Experimentation and Modeling of HT'TP Over Satellite
Channels *

Hans Kruse
J. Warren McClure School, Ohio University
hkrusel@ohiou.edu

Mark Allman
NASA Glenn Research Center/BBN Technologies
mallman@grc.nasa.gov

Jim Griner, Diepchi Tran
NASA Glenn Research Center
{jgriner,dtran}@grc.nasa.gov

Abstract

This paper investigates the performance of vari-
ous versions of the HyperText Transfer Protocol
(HTTP) over a geosynchronous satellite link. Both
HTTP/1.0, the currently popular form of the pro-
tocol, and HTTP/1.1, the recently standardized
form of HTTP, are studied. Next, we quantify
the impact of a moderate bit-error rate on the per-
formance of HTTP. Finally, we expand the math-
ematical model of HTTP presented in [HOT97]
to encompasses a wider range of HTTP behav-
ior. We show this model accurately predicts HT' TP
throughput by comparing it with HT'TP transfers
made over a satellite channel.

1 Introduction

This paper presents a detailed performance evalu-
ation of World-Wide Web (WWW) page retrievals
over a network path with a satellite component.
The delay imposed by the geosynchronous (GEO)
satellite channel used in our investigation high-
lights the importance of using several mechanisms
included in the standard HyperText Transfer Pro-
tocol (HTTP) [BLFN96, FGM197]. NASA’s Ad-
vanced Communication Technology Satellite sys-
tem was used to conduct the tests presented in this

paper.

*This is a preprint of an article accepted for publication
in the International Journal of Satellite Communications.
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The first goal of this paper is to document ex-
perimental results for WWW page retrieval over a
satellite network using a number of popular ver-
sions of the HTTP protocol. We tested both
HTTP/1.0 and HTTP/1.1 in various configura-
tions. The results of these tests illustrate the im-
portance of using the latest version of HTTP (ver-
sion 1.1) with the pipelining option in satellite net-
works. Additionally, we quantify the impact of us-
ing multiple concurrent HTTP connections on the
transfer time. Finally, we investigate the perfor-
mance impact of using a larger initial TCP con-
gestion window [AFP98] in HTTP transfers over
long-delay channels.

Even though the satellite channel used in our
experiments employed strong forward error correc-
tion (FEC), as recommended by [AGS99], some of
the transfers experienced non-negligible bit-error
rates (BER), leading to segment loss. TCP in-
terprets all loss as an indication of network con-
gestion and reduces the sending rate accordingly
[Jac88, Ste97, APS99]. Therefore, a segment lost
due to corruption leads to an unnecessary reduc-
tion in TCP’s sending rate and often a reduction
in performance (especially for short transfers, such
as WWW pages). This paper contributes a pre-
liminary evaluation of the impact of non-negligible
BERs on HTTP performance.

Finally, we extend the model of HTTP presented
in [HOT97] to analyze reasons behind the observed
performance. In addition, the algorithms associ-
ated with TCP, which is used to reliably deliver



HTTP data, have a direct impact on the transfer
of WWW pages and therefore modeling the behav-
ior of TCP is equally important.

The remainder of this paper is organized as fol-
lows. Section 2 discusses the TCP algorithms in the
version of TCP used in our experiments. Section
3 discusses the differences between HTTP /1.0 and
HTTP/1.1. Section 4 outlines the setup of our ex-
periments. Section 5 defines the model developed
to characterize WWW transfers. Section 6 outlines
the results of our experiments. Finally, section 7
presents our conclusions and outlines future work
in this area.

2 TCP Versions

HTTP traffic is reliably delivered by the Trans-
mission Control Protocol (TCP) [Pos81]. The
algorithms employed by the TCP implementa-
tion can have a large impact on the performance
of HTTP. In this paper, we concentrate on the
standard version of TCP (known as TCP Reno)
[Ste97, APS99]. Specifically, the implementation
of TCP contained in NetBSD 1.2.1 is the basis
for this study. NetBSD’s version of TCP includes
the congestion control algorithms slow start, con-
gestion avoidance, fast retransmit and fast recov-
ery algorithms, originally outlined by Jacobson
[Jac88, Jac90]. The reader is assumed to be famil-
iar with these algorithms. Additionally, our TCP
implementation contained two bug fixes that were
found during the course of this study and briefly
outlined below [All97a]. Finally, we investigated
the impact of TCP using a larger initial conges-
tion window [AFP98], which is also briefly summa-
rized below. Since our experiments were conducted
over a non-congested network path, the selective
acknowledgment (SACK) TCP option [MMFR96]
would have provided little impact on the main re-
sults presented in this paper.

