
Network and User-Perceived Performance of Web Page Retrievals

Hans Kruse
Ohio University

hkruse1@ohiou.edu

Mark Allman, Paul Mallasch
NASA Lewis Research Center

{mallman,Paul.G.Mallasch}@lerc.nasa.gov

Abstract
The development of the HTTP protocol has been driven by the need to improve
the network performance of the protocol by allowing the efficient retrieval of
multiple parts of a web page without the need for multiple simultaneous TCP
connections between a client and a server. We suggest that the retrieval of
multiple page elements sequentially over a single TCP connection may result in
a degradation of the perceived performance experienced by the user.

We attempt to quantify this perceived degradation through the use of a model
which combines a web retrieval simulation and an analytical model of TCP
operation. Starting with the current HTTP/1.1 specification, we first suggest a
client-side heuristic to improve the perceived transfer performance. We show
that the perceived speed of the page retrieval can be increased without
sacrificing data transfer efficiency. We then propose a new client/server
extension to the HTTP/1.1 protocol to allow for the interleaving of page element
retrievals. We finally address the issue of the display of advertisements on web
pages, and in particular suggest a number of mechanisms which can make
efficient use of IP multicast to send advertisements to a number of clients within
the same network.

Problem Statement
Many electronic commerce applications are built upon the concept of web pages,
We define a web page as a multi-part document consisting of an HTML file
describing the general document layout, and a number of multimedia files
referenced by the HTML base document. Functionally, the user’s client first
retrieves the base HTML document. The client then issues additional retrieval
commands as it encounters embedded multimedia elements (images, JAVA
applets, sound and movie files, etc.). Once a document has been presented to the

user, the user selects a navigational option from the page which may transmit
additional information (e.g., from a form), and which will usually result in a
retrieval request for a new multi-part page.

It is important to note that in many cases, users can and do select a navigational
option after some, but not all of the page elements have been loaded and
displayed. Users perceive application performance based in part on the time
needed to display enough of the page to allow the user to make this selection.
For our discussion, it also is important to note that many providers of electronic
commerce applications have found it desirable to display advertisements to users
as part of the pages making up applications. The application provider has an
interest in displaying advertisements before the user moves on to another page.
However, users will have a negative reaction to a page if the loading of
advertisements is perceived as slowing down the loading and display of
information and navigational controls.

Today, many user clients are based on version 1.0 of the HTTP protocol. This
version of HTTP permits only one document request to be pending on a TCP
connection between a client and server. For performance reasons, most client
implementers have chosen to open multiple TCP connections between the client
and the server in order to request a number of page elements at the same time.
As a side effect of this implementation, the client is able to quickly begin the
actual display of multiple page elements for the user. Therefore, users now
expect the appearance that goes along with using HTTP/1.0 with multiple
simultaneous TCP connections.

Connection 1 Connection 2

Get Base

Get Part 1

Get Part 3

Get Part 2

Open Conn.

Figure 1

Figure 1 shows the information flow for the case of two TCP connections.
Following the retrieval of the base HTML, the client requests one page element
on the original TCP connection. The client then opens a second connection and
issues another retrieval request. The third request will occur on the connection
that returns to an idle state first.

Get Base

Get Part 1&2

Send Part 1

Send Part 2

Figure 2

The transition to version 1.1 of HTTP [FJGFBL97] has begun. This version is
designed to permit pipelining of requests for page elements, i.e., a request for an
element may be issued on a TCP connection while the previous element is still
being transmitted. This approach has been shown to exhibit better network
utilization and better overall performance than the multi-connection approach in
HTTP 1.0. [Hei97]. In addition, HTTP/1.1 is more network friendly, as using
multiple simultaneous TCP connections has been shown to increase congestion
levels on networks and may contribute to congestion collapse [FF98]. Figure 2
shows the information flow for a page retrieval with HTTP 1.1. Once the base
document has been retrieved, a single transmission may request multiple page
elements, which the server will return sequentially on the TCP connection.

In this paper we show that the pipelined HTTP/1.1 approach can lead to a
decrease in user-perceived performance. This is caused by the fact that the client
only receives layout information and actual data for one page element at a time,
so the user sees a sequential build of the overall page. Let I1 and I2 be the byte
counts for two page elements. Let C be the effective speed, in bytes per seconds,
of the channel between the server and the client. We assume further that the
client will issue a request for I1 before the request for I2, while the user will wait
for I2 to display before acting on the page content. If we ignore the time needed
to issue the request for a page element (a request is usually small, typical a
partial TCP segment), and further assume that multiple TCP connections will

share the effective bandwidth in a fair manner, we can estimate the time required
before I2 is displayed to the user.

