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Abstract

Spam is a never-ending issue that constantly consumes resources to no useful end. In this paper,
we evaluate the efficacy of using a machine learning-based model of the transport layer
characteristics of email traffic to identify spam. The underlying idea is that the manner in which
spam is transmitted has an impact that is statistically observable in the traffic (e.g., in the network
round-trip time or jitter between packets). Therefore, by identifying a solid set of traffic features
we can construct a model that can identify spam without relying on expensive content filtering.
We carry out a large scale empirical analysis of this idea with data collected over the course of one
year (roughly 600K messages). With this data, we train classifiers using machine learning methods
and test several hypotheses. First, we validate prior results using similar techniques. Second, we
determine which transport characteristics contribute most significantly to the detection process.
Third, we analyze the behavior of our detectors over weekly and monthly intervals and in the
presence of major network events. Finally, we evaluate the behavior of our detectors in a practical
setting where they are used in a filtering pipeline along with standard off-the-shelf content
filtering methods, and demonstrate that they can lead to computational savings in practice.
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1 Introduction

Spam is clearly an ongoing challenge for both network opesand users. Spam imposes many costs from
simple network capacity, computation and storage costsdoproductivity issues that arise as people man-
ually filter spam that is not automatically caught or worssel legitimate messages in the maze of filters
our messages now must traverse. While in general, spanini@ter one form or another works reasonably
well in terms of keeping spam away from users without drog@rcessive legitimate communication, the
costs of this filtering are higbehind the scened-or instance, computational complexity issues arise with
parsing or tokenizing email, database lookups, etc. Fuyrttepending on the setup the storage require-
ments of retaining a “junk” folder for users to pick throudhhiey suspect a lost message is also high. For
instance, one of the authors’ “junk” folders consists of 6B bf messages over the last 30 days. In addi-
tion, spam represents an arms race whereby spammers atantiyndeveloping new ways to circumvent
filters (by adjusting their content, where they transmitrsgeom, etc.) while network administrators are
constantly updating their tools and databases to keep spamfeom their users. Therefore, while a users’
viewpoint might well be that spam appears to be a largelw&! problem the reality is quite different for
administrators and operators.

A number of recent efforts have involved the notion of usiegnork or transport layer features of email
traffic to build a model that can disambiguate spam and hamil §&@a 6, 14]. For instance, email that
comes from bogus IP addresses or does not follow the us@atiszibution of email might be more likely
to be spam. The overall thrust of these efforts is to try taucedthe cost of spam filtering by either making
good decisions without relying on computationally expeasiontent filters or by making stronger decisions
such that (some) spam can be safely thrown away and thus comigea storage burden.

Our work is inspired in particular by [6], which suggesteattthe way spam is sent causes certain
transport-layer artifacts that can be detected, but tleedifficult for a spammer to alter in a meaningful way.
For example, the act of saturating a link with spam (e.gmfeoDSL-connected bot) leads to contention for
the scarce uplink capacity and therefore causes metritsagithe number of lost segments and the round-
trip time (RTT) to increase. A spammer could send spam at afaate to avoid triggering the tell-tale
transport features, but this would also be helping to sdtesoverall spam problem.

While the initial experiment in [6] is promising, our work kes the following key contributions.

e We propose and validate a new methodology for automaticloeweent of ground truth (Section 3).
The availability of ground truth is crucual in rigorous avation of any classification technique. Yet
obtaining ground truth involves the following hard dilemnterge-scale corpora make hand-labeling
of objects infeasible while small-scale corpora raise ¢®about the representativeness of the results.
We believe our methodology for ground truth developmenitlvélapplicable beyond the scope of our
current work and become generally useful in evaluating splassification techniques.

e We use rigorous experimental methodology in our study {Seet). We use ten-fold cross valida-
tion to evaluate our methods and report true positive arss fabsitive rates, together with Receiver
Operating Characteristic (ROC) graphs, which we use tatelgerating points for practical use of
our approach. We perform in-depth feature analysis inoly@din expanded set of transport features.
We assess the efficacy of using decision trees for the tranisgyer models and provide an intuitive
interpretation of the resulting classifier.

¢ We evaluate the utility of transport-level features on gdascale corpora of email messages collected
over an extended period of time. Our data set includes+80fthessages received at ICSI over the
course of one year compared to around-K8messages (with only 200 hams) used in prior work [6].
In particular, our data set allowed us to consider the agingerties of the classification models built



| | Sep | Oct | Nov | Dec | Jan | Feb | Mar [ Mar-All | Apr | May | Jun | Jul | Aug |
[ Msgs. || 377K | 467K [ 279K [ 316K | 291K | 241K | 245K | 1.2M [ 306K | 279K | 302K | 317K | 292K |
Outgoing 104K | 79K 71K 46K 47K 42K 36K 168K 40K 41K 38K 49K 54K
DNSBL 123K | 271K | 120K | 203K | 176K | 138K | 148K 713K 190K | 165K | 185K | 174K | 165K
Unknown 21K 20K 10K 8K 13K 7K 8K 34K 15K 11K 21K 31K 20K
No Msg. 34K 24K 23K 10K 9K 10K 10K 42K 9K 9K 7K 8K 6K

Other Prob.|| 10K 13K 7K 1K OK 1K OK - 3K 5K 8K 8K 5K
Spam 67K | 44K | 33K | 30K | 32K | 26K | 27K 121K 27K | 30K | 26K | 30K | 26K
Ham 18K 16K 16K | 18K | 17K | 16K | 18K 80K 22K 18K 18K | 18K | 15K

Table 1. Dataset characteristics. “Msgs”:Total emailfitafOutgoing”:Outgoing email, “DNSBL":DNS
blacklist filter, “Unknown”:Invalid user, “No msg.”.No tdéxin email, “Other”.Other problem,
“Spam”/”"Ham”:Final number of ham and spam we process.

over transport-level features, and their resilience obmagtwork events (our data spans the McColo
shutdown period) (Section 4.2).

e Using a prototype implementation of our approach, we evaltlee deployment of a transport-level
classifier proposed in [6] where the transport-level cfassis used as a first-stage filter in front of a
content filter (Section 5). By coupling our propotyped di@siswith an existing content filter, we are
able to concretely quantify savings in processing costs.

Our overall finding in Section 4 is that transport layer feasucan classify spam with 85-92% accuracy.
Further, the transport attributes are fairly stable oveetie.g., the accuracy of an 11 month old model is
still roughly 73%). We evaluate individual features to detme their importance, both in isolation and in
conjunction with other features, and find that features hbugorrelated with the round trip time, sender’s
OS and connection bandwidth are relevant to spam deteckioally, we demonstrate that just using the
transport layer classifier to throw away what appears to bardhstances of spam and feeding the rest to
traditional content filters significantly decreases theraeesources required to process each message.