2.1 TCP Reno Bug Fixes

In the course of running the tests presented in this
paper, we found two bugs in the NetBSD TCP im-
plementation! [All97a, PADT99]. The first bug is
the use of a two segment initial congestion win-
dow (cwnd) when a sending TCP is opened pas-
sively. The bug occurs because the acknowledg-
ment (ACK) for the SYN segment used to setup
the connection incorrectly increments cwnd by one

IThese bugs in NetBSD were traced back to the BSD 4.4
Lite distribution. Therefore, we suspect that NetBSD is not
the only operating system that contains these bugs.

segment?. Therefore, data transmission begins by
sending 2 segments rather than the standard 1 seg-
ment?®. The version of TCP used in the tests pre-
sented in this paper always uses a 1 segment initial
congestion window, unless otherwise noted.

The second bug involves TCP’s delayed acknowl-
edgment mechanism. RFC 1122 [Bra89] suggests
that a TCP receiver refrain from generating an
ACK for each incoming segment. However, an
ACK must be transmitted for every second full-
sized segment. If a second full-sized segment is not
received within a given timeout, the receiver must
generate an ACK (this timeout must be no more
than 500 ms according to [Bra89], however is imple-
mented as a 200 ms heartbeat timer in NetBSD).
NetBSD uses the delayed ACK mechanism. The
bug in NetBSD is that the receiver does not cor-
rectly determine whether a segment is “full-sized”
and therefore often ACKs every third segment,
rather than every second segment. When TCP uses
options, such as timestamps [JBB92] (which were
used in our tests), the amount of data transfered in
a given packet is reduced by the amount of space
used by the options. However, this is not taken into
account by the algorithm that determines when an
ACK must be generated. Therefore, to obtain 2
“full-sized” segments worth of data, three segments
must be received. Generating fewer ACKs hinders
the growth of the congestion window, and therefore
the performance TCP and HTTP are able to attain
[Pax97, PAD99, All98]. Our fixes corrected this
problem so that ACKs are correctly generated for
every second full-sized data segment that arrives.

2.2 Larger Initial Window

In some of the experiments outlined in this paper,
we tested an experimental TCP modification that
increases the size of the initial congestion window
from 1 segment to roughly 4 KB* [AFP98]. Specif-
ically, the initial window (W};) is set according to
equation 1.

W; =min(4- MSS,max(2- MSS,4380)) (1)

According to this equation, the number of segments
in the initial window can vary from 2—4 depending

2Tn the NetBSD TCP implementation, cwnd is main-
tained in bytes. However, to simplify the discussion we dis-
cuss the algorithms in terms of segments in this paper.
3Since the time these tests were conducted, the IETF
has approved the use of a 1 or 2 segment initial congestion
window. Therefore, this can no longer be described as a bug.
4In this paper, 1 KB = 1024 bytes.
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Figure 2: HTTP/1.0 — Persistent Connections

on their size. In our experimental environment us-
ing the above equation yields an initial cwnd of 3
segments, each consisting of 1460 bytes (unless a
particular transfer is less than 4380 bytes long).

3 HTTP

Several versions of HTTP are currently used in
servers and browsers on the Internet. HTTP/1.0
calls for a separate TCP connection to be estab-
lished to retrieve each HTTP object (HTML page,
image, Java script, etc.). This method of retriev-
ing pages causes many short TCP connections to
be established between the client and the server
to retrieve a given WWW page. This has been
shown to be an inefficient means of page retrieval
[Mog95, THO96, Spe97]. In addition, WWW
browsers often open multiple simultaneous TCP
connections to download WWW objects in parallel.
Figure 1 illustrates the interactions between a com-
mon HTTP /1.0 WWW client and an HTTP server
when loading an initial HTML page that contains
3 inline images. In this case, the base HTML page
is transfered over connection a, followed by 3 con-
current connections (denoted b, ¢ and d) that are
used to transfer the 3 inline images.

