two show behavior after
ECN has been enabled. While ECE and CWR TCP flags
are rarely affected (we only saw such mods on paths from
one PlanetLab node), modifications to the IP codepoint are
more common. We observed ∼13% of paths on both Plan-
etLab and Ark would zero the codepoint if it were enabled.

5.4.3 Application Performance
An important consequence of HICCUPS is that knowl-

edge of the end-to-end header modification state of a path
can improve the performance of applications that depend on

0 50 100 150 200 250
0

10

20

30

40

50

n
u

m
 p

ro
b

e
s

ECN Disabled

Both Match

Neither Match

SYN Match

S/A Match

Timeout

0 50 100 150 200 250

Hosts

0

10

20

30

40

50

n
u

m
 p

ro
b

e
s

IP codepoint with ECN Enabled

0 50 100 150 200 250

Hosts

0

10

20

30

40

50

n
u

m
 p

ro
b

e
s

ECN TCP flags with ECN Enabled

Figure 6: Distribution of HICCUPS-inferred ECN
path properties. For the IP codepoint, HICCUPS
only notes a change to the OR of the bits (§4.4).

TCP. For instance, in the case of sequence number transla-
tion that is SACK-näıve, performance suffers in proportion
to loss rate [24]. For ECN, performance suffers when false
congestion signals are inadvertently marked, experiencing
dramatic performance impact if a congestion codepoint is
added, or a TCP-layer congestion echo is added [6]. To high-
light the potential impact on TCP performance, we examine
a particular effect, observed in the wild, in detail.

We find a node where the forward communication trans-
parently adds a TCP window scale value of 7 to the SYN,
but the reverse path strips the window scale by replacing it
with 4 NOP options in the returned SYN-ACK. The behavior
is destination port-specific: it did not occur on connection
attempts to ports 22 or 34343, only to 80 and 443. Ulti-
mately, one end of the communication believes that window
scaling negotiation has occurred, while the other does not.

We perform bulk transfer to the node performing window
scaling and observe that the traffic is flow controlled—the
receiver is sending scaled values in the receive window, but
the sender interprets those values as unscaled. HICCUPS
informs us of the option mangling and we disable window
scaling. Our performance tests reveal a dramatic difference
where the throughput more than doubles without window
scaling since the congestion window can open more than one
or two MSS. We alerted the operator of the node and they
were unaware of the behavior. Further investigation revealed
the issue was with a system in their provider’s network.

5.5 Complete Path Knowledge
Given that only one coverage set from §4.4 is used per

TCP 3WHS, a pair of TCP endpoints must develop fully
granular knowledge of all header modifications over the course
of multiple exchanges. When integrity matches for a cover-
age type that is a superset of other types, e.g., HFULL, no
further information is gained from additional probing. How-
ever, if the integrity fails to match, more specific types can
be used next to narrow down the source of the modification.

If integrity using HNULL does not match, then either one of
two cases is occurring: (i) two or more of our three integrity
fields are being modified, or (ii) the host with which we are
interacting does not understand HICCUPS. Since HNULL is
a diagnostic type that does not cover other fields, it should
not fail unless the hash fragments are not present.

Table 8: Summary of HICCUPS-inferred header modifications. Detection of ISN, IPID, and RCVWIN are
mutually exclusive to HICCUPS. If two or three occurred, it registered as “HICCUPS not capable” instead.

Planetlab Ark
Change Both Fwd Rev Flows Affected Both Fwd Rev Flows Affected
HICCUPS not capable 68 0 2 10360 0.68% 4 0 0 2684 0.15%
NAT 7704 0 0 10281 74.93% 2114 0 0 2677 78.97%
ISN translation 924 178 0 10290 10.71% 0 48 0 2680 1.79%
IPID change 0 0 0 10290 0.00% 0 0 0 2680 0.00%
RCVWIN change 0 0 0 10290 0.00% 0 0 0 2680 0.00%
ECN IP add 26 0 0 10270 0.25% 2 0 0 2664 0.08%
ECN IP change 16 1342 48 10283 13.67% 11 342 0 2675 13.20%
ECN TCP add 16 0 0 10261 0.16% 6 0 0 2670 0.22%
ECN TCP change 19 46 0 10285 0.63% 16 0 0 2675 0.60%
MSS add 119 47 1036 10258 11.72% 10 96 140 2668 9.22%
MSS480 change 21 0 1132 10281 11.21% 5 0 139 2674 5.39%
MSS1460 change 1113 0 0 10275 10.83% 134 12 12 2678 5.90%
MSS1600 change 1105 157 0 10294 12.26% 140 154 12 2672 11.45%
SACK Permit changed 1 24 0 10123 0.25% 0 0 0 2667 0.00%
Timestamps add 12 0 0 10267 0.12% 9 0 0 2669 0.34%
Timestamps change 26 2 0 10279 0.27% 10 0 0 2672 0.37%
Window Scaling add 45 0 0 10265 0.44% 9 0 0 2665 0.34%
Window Scaling change 24 0 0 10279 0.23% 5 0 0 2669 0.19%
MPCAPABLE change 24 837 0 10267 8.39% 8 0 0 2673 0.30%
Exp. option change 20 884 0 10266 8.81% 13 0 0 2676 0.49%