2 Data Collection

As part of our general monitoring activities we collect fodintent packet traces from the border of the Inter-
national Computer Science Institute (ICSI). Retainingatth traces permanently is prohibitive in a number
of ways and therefore the ICSI traces are retained only teanjps—essentially until their operational rele-
vance for forensics and troubleshooting has diminishedtti® study we retained packets involving ICSI’s
two main SMTP servers.The dataset we use in this paper covers one week each moathl {ththrough
the 18") from September 2008 through August 2009. Further, to gaditianal granularity we collected
data from the entire month of March 2009 as described in theraxents presented beldw\e only con-
sider mail to ICSI users and not outgoing mail from ICSI ugassthis latter would introduce significant
bias in the transport characteristics because the two SMVeIs and ICSI’'s connectivity would influence
them strongly).

ICSI's standard email setup involves using the Spamhaus SBL and PBL DNS blacklists [23] to
help mitigate the impact of spam. SMTP transactions withklisted hosts are terminated by the SMTP

1We do record email not using one of these two servers, bue sinsome cases our tools rely on the notion of a well-known
mail server to form an understanding of directionality, welede this traffic. The excluded traffic is a relatively shiedction of
the SMTP traffic recorded. For instance, we exclude 0.3%e8TP packets and 0.5% of the SMTP bytes on the first day of our
data collection.

2Unless explicitly noted data from “March 2009” should beeipreted as the standard one-week of data.



daemon with an error delivered to the remote host. Unfotaipdhese transactions do not give ésgny
way to understand if the message is actually spam ahé (chance to observe a number of our transport
level features (described below). So, while ideally we wauaklude these messages in our study it is not
operationally feasible to do so within our dataset. Themefee do not include any connections that are
terminated by the DNSBL mechanism in our study. We do notetths setup is an operational reality at
many institutions and therefore we do not feel that assuraif@NS blacklist as a first step in the spam
filtering process reduces the value of our findings. In faltéring off such emailsnaymake our job more
difficult by removing some of the more egregious sources afrsfpaving us to contend with only more
subtle spammers.

The characteristics of the data are given in Table 1. Thensbgmup of rows denote messages that have
been removed from processing in our analysis. Per the ahag®ing email and connections terminated
based on DNS blacklists both exclude a large number of mesdagm our corpus. However, a number
of additional problematic messages were identified. Thé&fiown” row indicates messages aimed at an
invalid ICSI user—and therefore the message itself is ndebvered to ICSI. The cause of these could be
a simple typo on a user’s part, but it is more likely that mdghese come from dictionary-type spamming
(i.e., trying to send to bob@icsi, alice@icsi, etc.). Aduhtlly we find many delivery attempts are made
without yielding an actual message we can analyze (dendtiednisg.” in the table). Finally, there are
myriad problems that creep into the process in small numdnedsare collected into the “other” category
(note, all our data contains such issues, but in some casgsaith rare enough that rounding causes the table
to list no such errors).

The final two lines in Table 1 show the number of spams and hamadh month to calibrate the reader.
The specifics of how we derived these numbers is given in tkieseetion.

From our corpus of packet traces we B® [18] to re-assemble email messages from each of the
incoming connections argpamflow[6], Bro andpOf [25] to generate the transport layer characteristics of
each connection. We use the messages themselves to deralop ¢ruth (as described in the next section).
Table 2 lists the transport-layer features we distill frdra packet traces. Note “local” indicates one of the
two ICSI mail servers that are near the packet tracing vanpagnt, while “remote” indicates the non-ICSI
host that is connecting to the ICSI mail server. In other wptte “remote” host is sending mail to the
“local” host. Features marked with a*were derived byBro, those marked with a¥” were derived bypOf
and the remaining features were obtainedspamflow? Finally, we place aB next to those features that
are common between our study and the Beverly [6] study.

The features we use in our analysis were chosen for two bessons: ) because they were used in [6]
and had some rough agreement with our intuition di}dxere aspects of the traffic that our intuition led us
to believe might be useful. We tried to be liberal in addingtfees to our list. Our goal is not to base our
entire analysis on our possibly ill-informed mental mogdblg rather to use our intuition as a starting point.
In Section 4.3 we evaluate empirically the efficacy of eacttuiee we have chosen.

We have broken the features into three groups in Table 2. Tdtecfitegory focuses on the nature of the
spam itself (although, derived without looking at the cotteWe include only one such feature: the number
of bytes transmitted by the remote host. This feature isiohed because our general mental model suggests
that spam is generally smaller than legitimate email. Thersg group of features consists of assessments
of the remote host itself—e.g., an inference of the opegatiystem. Thatl feature is a hybrid of sorts in
that it is the residual TTL after traversing the network andispends on the initial TTL set by the remote
host (which varies based on operating system) and the nushbeps from the remote to local hosts (which
[14] suggests can be used to help predict spam). The finaHasagest—qgroup of features listed in the table

3Note, we derived these few features outsgamflowpurely as a convenience and not for any fundamental reaseteiieve
that all transport layer features could be readily derived single place—likely the TCP implementation itself in arexational
setting.



| Feature | Description |
| bytecount | Number of unique bytes transmitted by the remote host. |
os’ Operating system of remote host.
ttl IP TTL field from SYN received from remote host.
ws Advertised window size from SYN received from remote host.
3wh$ Time between the arrival of the SYN from the remote host angadrof ACK of the
SYN/ACK sent by the local host.
finslocal? Number of TCP segments with “FIN” bit set sent by the locallrsaiver.
fingremoté® Number of TCP segments with “FIN” bit set received from thenote host.
idle? Maximum time between two successive packet arrivals framote host.
jvar® The variance of the inter-packet arrivals from the remotg.ho

pktssent / pktsrecvd | Ratio of the number of packets sent by the local host to the
number of packets received from the remote host

rstslocal® Number of segments with “RST” bit set sent by the local maivee

rstsremoté Number of segments with “RST” hit set received from remotstho

rttv Variance of RTT from local mail server to remote host.

rxmt local? Number of retransmissions sent by the local mail server.

rxmt.remote® Approximate number of retransmissions sent by the remate ho

throughput The number of unique bytes received from the remote hmagée¢ounk divided by the

duration of the connection.