To overcome the inefficiencies of establishing
many short TCP connections, an approach for us-
ing persistent connections in the form of HTTP /1.0
“Keep-Alive” requests has been implemented in
some WWW clients and servers. The Keep-Alive
extension to HT'TP /1.0 allows multiple requests to
be sent over a single persistent TCP connection
[Mog95]. However, the use of persistent connec-
tions does not preclude the use of multiple parallel
TCP connections in many browsers. Figure 2 illus-
trates the interactions between a client and server,
using HTTP /1.0 with the Keep-Alive option. This
figure differs from figure 1 in that the first con-
nection (denoted a) is used to transfer the original
HTML page plus one of the 3 inline images.

The use of persistent connections was formally
defined in HTTP/1.1 [FGM'97] and has been
shown, in some cases, to reduce the load time of
web pages by 42% [Hei97]. HTTP/1.1 does not
use multiple connections, but rather loads each el-
ement in turn on the same TCP connection. Fig-
ure 3 illustrates HT'TP /1.1 loading an HTML page
and 3 inline images. This figure illustrates that af-
ter each response is received from the server, the
client issues the next request. This leads to a lull
of 1 round-trip time (RTT) between subsequent ob-
ject transfers. Note that HTTP/1.1 (with persis-



tent connections) acts very similar to HTTP /1.0
with keepalives. For the experiments presented in
this paper we consider the two cases to be identical.
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Figure 3: HTTP/1.1 without Pipelining
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Figure 4: HTTP/1.1 with Pipelining

HTTP/1.1 with pipelining is also defined in
[FGM197]. Pipelining allows an HTTP client to
send multiple requests while receiving responses
from the server. This mechanism eliminates the
lull between each object retrieval caused by the
transmission of a new request. Figure 4 illustrates
HTTP/1.1 with pipelining loading an HTML page
followed by 3 images. In this case, the HTML page
is loaded and then 3 requests are sent to the server
immediately. The responses are sent back to the
client in the order they were requested.

4 Experimental Configuration

4.1 Network Topology

The satellite channel used in our experiments
was NASA’s Advanced Communications Technol-
ogy Satellite (ACTS) [Bv91]. ACTS, a geostation-
ary satellite, operates in the Ka-band, has a 30 GHz
uplink and a 20 GHz downlink, with data rates

ranging from 64 Kbps to 622 Mbps. For our ex-
periments, T1 (1.536 Mbps) VSAT terminals are
utilized at both NASA’s Lewis Research Center®
(LeRC) and Ohio University (OU). Since ACTS
operates in the Ka-band, which is known to be
strongly effected by rain-fade events, a strong for-
ward error correction algorithm, deployed upon de-
tection of a rain-fade, is used. Therefore, the cir-
cuit used in these experiments had a very low (but
not necessarily zero) bit-error rate (BER). Several
of our tests did experience corruption-based losses.
The impact of these losses is quantified in section
6.

The network layout used is shown in figure
5. The hosts on the LeRC side of the testbed
are Pentium Pro 180 Mhz computers, running
NetBSD 1.2.1. These two machines are connected
to router 1. Using a built-in T1 (1.536 Mbps)
CSU/DSU, router 1 is connected to a VSAT earth
station. A full duplex T1 link is setup between
this earth station, through the ACTS satellite, to
a similar earth station at Ohio University (OU).
The second earth station is connected through a
T1 CSU/DSU to router 2, via RS 449. Router 2
is connected to a 486/33 Mhz computer at Ohio
University, which is also running NetBSD 1.2.1.

The queue size in the routers have been adjusted
to provide adequate buffering (roughly twice the
size of TCP’s advertised window in these experi-
ments). The queue size used has been shown to
prevent segment loss in previous bulk-transfer ex-
periments over ACTS [All97D].