In HTTP/1.0, I1 and I2 will be transmitted on two separate TCP connections
sharing C, so that each element will be transmitted at speed C/2. I2 will be
received at

T2 =
2 ⋅ I2

C
(1)

In HTTP 1.1, using a single pipelined connection, the corresponding time is

T2
′ =

I1 + I2

C
(2)

In all cases where I1 > I2, the user will perceive a longer wait for the desired page
element. In cases where I1 >> I2, the performance of the application may be
judged as deficient by the user. We also note that the simple estimates above
apply only if the HTTP/1.0 client is able to immediately access available TCP
connections for the transfer of I1 and I2. For pages with large numbers of
elements, HTTP/1.0 will exhibit some sequential behavior.

HTTP 1.0, 4 connections

0
1
2
3
4
5
6
7
8
9

10

/o
uf

ro
nt

.h
tm

l
/he

ad
er.

jpg
/al

dn
str

l.g
if

/m
ain

m
ap

.jp
g

/li
nk

.gi
f

/cg
rn

to
ch

.g
if

/cl
sg

ate
.g

if
/cu

tle
r.j

pg

/m
cg

uff
16

6.j
pg

/w
ils

on
ad

.gi
fT

im
e

 s
in

ce
 in

iti
a

l G
E

T
 (

se
c)

Figure 3

Figures 3 and 4 illustrate this effect on an actual web page retrieval [Kru98].
Each vertical line in the figures indicates the time of the element request (bottom
of the line) and the time of the retrieval completion (top of the line), relative to
the time when the base HTML request was issued. Notice that the 5th element
(“link.gif”) in this case is rather small. In HTTP/1.0 the element requires very
little time between the GET request and the complete arrival and display of the
element. The same page retrieval with HTTP/1.1 delays this small element
behind a number of larger ones and delays the display of this page element.

HTTP 1.1

0
1
2
3
4
5
6
7
8
9

10

/o
uf

ro
nt

.h
tm

l
/he

ad
er.

jpg

/m
ain

map
.jp

g
/a

ldn
str

l.g
if

/li
nk

.g
if

/cg
rnt

oc
h.g

if
/cl

sg
ate

.gi
f

/cu
tle

r.j
pg

/m
cg

uff
16

6.j
pg

/w
ils

on
ad

.gi
fT

im
e

 s
in

ce
 in

iti
a

l G
E

T
 (

se
c)

Figure 4

In the following section, we outline a model which quantifies the perceived delay
effect caused by the use of HTTP/1.1. We then present a number of strategies to
make HTTP both network friendly and mitigate the problems associated with the
user-perceived performance that a network-friendly protocol may introduce. Our
analysis is based on both the existing HTTP/1.1 protocol and several possible
protocol additions.

Perceived-Delay Analysis
To quantify the perceived delay effect, we simulate the retrievals of randomly
constructed sample pages. These pages have the following attributes:
• 80% of the page elements are between 1000 and 5000 bytes in size.

Element sizes are uniformly distributed within this range.

• 20% of the page elements are between 35,000 and 65,000 bytes in size.
Element sizes are uniformly distributed within this range.

• The base HTML document size is always selected from the small size range.
• The total number of elements is 25.

We simulate each page retrieval in an analytical model using the following
assumptions:
• The HTTP 1.0 browser uses up to 4 connections.
• The Round Trip Time (RTT) for all connections is 200msec.
• The effective aggregate channel speed is 56kbits/sec
• The TCP window size was large enough (64kbytes) to insure that the

transfers are limited by the channel speed.
• We assume that the channel capacity is split evenly over all connections in

the HTTP 1.0 case.
• All data flow is limited to the channel rate, i.e. the TCP loss and subsequent

congestion avoidance is not modeled.
• TCP slowstart is modeled, using the traditional approach of starting the

transmission with a single TCP segment.
• The TCP segment size is 1460 bytes.
• We assume that every segment is acknowledged. Our model also permits

the use of delayed acknowledgements, but we did not chose that option for
this analysis.

• Both HTTP 1.0 and HTTP 1.1 will retrieve elements in the order in which
they appear in the base HTML document. Note that commercial browsers
may sometimes chose a more arbitrary retrieval order.