Table 2: Transport features

attempt to capture the “busyness” of the network in a vaiétyays. The intuition behind these features is
that a bot sending massive amounts of spam may clog the rietimoreasing loss (retransmissions), RTT,
the jitter while decreasing overall throughput. Some mesiwork [20] has mentioned that individual bots
send spam at a low rate. However, their results pertain toghessink domain and to the overall amount of
spam over trace duration rather than the rate over fine-gpldime intervals.

Finally, we note that our feature list is not identical tottliged in [6]. As indicated in the table, we
have added several features not used in the previous studgdition, we removed three features, as well:
packetq(in each direction)cwndOandcwndmin The number of packets is closely related to Iby&ecount
and pkts sent/pktsrecvd features in our list. The twowndfeatures are actually not about the congestion
window, but about the advertised window. TbwndOfeature tries to capture the case when the remote
host goes into a zero-window probing mode because the lasdlHas exhausted some buffer. Further,
the cwndminfeature likewise assesses the occupancy of the local TGErbiYe excluded these because
they did not depend on the state of the remote host or the rieppath. Further, [6] shows these to be not
particularly useful in detecting spam. In addition to chiagghe set of features note that some of the names
of the features have been changed to aid clarity.

3 Ground Truth

Assessing any automatic classification technology reguire establishment of ground truth, which is our
case means predetermination of which messages are spamhaidase ham. Establishing ground truth
presents a difficult challenge in large datasets such as ddasd-labeling is the best way to establish
ground truth as was done for the 18K messages used in [6]. Woywdhere are two problems with using
hand labeling to generate ground truth. First, hand labadies not scale in terms of number of messages
(due to the time consuming manual process) or the breadtheesages (due to ethical concerns relating
to reviewing email). Second, the definition of “spam” is nielmg and a single person cannot always tell
whether a given message is “spam” or “ham”. For instance,etiomes a travel advertisement might be
unsolicited junk and sometimes it might be the result of teerwsigning up to receive notifications of



particular travel deals. Therefore, hand labeling the4800nessages from across ICSI is not feasible.
Using a single spam filter as in [12] would potentially bias tfetection techniques we develop by making
our detection mimic a known detection scheme and fall pregnip blind spots present in the given tool.
(Note, [12] is not developing new detection methodology, father characterizing spam traffic within the
context of a working operational setup and therefore theafisesingle strategy is less problematic and
logistically understandable.)

Consequently, to produce approximate ground truth we dpeel an automatic labeling procedure that
first involves four open source spam filters, each with (lgngadependent methodologies for classifying a
message. We employed the following tools:

SpamAssassin:We used spamassassin 3.1.7 (current when we started ostigateon) [2, 22]. SpamAs-
sassin includes a series of tests and signatures that itaisesre a message—with a threshold then
used to determine if the message is spam or ham. We used thétdbfeshold of 5.0. SpamAssassin
has a Bayesian learning algorithm and several non-loct vésereby remote databases are queried.
We did not use either of these features (in an attempt to stigpendent of the other tools).

SpamProbe: We use SpamProbe v1.4b [7] which is a naive Bayes analydishat works on both single
and two-word phrases in email. SpamProbe calculates thmabpildy that the given message is spam
and classifies anything with a probability of at least 0.@ @efault) as spam.

SpamBayes: We use SpamBayes v0.3 [16] which is another naive Bayegsasabol. As with SpamProbe
this tool tokenizes the input and calculates the probghalitnessage is spam. While we use two basic
Bayesian tools we note that the details of the implemematiatter and these tools disagree for 30%
of the messages in our January 2009 dataset (as detailed)belo

CRM-114: We use the Orthogonal Sparse Bigrams classifier in CRM-1006@704a-BlameRobert [1].
CRM-114 is a Bayesian filter that calculates the probabditpessage is spam using features corre-
sponding to pairs of words and their inter-word distanceg. rwi CRM-114 using the standard de-
faults except for the “thickhreshold”. CRM-114 classifies messages as spam, ham areunstile
operationally useful, since we are trying to determine gbtruth, we force CRM-114 to eliminate
the unsure classification and make a decision by settinditiketiold to zero.

The latter three tools above need to be trained before the\clessify messages. That is, the tools
have no built-in notions of ham and spam, but must be giveeldabsamples of these two classes to learn
their characteristics. In our study we used the TREC emadufrom 2007 [9] (the latest available when
we started this project). The corpus includes 25K ham messagd 50K spam messages. The messages
that comprise the corpus arrived at one particular mailesaover the course of three months. A hybrid of
automated techniques and hand labeling was used to catedgloe messages. This corpus is far from ideal
in that the TREC corpus is dated relative to the data we deltefor our study. This is problematic because
spam is a constant arms race between spammers developingeclewgues to evade filters and filters
becoming increasingly savvy about spamming techniquesthé&il we train each tool one time, whereas
in a more realistic setting the tools get regularly trainednew types of emails (either automatically or
by being corrected by users, depending on the tool). Thdt aaiillustrated below a manual check of our
ground truth indicates that our overall procedure for aitey ground truth is accurate despite the less than
ideal starting point.

An additional note is that the tools chosen do in fact offéfieding views on our email corpus. Table 3
shows the pair-wise disagreement between tools used irtuly. €ven the best aligned tools (SpamBayes
and CRM-114) differ in 19% of the cases. This illustrateg tha have chosen heterogeneous tools—which
we believe is a key to the following procedure for generagngund truth because the tools can effectively
check each other.



| Tool 1 | Tool2 | Disagreement]

SpamAssassin  CRM-114 37%
SpamAssassin SpamBayes 39%
SpamAssassin SpamProbe 23%
SpamBayes | CRM-114 19%
SpamBayes | SpamProbe 30%
CRM-114 SpamProbe 31%

Table 3: Pair-wise percentage of disagreement between dpéeution tools used in developing ground
truth.

Our strategy begins with each tool making a judgment on aagesand then combine these judgment
to derive the overall conclusion. How to use results fromtipld classifiers has been the subject of previous
work (e.g., [15]), and our initial inclination was to use aofethe existing methods, namely, the “majority
voting” scheme whereby a message was classified as spamgnaimed truth if three or four of the tools
judged it as spam. Otherwise, we considered the message ham.

To determine whether our ground truth is sound we manualthy specked a subset of messages from
January 2009. Ideally, we would simply have picked a randobset of all messages and verified the clas-
sification in our ground truth. However, since we are workwvith real email the content could be sensitive
and therefore we were not able to use an ideal procedure.rticydar, we did not manually examine mes-
sages that the spam filters universally agreed were ham émitixception being sketched below) due to
concerns over looking through users’ email. However, werteined that if at least one tool indicated that
a message was spam then the message was likely to not baeveeasd therefore manually looking at a
random sample from across the institute was reasonablerefbihe, we chose two kinds of messages for
manual checking:if those messages that could be—in an automated fashiondydesermined to involve
the third author of this paper (the only author with accesthéoraw messages) and were marked as ham
by all spam filtering tools (this yields 646 of the 35K suchaclg ham messages in the corpus) aiijl &
uniformly random sample of 2% of the messages whereby atdeastool classified the messages as spam
(this yields 920 of the 47K messages marked as spam by apieasool in our corpus).