4.2 Experimental Setup

The experimental setup consists of running an
HTTP browser on the LeRC side of the network,
and an HTTP server on the OU side. The client
application was Netscape’s Navigator, version 3.01,
for the HTTP/1.0 tests and W3C’s WebBot® for
the HTTP/1.1 tests. The WWW server used in
all tests was Apache version 1.2b11. To analyze
the behavior of HTTP, all segments were captured
on the LeRC (client) side of the network using tcp-
dump”. The transfers were traced on the client side
of the network so that the transfer times were accu-
rate from the point of view of a WWW user. Four
test web pages were requested by the browser, each

5NASA’s Lewis Research Center has been renamed the
Glenn Research Center since these experiments were per-
formed. However, the experiments presented were per-
formed before the re-naming and thus we have retained the
old name for this paper.

6 WebBot is available from http://www.w3.org/Robot/.

Ttepdumyp is available from http://www-nrg.ee.1lbl.gov.
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Page | Number of | Page Size
Elements (KB)
LeRC 4 48
acts 9 99
oufr 10 491
Test 28 28

Table 1: Web Page Details

having a different number of elements and overall
page size as shown in table 1.

This paper presents several different HTTP sce-
narios, as follows.

e HTTP/1.0 with Keep-Alives. Using
HTTP/1.0 we present results using a single
active connection, as well as tests in which
4 parallel connections were employed. Note
that when using only a single connection, this
scenario is identical to the HTTP /1.1 without
pipelining scenario, as outlined above.

e HTTP/1.1 with pipelining. Under this sce-
nario, only a single active connection was em-
ployed.

e The above two items were tested with the stan-
dard initial window (1 segment) and with the
larger initial congestion window specified in
equation 1 (3 segments in our environment).

The advertised window size used in all the exper-
iments presented was 96 KB (roughly the delay-
bandwidth product of the network path). How-
ever, the TCP connections were never limited by

the advertised window. Each HTTP scenario out-
lined above was repeated for approximately 48 min-
utes (representing multiple retrievals of each page
given in table 1). The packet traces collected dur-
ing each run were post-processed using tcptrace’s®
HTTP module, as well as several scripts.

5 HTTP Model

5.1 Modeling the TCP Congestion
Window

We restrict our examination to the case where the
RTT is large compared to the transmission time
of a TCP segment. In such a situation, it is well
known that the TCP slow start algorithm produces
isolated flights of segments, followed by an idle pe-
riod until the first acknowledgment for the flight
returns. Also note that we are restricting our anal-
ysis to the case when the network path is conges-
tion free and free of bit errors. While this is some-
what artificial we believe that the model provides a
good basis for understanding the various protocol
interactions before considering the case when net-
work congestion is introduced or non-zero bit error
probabilities are encountered.

We define the congestion window, cwnd(i) as the
maximum number of segments in the i-th flight.
The starting value, cwnd(0), depends on the oper-
ating system implementation. The design of TCP
assumes that cwnd(0)=1, which NetBSD uses. As
discussed above, we also use cuwnd(0)=3 in some of
the experiments presented.

As discussed by Heidemann [HOT97], cwnd(i)
depends on cwnd(i-1) and the number of acknowl-

8tcptrace is available from http://jarok.cs.ohiou.edu/



edgments received for the flight i-17. A general for-
mula for cwnd(i) is given in equation 2.

cund(i) = cwnd(i-1) + f(cwnd(i-1)) (2)

Where f() represents the number of ACKs that ar-
rive at the TCP sender in response to flight ¢-7. The
definition of f depends on whether the receiver gen-
erates delayed ACKs. Equation 3 defines f for the
case when each segment is ACKed, while equation

4 specifics f when the receiver generates delayed
ACKs.

flx) = x (3)

f@ =~ 5] (4)

Note that equations 3 and 4 are upper bounds
and the actual value of the function may be re-
duced by ACK loss (which was negligible in our ex-
periments). Additionally, the function for delayed
ACKs (equation 4) assumes that the RTT is larger
than the delayed ACK timer. This estimate further
neglects the residual delay between the receipt of
an odd segment, and the firing of the delayed ACK
timer.