• HTTP 1.0 will use the next available connection to retrieve each new
element.

During the simulated transfers, we note the time at which each element arrives,
as well as the number of bytes represented by that element. We use all page
transfers (100 in these runs) to compute:
1. P(n,t), the probability that n elements have arrived at time t, and
2. P(s,t), the the probability that s bytes have arrived at time t.
While a steep slope of P(s,t) indicates an efficient use of the network, a steep
increase in P(n,t) suggests that the users is observing the display of many page
elements, which should further indicate an increased arrival probability of a data
or navigation item desired by the user.

Figure 5 shows a comparison of element arrival probabilities for HTTP 1.1 and
HTTP 1.0 with 4 connections. The figure clearly shows that HTTP 1.0 is

somewhat better able to quickly retrieve small elements. Figure 6 shows the byte
retrieval probabilities for the same two cases. HTTP 1.1 is clearly more efficient
at using the network. This is at least in part due to the fact that HTTP 1.0 cannot
request a new element until all data has “drained” from a connection; in this case
we are forced to idle the connection for one RTT.

Speed of Element Retrieval

0

20

40

60

80

100

0 20 40 60

Elapsed T ime (sec)

%
 o

f E
le

m
e

nt
s

R
e

tr
ie

ve
d

HTTP 1.1 HTTP 1.0

Figure 5

Speed of Byte Retrieval

0

20

40

60

80

100

0 20 40 60

Elapsed T ime (sec)

%
 o

f B
yt

e
s

R
e

tr
ie

ve
d

HTTP 1.1 HTTP 1.0

Figure 6

Effective use of HEAD Requests
In this approach, the client sends requests for the header information (using the
HEAD request type) of all page elements before actually retrieving any of them.
This type of request is routinely used for elements already in the client's
temporary cache. We extend this scheme to all page elements. After receipt of
the header information, the client uses information from the headers to determine
the most appropriate order in which to request page elements. The existing
standard defines the Content-Length header field. Servers that support
HTTP/1.1 are likely to include this field for static pages, since the client must be
able to reliably determine the end of a page element, preferably without the need
for the server to close the TCP connection. For dynamic pages, HTTP/1.1
defines the new Transfer-Encoding=chunked option. In this case the HEAD
request will not provide information that the client can use to order the elements.
We propose a new entity header, “Content-Priority”, which would be included
by the server for every page element for which an early retrieval may benefit the
user. Note that our proposal will require a HEAD request (and a delay of about
one RTT before data retrieval begins) in some cases where current clients would
not normally issue this requests.

For this paper we have simulated only the simplest heuristic, namely retrieving
the elements in the order of size, from smallest to largest. Figure 7 compares the
element retrieval probability, P(n,t), for a normal HTTP 1.1 transfer, and a
transfer in the order of element size. As one would expect, many more page
elements will arrive early in this approach. Figure 8 compares the connection
utilization, using P(s,t) for the same two cases.

If a web page is designed to take advantage of the heuristic (and it is
implemented in the user’s client), the information provider can insure that crucial
navigation items - e.g. links to on-line catalogs or current news headlines -
appear quickly in the browser window allowing some users to move on, while
large images and site maps are displayed later (and more slowly) for users who
want to view the entire page. Implementation of this heuristic will require a
modification of the client software. The extension of this heuristic would be to
retrieve elements in priority order if the server provides the Content-Priority
header we have proposed. This would require a server modification as well as a
mechanism for the web designer to assign priorities to page elements at the time
of page construction.

Retrieval of header information becomes even more useful to the client if layout
information (such as the dimensions of an image) either is given in the base
HTML, or is sent in optional entity header fields

Element Retrieval by Size

0

20

40

60

80

100

0 20 40 60

Elapsed T ime (sec)

%
 o

f E
le

m
e

nt
s

R
e

tr
ie

ve
d

HTTP 1.1 Ordered Retrieval

Figure 7

Element Retrieval by Size

0

20

40

60

80

100

0 20 40 60

Elapsed T ime (sec)

%
 o

f B
yt

e
s

R
e

tr
ie

ve
d

HTTP 1.1 Ordered Retrieval

Figure 8

Interleaving of retrieved elements
Even if the client can retrieve page layout information and an appropriate
ordering of page elements, retrieval and display of elements remains sequential.
And, as outlined above this can cause the user’s perceived performance to
degrade. In an attempt to keep the perceived load time low, we propose a new
interleaved pipelining approach. As the server receives multiple pipelined
requests for page elements, new requests are multiplexed into the current data
stream. This allows the use of a single TCP connection, making the transfer
network friendly, while also loading multiple objects in parallel. Since these
objects can be partially displayed as they arrive, the user will perceive roughly
the same behavior as shown by using multiple parallel TCP connections under
HTTP/1.0.