We found that 5 of the 646 “ham” messages to actually be spdrthe®20 spam-suspected messages
selected, we found that 912 were indeed spam. Of these,weese218 spams that were classified as such
by only one tool, 362 spams that were classified as such bytaalyools, 250 spams that were classified
as spam by three tools and the rest were classified as spanhfoyralools. This showed us that using
a majority vote criterion would result in unacceptably higlse negative rates (abo2t8/912 = 23.9%,
even after breaking ties in favor of spam). On the other haadsider the following strategy: classify an
email as spam if at least one tool says it is spam, and classif/ham otherwise (i.e. if all tools agree it
is ham). This strategy has &rf(912 + 5) = 0.55 + 0.07% estimated false negative rate (FNR, i.e. spam
classified as ham), and&( (646 — 5 + 8) = 1.23 + 0.11% estimated false positive rate (FPR, i.e. ham
classified as spam). The overall estimated error rate istRéf917 + 649) = 0.83 & 0.09%. To verify
that this is not an artifact of the samples being chosen framuadry 2009, we then carried out similar tests
using messages from September and May and obtained corgezablts—(0.3% FNR, 2.39% FPR) for
September and (0.28% FNR, 1.56% FPR) for May. Thereforegdban our samples, this strategy appears
very accurate.

In retrospect the any-one approach is intuitive in thattloé-shelf spam filters are conservative in clas-
sifying a message as spam because the consequence of aofatse fblocking a legitimate mail) is more
severe than that of false negative (allowing a spam to rdaeuser). This causes the errors to go in the
direction of identifying less spam. The manual checkingnghthat being more aggressive in combining

“Note, we used both incoming and outgoing messages as treedfasir collection and therefore the numbers do not directly
align with those in Table 1.
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Figure 1: Fragment of a decision tree learned from the Jgr2(09 data.

the filters’ judgments can mitigate this effect and redueediror significantly, which is important since the
cost of inaccuracy is symmetrical when determining grouatht(as opposed to an operational setting).

We note that we do not use the results of the manual inspettidrain our classifier. In fact, the
messages chosen for manual inspection were removed framarttaender of the analysis in our experiments.
Further, note that we are developing ground truth by obagreontent features Our experiments in the
following sections involve classifying messages basetramsport features We believe that even if there
is a small error in our ground truth that error does not biasresults because the content and transport
features are (significantly) independent.

4 Empirical Evaluation

We evaluate several hypotheses in our work. First, we hygsith that transport characteristics of a message
provide a good indication of whether a message is ham or spamiher, we also hypothesize that these
characteristics stay stable over periods of time. Finallyhypothesize that using transport characteristics
as a filter before using a content-based approach will leads@vings in processing time as compared to
using a content-based filter by itself. Along with these hizpses, we also design experiments to eval-
uate the effectiveness of individual transport charasties when used in isolation or together with other
characteristics.

To test our hypotheses, we construct predictive models fsanmdata and evaluate them according to
several performance criteria. The models we chose for otk aredecision tree§l7], which are commonly
used in machine learning. Decision trees work using the ideacursive partitioning at each step, they
choose a feature (for us, this is a transport charactgristid use it to partition the data. This is repeated



until a partition only has examples from one category (forumil we get a partition consisting only of ham
or spam), which becomes a leaf node annotated with thatagtefp classify an example, it is “threaded”
down the tree by checking each test until it reaches a leahigpoint it is assigned the category associated
with this leaf. Decision trees have several advantagesuioporposes. First, they are computationally very
efficient: learning a tree takes on averagénn log m), wherem is the number of examples amdis the
number of features, and classification is jugtd), whered is the depth of the tree. This is important for
us because we are working with large data sets. Secondjaretises are easy to understand for people.
Once constructed, we were able to inspect the trees andedasights applicable to our problem. Third, it
is easy to modify the tree construction procedure to incatedlifferential misclassification costthat is, to
produce trees that take into account that mistaking hampfmmsis in general a worse error than mistaking
spam for ham. Finally, preliminary inspection of our dateeaded that some of our features have “threshold
effects.” Suppose for a featurfe if f < x, a message is more likely to be spam;iK f < y a message is
more likely to be ham, iff > y, a message is more likely to be spam. In such a case, a detris@®with
successive tests fgr < x and f > y will easily lead to the desired classification.

To learn decision trees from our data, we used the implertientaf decision trees in the machine
learning toolkit Weka [24]. This implementation is called48.” We ran this with the default parameter
settings of “-C 0.25 -M 2" in all cases except where noted. paameter”’ denotes a confidence threshold
used for pruning the decision tree after construction aedpdrameterl/ denotes the minimum number
of examples in any leaf of the tree (i.e., once the number afrgples reaches this value, the partitioning
process stops). These parameters have not been tuned fgpiica@on. It is possible that improved results
might be obtained if these parameters were tuned furthemarfgf a decision tree learned on one month’s
data is shown in figure 1 (we discuss this tree in more det&kiction 4.1).

To evaluate the performance of our tree models, we measuegasenetrics using stratifiet)-fold cross
validation (implemented in Weka). This cross validationgadure is standard machine learning methodol-
ogy and produce$0 independent test sets that steatifiedbased on the class label, i.e. the proportions of
ham to spam in each fold is the same as the overall proportioeach iteration, we learn a tree using J48
on nine folds, then evaluate it on the held out fold (the “tet). We report the average value of several
metrics on thel0 folds. First, we report predictive accuracy on the test 3éiis is a general measure of
agreement between the learned trees and the ground trgstédished in Section 2). Further, we report the
true positive rate (TPR), which is the fraction of spam thasworrectly identified as such by our models.
We also report the false positive rate (FPR), which is thetiibpa of ham that was erroneously classified as
spam. Note that we treat spam as the positive class. Fimadlgonstruct Receiver Operating Characteristic
(ROC) graphs by thresholding a probability measure refddsteJ48. This probability indicates, for each
prediction, the “confidence” of the classifier in the preidict To plot an ROC graph, we threshold this
confidence measure and plot the TPR against the FPR at eath Plois graph gives us a detailed view of
the behavior of the classifier and allows us to choose a daitgierating point that trades off an acceptable
false positive rate against the true positive rate. As a samrstatistic for the ROC graph, we report the
“area under ROC” (AUC), which has been shown to correct s¢vezaknesses of accuracy as a metric [19].