Equation 2 does not have a general closed-form
solution for the function defined in equation 4.
However, equation 2 can, of course, easily be solved
numerically. Examining the numeric results shows
that the increase in cwnd is almost exactly expo-
nential after the first 2-3 RTTs. We therefore ar-
rive at useful approximation given in equation 5.

cwnd(i) =~ cwnd(0) - A?
_ 2 for equation 3
4 = { 1.57  for equation / (5)

Also, it is often of interest to determine the num-
ber of RTTs needed to open the congestion window
to the steady-state window size (which, in the ab-
sence of congestion, is determined by the advertised
window or the bandwidth-delay product and the
bottleneck buffer capacity). If the desired window
size for a single connection is W, segments, equa-
tion 6 yields the number of RTTs required to open
cwnd.

o In(Ws) — In(cwnd(0))
In(A)

(6)

The notation 7’ is used to indicate that the result
of equation 6 is not an integer, while in equation 5,
i is assumed to be integer.

5.2 Multiple Connections

WWW browsers using HTTP/1.0 tend to open
multiple TCP connections to retrieve the elements
of a web page (as outlined in section 3). The anal-
ysis of the previous section applies to each con-
nection. However, in the case of multiple paral-
lel connections, we want the sum of all congestion
windows to reach the capacity of the network path.
A lower bound on the time required to reach this
point can be found by assuming that all connections
increase cwnd equally. Assume we have M connec-
tions and a target aggregate congestion window of
Wy = W, - M segments. Inserting into equation
6 yields equation 7, which is the number of RTTs
needed to reach an effective window of W, using
M parallel TCP connections.

4 In(Wa) —In(M) — In(cwnd(0))
t= In(A) M

Note that the use of multiple concurrent connec-
tions reduces the time required for slow start ramp-
up in the same way as an increased initial window,
at the level of detail in this analysis. However, oper-
ating system effects may cause the two scenarios to
differ in performance in an actual implementation.
In the following sections we will use the slow start
acceleration value, S,, as defined in equation 8. S,
is the effective initial window across the M concur-
rent connections.

Se = M - cwnd(0) (8)

5.3 Page Transfer Modeling
5.3.1 Modeling HTTP 1.1

Due to the use of a single TCP connection, the
HTTP/1.1 with pipelining implementation used in
these experiments is easily modeled in a straight-
forward manner. At the time the request for a
WWW page is made, the browser issues an HTTP
GET command for the base HTML document. One
RTT later, the first base document data will be re-
ceived. The browser then issues further GET com-
mands for each page element referenced in the base
document. These GET commands can be generated
as soon as the reference is received by the browser,
without waiting for the current data transfer from
the server to be completed. This behavior is il-
lustrated in figure 6, which shows the sequence of
element retrieval requests for an HTTP /1.1 trans-
fer of the oufr WWW page. For each element, the
bottom of the vertical line shows the time the ele-
ment was requested by the browser, while the top
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of each line shows when the element was completely
received.

Figure 6 shows that all GET requests were issued
while the first element was being received. For our
analysis, we assume that after the second GET re-
quest the server always has data to send. Under
this assumption, the page retrieval can be modeled
as a bulk data transfer of the combined page ele-
ments, taking slow start into account as described
in section 5.1, plus the one additional round trip
time required to request the initial base HTML el-
ement.

It should be noted that the HTTP/1.1 specifi-
cation does allow the use of two concurrent TCP
connections. For implementations which use the
two connection approach, a more detailed model
will be needed.