To accomplish interleaving, the client and server must negotiate its use during
the transfer of the base HTML document. The client will send an advertisement
to the server stating that interleaving is supported. This advertisements could be
handled as a protocol extension to the Connection header field. Alternatively, a
new entity header field could be defined (this field would be used in the header
for the base HTML document). The latter approach could be introduced without
a protocol version change, while a non-experimental implementation of the
former option does require such a version number change.

In the server's response, it will indicate whether or not it supports interleaving.
If both the client and server agree to use interleaving, the HTTP client will send
an “Object-number” entity header in the request to the server for a given object.
The server then returns a stream of “object records” using the object numbers
given by the client request. Each record contains a maximum of several
kilobytes of actual data, prepended with the object number and the length of the
current record. We are assuming here a structure imposed internally on the data
stream. Future work will investigate the inclusion of this approach in the
“chunked” transfer encoding method.

For example, consider a simple round-robin algorithm and a web page with 3
objects other than the base HTML. The pipelined requests would be sent to the
server with object numbers 1 to 3. The server would return a record of data for
each of the objects, in turn. Following the transmission of the record of data for
object 3, a record of data for object 1 would be transmitted. An optimal
algorithm for the selection of which object to service at a given time is an open
question (for instance, it may be better to service large object more often than
small objects).

This method of transmitting web pages will slightly increase the overhead of
transferring web pages. For instance, consider a 1 byte object number
(providing up to 256 objects per web page) and a 4 byte length number (allowing
objects to be as big as the largest file under many Unix systems) . If the data
portion of the record is 2048 bytes the additional bytes constitute 0.002% of
each record. In a recent study [PGA98], it was observed that most of the web
objects requested on the NASA Lewis Research Center connection to the
Internet were under 5,000 bytes. With the conditions given above the overhead
associated with retrieving each of these objects would be approximately 0.003%
on the studied network.

Multicasting Considerations
While the merits of Web-based advertising are arguable, advertisements do serve
to help support much of the high-quality content found on Web pages. Whether
supporting Web developers, networking or hardware infrastructure, or the
collection and maintenance or data archives, advertisements subsidize the
growing variety of sophisticated Web-based tools.

Many large organizations, such as companies or universities, connect large
numbers of users to the Internet via local Intranets. It can be expected that a
large number of the web pages loaded by people in these organizations may
include advertisements along with the desired content. Therefore, it makes sense
to transmit these advertisements in an efficient manner. We believe that IP
multicasting can be used to transmit a constant stream of advertisements from the
Internet to an Intranet in a bandwidth efficient manner. This will limit the
number of incoming advertisements to one at any given time. Although one
could reasonably assume that several streams of advertisements might be
desirable at any one time, as long as this number is well under the number of
people simultaneously browsing the web, the network is being used more
efficiently.

There are two ways to utilize IP multicasting for the distribution of ads. The
first is to use it to send advertisements to a proxy local to a given organization.
Research at NCSA suggests employing the MBone to multicast a web page to a
publisher-subscriber process group. Participants join a group where Webcast
receives the full text and inline images from Mosaic, then multicasts them to the
group. A locally running browser is then notified that the web page is available
locally as a file://localhost URL [Bur95].

An alternative is to use multicasting to transmit advertisements right to user’s
browsers. Both of these options save bandwidth on an organization’s link to the
Internet (which most likely does not have as much bandwidth as the
organization’s internal network). If each browser is to receive advertisements via
multicast, a new URL must be used to instruct the browser to show the next
advertisement coming across the multicast stream. A new URL might look
similar to that given in [Shi97] (i.e., multicast://...). If an organization-wide
proxy is used, browsers will not need to be changed, as they will make requests
to the cache server as is done currently. The following discussion is mostly
general enough to encompass either of the two multicasting methods outlined
above.