4.1 Performance of Transport Layer Characteristics

Our first experiments test the hypothesis that transporackeristics of a message provide a good indication
of whether a message is spam. To do this, we perfoprfold stratified cross validation using data from
each month separately and report the averaged metriceediibove. These results are reported in Table 4.
ROC graphs associated with September 2008 and January 208Bavn in Figure 2.

From the table, we first observe that it is indeed the casettthasport characteristics provide a rea-
sonable discrimination between spam and ham. With ouriikxss for each month, we obtain accuracies
between 85% and 92%. Note that the majority class predittat,always predicts “spam,” has an average



False Positive Rate

Month Accuracy | TPR | FPR | AROC
September 200§ 0.931 0.964 | 0.194| 0.938
October 2008 0.898 0.942 | 0.222 | 0.917
November 2008| 0.885 0.919| 0.185| 0.919
December 2008 0.892 0.920 | 0.155| 0.927
January 2009 0.876 0.908 | 0.182| 0.914
February 2009 0.869 0.897 | 0.176 | 0.907

March 2009 0.877 0.898 | 0.154 | 0.917
April 2009 0.890 0.899 | 0.120| 0.931
May 2009 0.880 0.902| 0.157 | 0.917
June 2009 0.868 0.891| 0.165| 0.906
July 2009 0.883 0.910 | 0.164| 0.917
August 2009 0.886 0.913| 0.160 | 0.917

Table 4: Cross validated accuracy, true positive rate (TREge positive rate (FPR) and area under ROC
(AROC) of decision tree models for each month'’s data.
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Figure 2: ROC graphs for standard and cost sensitive tre&efatember (left) and January (right). Note that
while the cost sensitive trees sometimes have lower pedica overall (lower AROC), they have higher
TPR at low FPR.

accuracy of about 50% to 75%. The upper bound is an artifégeptember 2008, as McColo was shut down
soon after and the fraction of spam drops significantly. Téssilt is in agreement with initial findings [6].
We note that the true positive rate is very high in each casiigating that most spam can be detected via the
transport characteristics. However, the false positite isalso quite high for these classifiers, indicating
that ham emails also occasionally share similar transpg@tacteristics. Because of this, it would not be
practical to use this classifier as the only basis of spanctetein a real system. We address this issue
below using acost-sensitiveclassifier. In Section 5 we present a realistic evaluatiothisf system as a
pre-filter for a content classifier.

In figure 1, we show a fragment of a decision tree obtained wlsimg the data from January 2009.
In this tree, each leaf is labeled with the “majority classg,, the category associated with the majority
of messages in that leaf. The most important discriminarthig tree is the length of the initial 3-way
handshake. The importance of this feature has also beed pmeiously [6]. We have also observed that
the constan®.192 seconds associated with this test seems quite stable aliffesent trees. A possible
hypothesis to explain this might be a correlation with theggaphical origin of spam; this is something we
are currently investigating. The next feature in the treafith feature, which is an indication of how many



router hops a message has gone through. This may seem likmiecotuitive feature to use near the root
of the tree. However, we found that the defaulixTTLvaries across operating system: Windows XP and
related operating systems use an initial TTL of 128, whileuxi uses 64. Accordingly, in our data, ttie
feature is strongly correlated with the operating systamd,ia fact provides a finer grained discrimination
because of its continuous-valued nature. So we believettest forttl > 69 is effectively a determination
between Windows or Unix-based remote hosts. If this tesuis, then the originating machine was likely
a Windows-based machine and the message is likely a Spafihe next test checks for a reset in the
connection. If there was a reset from the remote host to tert@ithe connection we find it likely this
message is spam; if not, it is more likely to be ham. If thers n@areset, the tree looks at ratio of outgoing
to incoming packets. The expected case is for this to be drOum due to delayed acknowledgments [5]
which calls for one ACK to be sent for every second data segneerived (unless a second data segment
does not arrive within a small amount of time). However, &ddal factors can move this ratio towards
1, including ) some operating systems acknowledgment strategies #rentit more ACKs early in the
connection to help open the congestion windaw, feliance on the delayed ACK timer to strobe ACKs into
the network because of small windows and long RTTs aiill fecause smaller transfers don’t have many
opportunities to aggregate ACKs. We find that with SMTP tcadind small email messages the ratio tends
towards 1 for this last reason. The SMTP control traffic is syetric (with requests and responses) and
therefore has a ratio of 1. When the message is small therevardata packets and therefore coalescing
ACKs is either non-existent or done in small enough numbsasthe overall ratio is still closer to 1 than
to 0.5. In our January data we find that when the ratio is clusér 85% of the messages are below 6K in
size and all but 1 are less than 11K in size. On the other héiike ratio is closer to 0.5, there is a wide
distribution of message sizes, with several messages 0@&BL. Therefore, the ratio turns out to be largely
a proxy for message size. When the ratio tend more towardsh@ 3ree checks thmaxTTLfeature again.

If this indicates that the message has gone through mukipiter hops (low TTL), it is more likely to be
spam, else if is more likely to be ham. For the “small” messagfee tree then checks the round trip time
variance. This feature behaves in an interesting way. # ibd small, this suggests the message had very
few packets (since they will then arrive in quick successind be more likely to experience similar network
conditions) and so is likely to be spam. For example, for aan@009 data, of the examples that reach the
decision tree node with thettv < 0.001 check and have this small variance, 85% are 6K or less, all but
one are less than 9K and 75% are spam. If this feature is tge (#rere is some delay between packets and
also a lot of variation in the delay), this may indicate tharection experienced congestion and is likely to
be spam as well. In the “normal” range—there is some delayndutoo much variation in the delay—the
message is likely to be ham.

As mentioned above, though the accuracy is reasonable PRddt our initial classifiers is too high for
practical use. This can be remedied in two ways. First, favargclassifier, we can use its ROC graph to
select an operating point with an acceptable FPR. At thistpthe TPR will be lower than the maximum
possible; however, this might be acceptable if for exampeplan to use this to pre-filter messages before
deeper analysis methods are used. This method does nothatlerarned classifier. We can also improve
the FPR if we incorporate into the learning process the fattfalse positives (i.e., ham classified as spam)
are less desirable than false negatives (i.e., spam ctassisi ham). This can be done throudifierential
misclassification costdHere, we specify a cost matrix that tells the learning atpr how much each type
of error will be penalized. In Weka, we run the CostSendiiassifier implementation using a cost matrix
that specifies a cost ab for a false positive error against a cost of 1 for a false regal his cost matrix is
then used by J48 when learning the tree (as before, theselazoa not been tuned for this application). The
cross validated performance of the resulting trees are shovable 5. The ROC graphs for these trees for

®It is important to remember that the presented tree is jusiragh the full tree, which contains over 1000 nodes. Thetfek
does not judgell email messages wittt! > 69 to be spam, although theajority of such messages are spam.