5.3.2 Distribution of Pages Over Multiple
Connections (HTTP/1.0)

Since HTTP /1.0 retrieves page elements using mul-
tiple TCP connections, it requires a more complex
model to predict page retrieval times. We must ac-
count for two major differences between HTTP /1.0
and HTTP/1.1:

e To model HTTP/1.0, we must determine
which page elements will be retrieved on which
connection. Since the distribution of element
requests over the TCP connections is con-
trolled by the browser implementation, there is
no single correct answer to this question. We
describe below a heuristic that will, in most
cases, result in the most efficient allocation of
page elements to connections. This will give
us a lower bound on the page retrieval time.
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Figure 7: HTTP/1.0, 4 Connection Page Retrieval

e Once we determine which page elements will
be transfered on which connection, we can
model the data flow on each of these con-
nections as described in section 5.1, with one
exception. Since HTTP/1.0 does not permit
pipelining, a gap of one round trip time is
required between page elements to allow the
browser to submit the next GET request.

Figure 7 shows the sequence of element retrievals
for a 4 connection HTTP/1.0 request of the oufr
page. We use this figure to illustrate an anomaly.
We expected GET requests 2-4 to follow the base
request by two RTTs (one RTT to get the docu-
ment, and a second RTT to open the additional
three TCP connections). Instead the figure clearly
shows a delay of three RT'Ts. We have determined
that in this case the initial GET request is split over
two packets, which are spaced apart by one RTT
due to slow start. We have not attempted to deter-
mine if the browser or the operating system cause
this split. However, we have taken this additional
round trip time into account in the model.

5.3.3 The Distribution Algorithm

A WWW page can be described as a collection of
n+1 elements, FEy; E;,i = 1,n. The element Ej is
the “base” HTML document that must be retrieved
first. The remaining n elements are referenced in
the base document. These n objects are retrieved
in an arbitrary order based on algorithms in the
browser. The intent of the model described here
is to estimate the “best” retrieval order (i.e., the
ordering of elements F; through FE,, that results in
the shortest retrieval time, while using the smallest
number of connections). The second part of the



algorithm ensures that we will use new connections
only if they do reduce the overall transfer time.

Without loss of generality, we assume that the
elements 1-n are ordered such that size(E;) <
size(E;y1). The function size(E) will be defined
later, however it basically represents the size of the
given element. We intend to assign each element
to a connection from the set {Cy,k = 1,M}. Fi-
nally, the amount of data carried by a connection
is defined as:

Length(Cy) = Z size(E;) - Tk (9)
i=1

where ;=1 if element i is assigned to connection

k, and 0 otherwise. The algorithm is defined as
follows:

1. Assign element F; to connection C'. Set index
j =2. Set index n = 2.

. Attempt to place element j, starting with
connection n: If Length(C)) + size(E;) <
Length(C,—1), assign element j to connection
n and increment j. If there are more elements
to place, repeat step 2, otherwise exit. If ele-
ment j was not placed by the above test, in-
crement n and repeat step 2 (if there are con-
nections left). Otherwise, continue to the next
step.

Reorder connections such that Length(C) >
Length(Cl41).

Assign element j to connection M (the con-
nection with the smallest length). Reorder the
connections again based on the definition in
step 3. Increment 5 and set n = 2. If there are
elements left to place, go to step 2, otherwise
exit.

The justification of the algorithm assumes that
the size(E) function depends only on properties of
the element, E. In our case that is not entirely true,
as we will discuss later. Step 1 is based on the fact
that elements cannot be divided. The size () of
the largest element therefore represents the small-
est possible transfer time. Next, step 2 places ele-
ments into connections only if the placement does
not increase the currently required transfer time.
Finally, step 3 operates on the largest remaining
element. Since step 2 could not place the element,
we know that an increase in the total transfer time
is needed. The increase due to this element is
minimized by (a) placing the element after it has
been determined that the transfer time must be

8

increased and (b) placing the element on the con-
nection with the smallest Length() value.

The algorithm defined above requires a definition
for the size of an element. This size must depend
only on the properties of the element itself and any
global constants that apply to all connections. We
use the following definition to determine size(E;):

Find the smallest integer I which satisfies equation
10:

bytes(Ej;)

cwnd(0) (10)

I
D Az
i=0
where bytes(E) represents the actual length of the
element in bytes and cwnd(0) is the initial TCP
window in bytes, as defined above. The constant A

is defined in equation 5. Therefore,

bytes(Ej;)

size(Ej) =(I+1)-RTT + 5

(11)
where RTT is the round-trip time between the
client and server in seconds and B is the bandwidth
of the channel in bytes per second.