Figure 7: HICCUPS Search Strategy

Leveraging this information, we design a path interroga-
tion strategy for HICCUPS. Using HICCUPS to determine
the fully granular set of modifications along a path is sim-
ilar in nature to a search problem. Our informed strategy
is shown in Figure 7. We begin by checking coverages that
are more comprehensive and then narrow the search, even-
tually checking a smaller sequence of types. Upon our first
interaction with a TCP endpoint, we choose the HNONAT cov-
erage type since it avoids fields modified by NATs, which are
prevalent on the Internet [31]. If we find a match, we con-
clude the search. Subsequent connection attempts can retest
using the HNONAT type in case the path conditions change.

Given that we expect regular interaction with non-HICCUPS
TCP stacks, our strategy employs the HNULL type at the next
opportunity. By doing so, we can terminate the search in
the event that either the other endpoint (due to lack of capa-
bility) or middleboxes along the path (due to downgrading
the integrity) prevent HICCUPS from being used. The re-
mainder of the strategy searches for header modifications
in either the options space or fixed-length fields, iterating
through a series of more granular coverage types as needed.

5.5.1 Expected Interactions Required
Across real paths in our PlanetLab and Ark datasets, we

calculated the number of TCP interactions it would take for

0 2 4 6 8 10 12 14 16

SYN exchanges required for complete path knowledge

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e
 f

ra
ct

io
n

 o
f

p
ro

b
e
 s

e
ss

io
n

s

PlanetLab

CAIDA Ark

Figure 8: Empirical HICCUPS RTTs required for
complete path properties inference

two HICCUPS hosts to fully ascertain the path header mod-
ification state. For PlanetLab, our dataset contained 83,712
flows with 261,185 total SYN exchanges required to fully
explore the space of header modifications with HICCUPS.
This amounts to an average of 3.1 SYN exchanges per flow.
For Ark, we required 58,083 SYN exchanges across a total
of 21,504 flows, for an average of 2.7 exchanges per flow.

Figure 8 shows that about 85% of flows were able to fully
determine the modifications of their paths after checking just
HNONAT and HFULL. Should NAT detection not be desired, the
check for HFULL could be omitted from the strategy shown
in Figure 7, further reducing the required number of probes.

6. CONCLUSIONS
Debugging IP network problems end-to-end is a difficult,

often manual process exacerbated by the presence of cur-
rently opaque middleboxes. We present TCP HICCUPS,
a backward-compatible and incrementally deployable exten-
sion to TCP that reveals packet header manipulation to both
sides of a TCP connection, enabling endpoints to make the
inferences needed to best adapt to middleboxes along their
paths. For example, we show how HICCUPS helps achieve
twice the throughput over a TCP näıve to paths that modify
window scaling. HICCUPS can also help facilitate the safe
deployment of new and experimental options.

Beyond improving TCP performance, widespread HIC-
CUPS deployment could provide invaluable data to researchers,

policy makers, and protocol designers. Measurements from
running HICCUPS across a distributed and diverse set of
paths discover a wide variety of (sometimes asymmetric)
behaviors, including paths that modify, delete, or insert: se-
quence number, IPID or receive window, ECN, MSS, times-
tamps, window scaling, Multipath TCP, and an experimen-
tal option. Crucially, header modification behaviors are dis-
covered by a HICCUPS-enabled TCP stack without prior
coordination from the remote endpoint. Such a usage model
also enables new diagnostic capabilities for network opera-
tors to help troubleshoot middlebox configurations on both
forward and reverse data planes.