10



Month Accuracy | TPR | FPR | AROC
September 2008 0.888 0.877 | 0.072| 0.932
October 2008 0.826 0.786 | 0.063 | 0.922
November 2008| 0.796 0.712| 0.033| 0.905
December 2008 0.806 0.707 | 0.029| 0.929
January 2009 0.790 0.693 | 0.030 | 0.917
February 2009 0.783 0.663 | 0.027 | 0.907

March 2009 0.801 0.684| 0.023| 0.915
April 2009 0.809 0.662 | 0.017| 0.927
May 2009 0.810 0.712| 0.028 | 0.920
June 2009 0.772 0.634| 0.030 | 0.902
July 2009 0.795 0.694 | 0.034| 0.920
August 2009 0.796 0.698 | 0.037 | 0.919

Table 5: Cross validated accuracy, true positive rate (TRESe positive rate (FPR) and area under ROC
(AROC) of cost-sensitivalecision tree models for each month’s data, where the réfimise positive cost
to false negative cost is 10:1.
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Figure 3: Frequency histograms of tBehsfeature for spam messages in January 2009 and misclassified
spam in January 2009. One outlier witvhsvalue exceeding 100 was deleted for ease of presentation.

September 2008 and January 2009 are plotted in figure 2. Frese results, we observe that, as expected,
the false positive rate has dropped significantly. Of cquteefalse negative rate has risen and consequently,
the accuracy has dropped. However, from the ROC graphs vedimaitthese trees have higher true positive
rates at lower false positive rates. As mentioned beforeysecthese results to choose an operating point
with an acceptable tradeoff in a filter pipeline. This is dssed in more detail below in Section 5.

It is useful to ask if there is a way to characterize the setxafrgles that are misclassified by the
trees learned by this process. To do this, we constructéolgngns that represent the distribution of values
of each transport feature in (i) all ham and spam messagegiiatdose ham and spam messages that
were misclassified by the learned trees in January 2009. ¥ferin a correlation measure between the
histograms corresponding to each feature, to discover imilas they were between the two groups. We
show an example of the two histograms for the feature “3whdfigure 3 and a table of correlations in
table 6. Using this analysis, we found that for the spam thahisclassified, six features have low or
negative correlation with the other spam messages. In atbeds, these six features look very unlike
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Feature Ham Spam

idle 0.077 | —0.376
3whs —0.042 | —0.543
jvar 0.139 | —0.309
(O 0.775 | —0.174

bytecount | 0.159 | —0.501
throughput| 0.283 | —0.498

Table 6: Feature correlation between ham misclassifiedam $y cost-sensitive trees and all hadatn
column), and for spam misclassified as ham and all s@gmarfcolumn), for January 2009.

l T T T T 0.45
Accuracy
0.95 True Positive Rate------ 0.4 I
| : —
09p \L g 035 1
A i i A A g —
o 0.85 | Frmm A mrAm -k =] 0.3 .
T 7 * 3
[vd
0.8 1 i\ ® 025 ]
— 2
0.75 ~- £ o2
0.7 0.15
0.65 0.1
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Months Between Training and Use Months Between Training and Use

Figure 4. Change in accuracy and TPR (left) and FPR (righgy awear for our models.

the features for spam in general. These six featureatss, idle, jvar, OS, bytecoumind throughput
several of which are among the most discriminating featuresir study (this is described in more detail
in Section 4.3 below). We found five of the six features to &lawve low or negative correlation between
the misclassified ham messages and the rest. What is thécagoe of these features? Roughly speaking,
these features identify three properties: the bandwidth@itonnection, the OS of the sender and the size
of the message. Our intuition is that while we expect most Kanspam) to have similar properties in
terms of these characteristics, there will always be aifmdhat will not. Thus there will always be, for
example, some ham that originates from Windows machineswiandwidth connections and some spam
that originates from Linux machines on high bandwidth catioes. So the feature distributions in our
misclassified messages are an indication of the limitatadnssing just network features to discriminate
between ham and spam. To get these classifications correatjlivneed to perform a deeper analysis of
these messages, perhaps using content-level features.

4.2 Stability of Transport Layer Characteristics

In this section, we describe experiments that test the Ingsad that transport characteristics stay stable over
periods of time. To do this, we produce a decision tree udiraj @ach month’s data. We then evaluate these
trees on each successive month, for example, the tree modacJanuary 2009 is evaluated on data from
February through August 2009. For the month of March 200%hawe data for each week. For this month,
we also construct a tree for each week and test it on the follpweeks. In each case, we plot a graph
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Figure 5: Change in accuracy and TPR (left) and FPR (righty éour weeks in the month of March 2009
for our models.

where ther-axis represents the difference in months (or weeks) betwiénen the tree was constructed and
when it was used. For each the y-axis then averages the performance over all month paitsdifiar

by z. Thus for anz value of 2, we average the performance for the trees builtejpteSnber and tested
in November, built in October and tested in December, andgb.fz = 0 represents the average cross-
validated performance over the year (or month for the weekperiment). The results are summarized in
figures 4 and 5.

From these results, we observe that, as may be expectedicinaey degrades slowly over time. How-
ever, the TPR is very stable across long periods of time am@®R is increasing, which partly explains the
degradation in accuracy. The same pattern is seen overuhaviek period in March, although, as might
be expected, to a lesser degree. There are two possiblenatiples for the increasing FPR. First, it might
be that the flow characteristics of ham drift over long timeagus, so that it becomes increasingly difficult
to classify ham correctly as time goes by. Alternativelyisipossible that the FPR is simply tracking the
overall ham-to-spam ratio: in months where there is more,itheFP rate is higher. To check this, in
figure 6 (left) we plot the average correlation across femgtiretween the ham and spam of each month to
the global distribution (i.e., the distribution of eachti@@ when all messages across the year are collected
together). From this figure, if we ignore the first three mantthis was the “McColo” period, discussed
below), we observe that the features of ham are very stalbssatme. Thus it is not likely that the changes
in FPR reflect drift in the network characteristics of ham. When plot the change in the fraction of ham
between pairs of months and compare that to the FPR in figurgt&)( We observe that the FPR tracks
the change in the fraction of ham reasonably well; this setenssiggest that this is the explanation for the
variable FPR we observe. From figure 6 (left), we further okes¢hat while spam in any month exhibits
lower correlation to the global distribution than ham, tleiability of the flow characteristics of spam is
still limited: this may be why the TPR of these models stagblst over long periods of time. However, the
variability that exists appears to have an interestingicgkpattern. We do not know yet if this pattern has
a systematic explanation.