The definition of size given in equation 11 takes
into account the time required to transmit the el-
ement, as well as the impact of slow start. Note
that this is an estimate of the size of the given
element. The size() function will not be used to
actually compute the overall transfer time. Once
the placement of all elements onto connections is
complete, we correctly compute the transfer time
using slow start across all elements. The fact that
the current congestion window encountered by an
element on a particular connection depends on the
previous transfers on that connection is not cap-
tured in the size() function. We have not evalu-
ated this approximation systematically. However,
for the web pages used in our experiments, we have
computed the transfer times based on retrieving el-
ements in ascending order of size (as opposed to
the descending order assumed above). These cal-
culations did not show a significant difference in
retrieval times.

6 Results

6.1 Experimental HTTP Compar-
isons
Figure 8 summarizes the performance of various

versions of HTTP collected as described in section
4. We first compare two different configurations
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Figure 8: HTTP Comparison

of HTTP/1.0. In one case, we use a single TCP
connection with a larger initial cwnd and the other
case we use the standard initial cwnd, but allow the
browser to use 4 parallel TCP connections. Again
note that when using a single HTTP /1.0 connec-
tion with keepalives the network behavior is the
same as when using HTTP /1.1 without pipelining.
When using a single connection with a larger initial
congestion window or 4 parallel connection we use
roughly the same aggregate initial cwnd. Figure 8
shows that the use of multiple connections results
in lower response times for all but the LeRC page,
which consists of 4 page elements (the base HTML
and 3 images). The sequential retrieval of these el-
ements over one TCP connection requires a total
of three extra RTTs because one idle RTT is in-
serted between the retrieval of each page element
after the base HTML has been transfered. This idle
period is the time required to send the request and
start receiving the response. Using four connec-
tions all images can be retrieved in parallel with-
out paying a 1 RTT penalty for each element after
the base HTML. When concurrent connections are
used to load the LeRC page the response time is
dominated by one large image. Without a larger
initial cwnd, the single-connection case should run
roughly one RTT slower than the four connection
case, which our experimental data confirms. In fig-
ure 8, the one connection HTTP/1.0 transfer has
been accelerated by the use of a larger initial cwnd
which saves approximately 1 RTT while increasing
the TCP congestion window. As a result, the data
points for these two cases basically overlap in the
figure.

The remaining three WWW pages (all but
LeRC) have a larger number of page elements.
Therefore, the savings from the use of the multiple
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Page Corrupted
Transfers (%)
LeRC 7
acts 13
oufr 41
Test 2

Table 2: Frequency of Bit-Errors

connections outweighs the benefit of using a larger
initial cwnd on a single connection. This difference
is most dramatic for the Test page which contains
the largest number of elements, and therefore is
subjected to a large number of idle periods when
using a single connection, as discussed above. The
acts and the oufr pages both have smaller images
and a similar number of elements. The acts page is
dominated by a small number of large images and
therefore the more efficient slow start phase in the
single connection case keeps the single connection
response time closer to the multiple connection re-
sponse time than shown for the oufr page.

HTTP/1.1, even without a larger initial
cwnd, achieves equal or better performance than
HTTP/1.0 with 4 concurrent connections in all
cases presented in figure 8. The performance gain
is most apparent for the pages where the response
times are dominated by the long RTT (all but the
oufr page, which has a large amount of data). The
larger initial window improves response time by
roughly 1-1.5 RTTs for those pages where any sus-
tained data flows are required. The Test page con-
tains enough data to lead one to expect a perfor-
mance gain from using a larger initial cwnd, how-
ever the data does not show such a performance in-
crease. We speculate that browser or server effects
related to the processing of a large number of si-
multaneous GET requests may cause a non-network
related performance problem in this case.