In future work, we wish to refine the efficient search strat-
egy used by HICCUPS to granulate header modifications
by field. We plan integration with response algorithms for
TCP to automate the performance gains that HICCUPS in-
ferences enable. To this end, we plan a more extensive per-
formance characterization of selectively toggling extensions
in response to behavior inferred by HICCUPS. Another ap-
proach we will pursue is to examine how some middleboxes,
such as the array of proxy devices in mobile networks, could
utilize and safely interact with HICCUPS integrity informa-
tion. Last, we wish to continue our survey of Internet paths,
analyzing header modifications and their impact over many
more types of paths and investigating the potential to char-
acterize middleboxes by the modifications they induce, e.g.,
TCP NOP options that are not required for alignment.

Acknowledgments
We thank Geoff Xie, Nick Weaver, Mark Gondree, Justin
Rohrer, and our shepherd Vivek Pai. Steve Bauer, Young
Hyun, and Mark Richer provided infrastructure and testing.
This work is supported in part by National Science Foun-
dation (NSF) grants CNS-1213155, CNS-1213157, and CNS-
1237265, and SPAWAR Systems Center Atlantic NISE. This
material represents the position of the authors and does not
reflect the official policy or position of the U.S. Government.

7. REFERENCES
[1] ABI. Enterprise network and data security spending shows

remarkable resilience, Jan. 2011. http://goo.gl/E5Unmb.

[2] M. Allman. Comments on Selecting Ephemeral Ports.
SIGCOMM Comput. Commun. Rev., 39(2):13–19, Mar. 2009.

[3] Anonymous. Private communication, 2011.

[4] A. Appleby. MurmurHash 3.0, 2011.

[5] F. Baker. Requirements for IPv4 routers. RFC 1812, 1995.

[6] S. Bauer, R. Beverly, and A. Berger. Measuring the State of
ECN Readiness in Servers, Clients, and Routers. In Proceedings
of the ACM SIGCOMM IMC, pages 171–180, Nov. 2011.

[7] P. Biondi. Scapy. http://goo.gl/aTHPX8.

[8] A. Bittau, M. Hamburg, M. Handley, D. Mazières, and
D. Boneh. The case for ubiquitous transport-level encryption.
In Proc. of the USENIX Security Symposium, Aug. 2010.

[9] B. Carpenter and S. Brim. Middleboxes: Taxonomy and issues.
RFC 3234, Feb. 2002.

[10] P. Chifflier. nfqueue-bindings. http://goo.gl/00mFi9.

[11] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: an overlay
testbed for broad-coverage services. SIGCOMM Comput.
Commun. Rev., 33(3):3–12, July 2003.

[12] Cisco Systems. Single TCP flow performance on firewall
services module (FWSM), Oct. 2011. http://goo.gl/GktT8Z.

[13] D. Clark. The design philosophy of the DARPA internet
protocols. SIGCOMM CCR, 18(4):106–114, Aug. 1988.

[14] E. Cole. Hiding in Plain Sight: Steganography and the Art of
Covert Communication. Wiley Publishing Inc., 2003.

[15] R. Craven, R. Beverly, and M. Allman. Handshake-based
Integrity Check of Critical Underlying Protocol Semantics
(HICCUPS), 2014. http://tcphiccups.org.

[16] R. Craven, R. Beverly, and M. Allman. Techniques for the
detection of faulty packet header modifications. Technical
Report NPS-CS-14-002, Naval Postgraduate School, Mar. 2014.

[17] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and
B. Donnet. Revealing Middlebox Interference with Tracebox. In
Proc. of the ACM SIGCOMM IMC, pages 1–8, Oct. 2013.

[18] M. Dischinger, M. Marcon, S. Guha, P. K. Gummadi,
R. Mahajan, and S. Saroiu. Glasnost: Enabling End Users to
Detect Traffic Differentiation. In USENIX NSDI, 2010.

[19] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica. IP
Options are not an option. Technical Report 2005-24, EECS
UC Berkeley, Dec. 2005.

[20] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP
extensions for multipath operation with multiple addresses.
RFC 6824, Jan. 2013.

[21] A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer
(SSL) Protocol Version 3.0. RFC 6101, Aug. 2011.

[22] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. Toward
Software-Defined Middlebox Networking. In Proc. of the ACM
HotNets Workshop, Oct. 2012.