A key network event during the past year was the shutdown @dlw. McColo was a a hosting service
provider that hosted master controllers for several lagmdis. On November 11, 2008, McColo’s two
upstream ISPs cut them off and so the command and controé didtmets was lost. This resulted in a sharp
drop in the overall volume of spam on the Internet. To study B@mnificantly email flow characteristics
might have been changed by this event, we plot the resultedormodels constructed with data from
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Figure 7: Change in accuracy and TPR (left) and FPR (righty awear for models constructed with data
from September through November 2008.

September to November 2008 separately in figure 7. From tessdts, we observe that our models are
in fact very robust, even over such events. While there imareased degradation of accuracy and TPR,
over the long term the performance is similar to that in Feglur The FPR of these classifiers shows a more
discontinuous increase than in the overall case: not oithaffected by the changing fraction of ham, as can
be see from figure 6 (right), but the flow characteristics ahmessages change somewhat after November
2008, which likely contributes to the rapid rise in FPR afteee months.

4.3 Utility of Transport Layer Characteristics

In this section, we report the results of experiments trettwdich transport layer characteristics are useful
in discriminating ham from spam when used in conjunctiorhvaither features. To evaluate features in
isolation, we produce decision trees using just that feamd record their cross-validated performance on
each month. To evaluate features in conjunction with oteatures, we perform “lesion studies.” Here, for
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Feature Accuracy | TPR | FPR

Full Tree 0.886 0.914 | 0.170
Empty Tree 0.638 1.000 | 1.000
3whs 0.777 0.881| 0.426
ttl 0.765 0.858 | 0.422
idle 0.753 0.843 | 0.440
jvar 0.710 0.831| 0.542
pkts sent/recvd  0.695 0.883 | 0.604
throughput 0.690 0.852 | 0.633
bytecount 0.687 0.809 | 0.575
ws 0.682 0.853 | 0.667
rstsremote 0.682 0.846 | 0.932
rttv 0.677 0.931 | 0.807
(0N 0.675 0.737 | 0.508
fins.local 0.659 0.951 | 0.867
rxmt_local 0.649 0.969 | 1.000
rstslocal 0.642 0.994 | 0.644
fins.remote 0.641 0.957 | 0.948
rxmt_remote 0.641 1.000 | 0.672

Table 7: Average accuracy, TPR and FPR when only a singlari& used to construct a tree. The first
row shows the averages for the full tree and the second slmwsatues for the empty tree.

each month, we leave one feature out and record the crasistesl performance of the tree constructed
with the remaining features. Thus, these experiments me#saufeature “adds value” to the discriminating
ability of the treesin the presence dhe other features. Notice that a feature that is valuakikolation may
not be as valuable in conjunction with other features, beedhe quantity it measures might be revealed
equally well by a combination of other features.

The results of using each feature in isolation is shown inlef@ The first row shows the average
cross validated accuracy, TPR and FPR for the full treessaaih months, and the second row shows these
guantities for an empty tree, that always simply predicésrttajority class. Notice that for this tree, TPR
and FPR are both. The following rows show these quantities when only a sifigdédure is used, sorted by
accuracy. From this table, we observe that several of oturies, includingBwhs ttl, idle andjvar, are good
discriminants between spam and ham. Other features, sustsasmoteandrttv, are mediocre discrimi-
nants, while yet others, such s local or rxmt_remoteare very poor discriminants, basically yielding the
empty tree if used in isolation. Even though some featurpsa@pmediocre in isolation, however, they may
still be useful in a tree, where they arenditionedon the values of other attributes. Thus, as we showed in
figure 1,rstsremoteis a useful feature in the tree, when it is conditioned onatenalues of3whsandttl,
though it is not very useful by itself.

The results of the “leave-one-feature-out” lesion studiesshown in figures 8 and 9. In these figures,
we plot, for each feature, the average change in accurady, arfdl FPR if that feature is deleted, along
with 95% confidence intervals. From these figures, we firsendasthat no single feature is critical to the
success of models: even leaving out features su@wéisdo not affect the accuracy of these models by
a very large margin in absolute terms. This indicates thatcboice of features is such that they capture
overlapping aspects about the data: even if one featurddtedgor somehow not measured for a message),
the remaining features are able to pick up most of the sladkoudgh this is the case, however, we also
observe that for certain features, deletion results in asstally significant decrease in accuracy. The
features3whsandttl belong to this category. Further, we observe that thouglevery feature, deletion
results in a small negative change to the accuracy, thowggetbhanges are not statistically significant. In
other words, none of our features are really “noise” feattinat are irrelevant to the problem; so on average,
we do not expect to improve accuracy by removing any of thiéates we currently have.

15



0.03 T r T T+ T+ T+ T T 1T T 1T T T 71T T 0.03 T r T T+ T+ T+ T T 1T T 1T T T 71T T
.. 002} 1 0.02 | 1
Q
® @
=1 0.01 + 1 o 0.01 + 4
8 =
< c
< of 1 of 1
- j=2]

S 5
c  -0.01 1 < 0.01 + 4
ks (@]
)
-0.02 4 -0.02 4
-0.03 I T R S SR S T R SR SR SR TR R -0.03 I T R S SR S T A S SR S TR R
UOJEGJ(_GGJ(_GEU)‘->U)4_-:U)‘ES UOJEGJ(_GGJ(_GEU)‘->U)ZU)‘ES
25385358 € SE =053 25385358 €SE =053
S ES EL g8 3= 3 £ ® ES EL 8T 2= 3 £
S5 o o ® 2 © S 5 o o ) & o °
2 =2 2 2 9 = 0 L > 2 =2 2 2 9 = 0 L >
g*—"ém'@mlzg _5‘9 5~'§m'em'-§ _5‘9
wlgha = £ o E = 3 k= ES
n < = = o X o =
2 2
x x
[=% [=%

Figure 8: Change in accuracy (left) and true positive ragh{y as each feature is left out of the set of
features and the tree is constructed.

5 Operational Use

As a final experiment we turn to assessing the use the mettmpddeveloped in this paper in an operational
setting. We have not actually implemented and deployed dhevfing strategy, but roughly assess the
components to illustrate that the approach is promisingat-world terms.