6.2 The Impact of BER on HTTP

Table 2 shows the percentage of HT'TP /1.1 trans-
fers that experienced bit-errors on the satellite
channel during our experiments. The table shows
that the larger WWW pages (e.g., oufr) were more
likely to experience bit-errors while pages with
smaller elements were not as likely to experience
corruption, due to the slow start algorithm. As
discussed above, slow start ensures that the trans-
fer will have significant idle periods. Bit-errors on
the channel during these idle periods do not impact
TCP performance.
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Figure 9: Impact of Non-Zero Bit-Error Rate on
HTTP/1.1 Transfers

Bit-errors (hopefully!) cause TCP’s checksum to
fail, which causes the segment to be silently dis-
carded. TCP’s congestion control algorithms inter-
pret all segment loss as network congestion and de-
crease cwnd accordingly. Therefore, bit-errors hurt
TCP performance by acting as false indications of
network congestion. Figure 9 shows the impact of
a non-negligible bit-error rate on HTTP /1.1 trans-
fers. As shown, the impact on transfer time when
the runs that experienced bit-errors are included in
the analysis is fairly minimal. The small impact
is due to the nature of HTTP traffic. The trans-
fers are generally short and the performance dom-
inated by the slow start algorithm. So, reducing
cwnd from an already small value does not cause a
major impact on performance. The oufr page has
the most data and therefore is able to increase cund
more than the other pages. Therefore, as expected,
bit-errors hurt the performance of transfering this
page more than the other 3 pages.

6.3 HTTP Model Comparison

Figures 10-13 compare the same experimental re-
sults shown in figure 8 to the model described in
section 5. Figures 10 and 11 address the case of
HTTP/1.0. We find that the model agrees reason-
ably well with the experimental results. Due to
the unknown order in which the browser retrieves
page elements, the model is designed to produce
a lower bound on response time. Within this in-
herent limitation, we can predict the page response
times quite well. There is no indication of system-
atic deviations between the experimental data and
the model, indicating that all major factors influ-
encing performance have been incorporated.

10

85 - T
Experimental -
Model -------
8
Z 75
j =
8
2 7
[}
E
=
% 65
=4
i,
55
5
acts LeRC oufr Test

WWW Page
Figure 10: Model Comparison - HTTP /1.0, 4 Con-

nections, No 4K Initial Window. Note this case is
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Figures 12 and 13 compare the HTTP/1.1 ex-
periments to the model. Due to its reliance on
a single TCP connection, modeling HTTP/1.1 is
much less complex than HTTP /1.0, and therefore
the agreement between the experimental data and
the model is excellent. The model does not capture
the transfer of the Test page as accurately as the
other pages. As discussed above, we suspect that
effects not related to HTTP or TCP play a role in
this case.

There is also an underestimate of the experimen-
tal result by the model for the oufr page in figure
13. This page is sensitive to the growth of cwnd,
and it is likely that a network effect is at work here.
It is possible that the strict delayed acknowledg-
ment discipline assumed in the model is not fol-
lowed exactly by the actual TCP transfer, or that
the application is causing the transmission of seg-
ment in an unexpected way. Further investigation
is needed to resolve this case.

7 Conclusions and Future

Work

In this paper we have analyzed the behavior of var-
ious popular methods of accessing WWW pages.
The following are some of our key conclusions.

o We have shown that using a larger initial cuwnd
in conjunction with HTTP/1.1 with pipelining
provides the best performance of all the HTTP
versions tested across several WWW page sce-
narios in long-delay satellite networks.

e Our experiments have shown that pipelining
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is an important mechanism in long-delay envi-
ronments.

We have shown that using multiple paral-
lel connections improves transfer time more
than using a larger initial window when us-
ing HTTP/1.0. However, the negative as-
pects of using multiple concurrent connections
[FF98, BPST98] were not shown in our tests
due to the lack of competing traffic.

Our results indicate that links with low, but
non-zero, BER will mainly effect WWW page
retrievals with large page elements, i.e. those
most resembling bulk transfers.

We have extended the HTTP model presented
in [HOT97] to accurately predict transfer time
of most common forms of transfering WWW
pages in use today.

Future work in this area includes quantifying the
different HT'TP mechanisms in a more realistic sce-
nario with competing traffic and congestion-based
loss. Additionally, further study of HTTP (and
TCP) in real satellite environments with higher
BERs is also needed.
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