A multicasted advertisement makes sense from a network point of view, but may
not always make sense from a business standpoint. Some web sites display
advertisements based on a search made by the user (e.g., if the user is searching
for information about Warren Zevon, an advertisement for an on-line record
store may appear, telling the user where they can obtain Mr. Zevon’s latest CD
online). More specialized advertisements can continue to be unicast to the user.
The “price” of putting specific advertisements on web pages then becomes a
longer transfer time (and therefore, less time for the user to look at the
advertisement), when compared to displaying an advertisement from the
multicast stream. To lower the load time of specific advertisements these should
be cached and aged by an organization proxy, just as other web objects are
cached.

A multicast advertisement stream would waste bandwidth when the rate of
advertisement arrivals was higher than the rate of browser requests for
advertisements. For example, a multicast advertisement stream probably makes
less sense in the middle of the night than it does during lunch hour. Therefore, it
makes sense to be able to turn the stream on and off in some fashion (either by a
policy of turning it off everyday at 5 PM or dynamically when the demand
decreases). This leaves more bandwidth available for other traffic during non-
peak hours (such as NNTP downloads, for example). Dynamically determining
when to turn off a multicast stream is an open question. If a user’s browser
received a multicasted advertisement directly (as opposed to a proxy server
receiving the stream, as discussed above), the stream could not be completely
turned off. However, the rate of the incoming advertisements may be reduced.

Another important consideration is whether reliable multicast is required. An
advertisement delivered with portions missing will not be very useful. The

tradeoff is between the time required to repair loss versus discarding the
advertisement and waiting for the next one. In organizations connected to the
Internet with highly congested links, reliable multicast will probably be
necessary, whereas in lightly congested network it is probably best to just
discard advertisements in which data is missing. A possible approach is to use a
reliable multicast protocol that can turn on and off the ability to request
retransmissions. If an advertisement loss rate is high, hosts or proxies can begin
to request retransmissions of missing packets. However, if the advertisement
loss rate is low, hosts and proxies can operate in a mode where incomplete
advertisements are discarded in favor of the next advertisement in the stream.

Several researchers [Cla95, Don95, Ham95] have recommended various
multicast approaches to web caching or delivery of entire web pages. These
mechanisms may work well and be more bandwidth efficient than the current
delivery of web documents. However, these techniques do not take into account
the increasing popularity of web portals. Web portals have introduced user
customization or home page personalization features, which increases the type
and variety of content delivered to the user. However, using multicast
distribution techniques to deliver somewhat static content or update proxies may
be a way to reduce the overall network traffic and congestion. With this
reduction, unique web pages that must be retrieved directly from the source will
also transfer more quickly. In addition, unique pages may also contain a number
of common elements, which could benefit from some form of multicasting, as
discussed above.

Bibliography

[Bur95] E. Burns. Webcast documentation. The National Center for
Supercomputing Applications, University of Illinois at Urbana-Champaign, May
1995. http://www.ncsa.uiuc.edu/SDG/Software/Xmosaic/CCI/webcast.html

[Cla95] R.J. Clark and M.H. Ammar. Providing Scalable Web Service Using
Multicast Delivery. Proceedings of 2nd International Workshop on Services in
Distributed and Networked Environments (SDNE 95), June, 1995.

[Don95] J.E. Donnelley. WWW Media Distribution via Hopwise Reliable
Multicast. Third International World-Wide Web Conference, April 1995.

[FJGFBL97] R. Fielding, J. C. Mogul, J. Gettys, H. Frystyk, T. Berners-Lee.
Hypertext Transfer Protocol -- HTTP/1.1, January 1997. RFC 2068.

[FF98] S. Floyd and K. Fall. Promoting the Use of End-to-End Congestion
Control in the Internet. Technical report, LBL, February 1998. Submitted to
IEEE Transactions on Networking.

[Ham95] M. Hamilton. Multicast Approaches to World-Wide Web Caching.
Technical Report 988, Department of Copmuter Studies, LUT, August 1995.

[Hei97] John Heidemann. Performance Interactions Between P-HTTP and TCP
Implementations. Computer Communications Review, 27(2):65--73, April
1997.

[Kru98] H.Kruse, M.Allman, J. Griner, HTTP Page Retrieval over
Geostationary Satellite Links, in preparation.

[PGA98] J. Pugsley, J. Griner, and M. Allman. NASA LeRC Network Traffic
Analysis. Technical report, NASA Lewis Research Center, October 1998. In
preparation.

[Shi97] M.K. Shin. Extending the World Wide Web for Multicasting an HTML
Document. Proceedings of INET’97, Internet Society, June 1997.