[23] Google Inc. chromium code search, 2013. http://goo.gl/8PQrpG.

[24] B. Hesmans, F. Duchene, C. Paasch, G. Detal, and
O. Bonaventure. Are TCP Extensions Middlebox-proof? In
Proc. of the HotMiddlebox Workshop, pages 37–42, 2013.

[25] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley,
and H. Tokuda. Is it Still Possible to Extend TCP? In Proc. of
the ACM SIGCOMM IMC, pages 181–194, 2011.

[26] Y. Hyun and k. claffy. Archipelago (Ark) measurement
infrastructure. CAIDA, 2014. http://goo.gl/HY9AgZ.

[27] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for
High Performance. RFC 1323, May 1992.

[28] S. Kent. IP authentication header. RFC 4302, Dec. 2005.

[29] S. Kent and K. Seo. Security architecture for the Internet
Protocol. RFC 4301, Dec. 2005.

[30] A. Knutsen, A. Ramaiah, and A. Ramasamy. TCP option for
transparent Middlebox negotiation. Internet draft, Feb. 2013.

[31] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr:
Illuminating The Edge Network. In SIGCOMM IMC, 2010.

[32] A. Langley. Opportunistic Encryption Everywhere. Web 2.0
Security and Privacy (W2SP), May 2009.

[33] M. Luckie and B. Stasiewicz. Measuring Path MTU Discovery
Behaviour. In Proc. of the ACM SIGCOMM IMC, 2010.

[34] D. Malone and M. Luckie. Analysis of ICMP Quotations. In
Proc. of PAM Conference. Apr. 2007.

[35] M. Mathis and J. Heffner. Packetization layer path MTU
discovery. RFC 4821, Mar. 2007.

[36] A. Medina, M. Allman, and S. Floyd. Measuring the Evolution
of Transport Protocols in the Internet. SIGCOMM Comput.
Commun. Rev., 35(2):37–52, Apr. 2005.

[37] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the
differentiated services field (DS field) in the IPv4 and IPv6
headers. RFC 2474, Dec. 1998.

[38] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu.
SIMPLE-fying Middlebox Policy Enforcement Using SDN. In
Proc. of the ACM SIGCOMM Conference, Aug. 2013.

[39] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and
B. Raghavan. TCP Fast Open. In Proc. of CoNEXT, 2011.

[40] C. Reis, S. Gribble, T. Kohno, and N. Weaver. Detecting
In-Flight Page Changes with Web Tripwires. In Proc. of the
USENIX Symposium on NSDI, Apr. 2008.

[41] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi. The
Middlebox Manifesto: Enabling Innovation in Middlebox
Deployment. In Proc. of the ACM HotNets Workshop, 2011.

[42] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar. Making Middleboxes Someone Else’s Problem:
Network Processing as a Cloud Service. In Proc. of the ACM
SIGCOMM Conference, pages 13–24, Aug. 2012.

[43] J. Stone and C. Partridge. When the CRC and TCP checksum
disagree. SIGCOMM CCR, 30(4):309–319, 2000.

[44] J. Touch, A. Mankin, and R. Bonica. The TCP authentication
option. RFC 5925, June 2010.

[45] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris,
and S. Shenker. Middleboxes No Longer Considered Harmful.
In Proc. of the USENIX Symposium on OSDI, Dec. 2004.

[46] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An Untold
Story of Middleboxes in Cellular Networks. In Proc. of the
ACM SIGCOMM Conference, pages 374–385, Aug. 2011.

http://goo.gl/E5Unmb
http://goo.gl/aTHPX8
http://goo.gl/00mFi9
http://goo.gl/GktT8Z
http://tcphiccups.org
http://goo.gl/8PQrpG
http://goo.gl/HY9AgZ

	Introduction
	Background
	TCP/IP Misinterpretation
	Integrity
	Middlebox Cooperation

	Design Space
	Meeting our Architectural Objectives

	TCP HICCUPS
	Overview
	Overloading Header Fields
	Integrity Exchange
	What Header Field Was Modified
	AppSalt Protection
	API

	Results
	Controlled Environment
	Overhead
	Surveying Internet Paths with HICCUPS
	Experimental Infrastructure
	Experimental Parameters

	Detected Modifications
	ISN translation
	ECN
	Application Performance

	Complete Path Knowledge
	Expected Interactions Required

	Conclusions
	References