Given the results in the previous sections, a filter basedamsport-layer characteristics is not accurate
enough to use as the sole arbiter of email messages. Howexean use a filter based on our developed
model as a first pass at filtering. Messages that are detetrtinke spam in this first-pass filter are not
further processed. However, messages determined to berkaunrther analyzed with a content filter. Our
goal is to reduce the number of messages that must be andlyZeeavyweight content filters. For this
experiment, we used the data from December 2008 to developdalrtearned with false positive cost of
100. We then used its ROC graph to choose an operating pdamev@lse positive rate of roughly 0.6%. At
this point, its true positive rate was 42%. We then use thidehto classify messages from January 2009.
This process identifies 14K of the 48K messages as spam. \WWd that all but 90 of these predictions were
correct. Since in this month there were 31K spam and 17K hhenTPR of this pre-filter for January is
45% and FPR is 0.5%, in line with our expectations. The TPBvigl than the results presented in previous
sections due to our tight constraint on the false positite. ra

Transport Classification: The process of classifying messages based on transpodctastics has
two components that we consider in turm) deriving the given features and) evaluating those features
within a particular model.

To determine the effort required to calculate transportiufies we consider the length of timpamflow
requires to process our packet trabeéghis process requires 114 seconds for the January 200®tatas

Next we need to understand the complexity of executing thelddsed decision tree model across each
of the messages in our corpus. We used Weka to directly amaly29K messages from January 2009 in
bulk and the process takes 2 seconds, which illustratesthedst of the procedure (even if bulk processing
is infeasible in an operational system). In addition, wedlated the decision tree produced by Weka into
a Python script, which is then executed for each of the 49Ksagess in our corpus. This process takes
783 seconds. This is clearly a fairly high upper bound on theuwnt of time required for this classifi-

6All the times given in this section were computed on the sammehime. The absolute magnitude of the numbers is not impiorta
and would be different on another host. Our goal is to expleeerelationships between different processing techsique
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Spam Filter | Content-Only | Transport 4+ Content| | Transport + Content l|
(sec) (sec) (sec)
SpamAssassir 3,074 3,143 (-2%) 2,362 (23%)
SpamProbe 1,390 2,001 (-44%) 1,220 (12%)
SpamBayes 9,609 7,778 (19%) 6,997 (27%)
CRM 4,895 4,389 (10%) 3,608 (26%)

Table 8: Real-world simulation results.

cation. In particular, we executed a Python script that dithimg 49K times and that process consumed
746 seconds—illustrating that most of the time (95%) is oomsd by our classification script is in the
overhead of starting and stopping the process and not irotimglexity of the classification task.

In our analysis below we use two different measures of theafdhe ML-based analysis to illustrate the
bounds of the implementation space. Our expectation isathadrking system with kernel-level tracking of
transport characteristics in a TCP implementation coupiigd queries for this information and execution of
the model with the MTA will leave the real cost closer to twoaeds than to 783 seconds. However, for the
purposes of this paper we wish to show the entire spectruratetdre in option/ we sum the 114 seconds
required to derive the transport layer characteristics thed783 seconds required to execute the Python
script 49K times, or 897 seconds as the cost of the ML-bassskification In addition, we calculate the
cost in option/ I as the sum of the 114 seconds required to derive transpeit ¢aaracteristics and the two
seconds required by Weka to bulk classify the 49K messages.

Content Classification: Next, since our goal is to save effort over running all messagrough heavy-
weight content filters, we assess the time required by eatttedbur content filters we used in Section 3 to
develop ground truth. We assess both the time required éoentire 49K message corpus as an estimate of
the current spam filtering cost. In addition, we asses the taquired to analyze only the 35K messages the
transport-layer classification cannot make.

Table 8 shows the results of our analysis. The second coluwes the total amount of time required
to use each of the content filters to process all 49K messagamg icorpus. The third and fourth columns
show the pessimistic and optimistic amount of time requing@donsidering spam filtering to be a two-stage
process with the first stage winnowing 14K messages fromghihat requires content-based analysis. In all
cases except two we see improvements of at least 10% and Inaor@®% in many cases. The results show
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that SpamAssassirand SpamProbe actually fare worse with a pre-processor ke the upper bound
on the length of time required by the transport classifiex,(B97 seconds). However, using a lower bound
assumption on this task (i.e., 116 seconds) the pre-filieimoarove the performance of even efficient tools.

We note that assuming the transport model is used to discasdages and not further process them is
not the only way to effectively use transport-layer clasation. The classification is likely cheap enough
that it could be used to prioritize messages. l.e., mesgagdasansport characterization identifies as spam
could be run through content filters during slow times whengérver has plenty of spare capacity, whereas
non-spam could be further checked as soon as possible. érmiksibility is that transport layer judgments
could be used to “backup” a content-based judgment and If igeintify a message as spam then it could
be discarded completely, whereas if only one classified asagesas spam the message could be retained in
the users “junk” folder such that users can catch mistakeslit®nal possibilities no doubt exist, as well.

In addition to time savings, it is possible that using a tpams filter improves the system’s overall
accuracy, in particular because the transport filter maybbe ta detect spam that a content filter misses.
This observation was also made in prior work [6]. We have daedéiminary experiments that suggest this
is true; however, we do not have conclusive results yet. iBras immediate direction for future work.

6 Related Work

Spam detection and mitigation has attracted significaehtttn within the industrial, operational, open

source, and research communities. Spam filtering plays @oriant role in these efforts. There have

been a vast range of filtering techniques proposed and ingpltsrincluding (with examples cited rather

than an exhaustive list): DNS blacklists [23]; email addreditelists based on a user’s address book in
many popular email clients including GMail, Thunderbirdda@utlook [3]; domain signed messages [4],

analyzing transport [6] and network layer [20, 14] chardsties and signature [2, 22] and statistical [13]

analyses of a message’s content.

Content filters are quite popular—both within an institatsomail processing apparatus and in users’
client software—and classify a message using the infoondti the message itself. Content filters have
been shown to be very effective in combating spam, but arguatationally expensive and require constant
re-training as spam content adapts in an attempt to evaeetibet [8, 10]. Content filters are also less
effective with non-textual spam, although efforts havesrgly emerged to address this limitation [11].

Given the high cost of content-based filtering (as illusitiah Section 5), several efforts have attempted
to use network-layer information to detect spam flows. Iripalar, Ramachandran and Feamster analyze
network-level characteristics of spamming hosts [20], ldad et al. exploit network-level features, such as
the sender’s geodesic distance, autonomous system (A&S)ioetspam detection [14]. Schatzmann et al.
propose a collaborative content-blind approach that arcEBRleploy to facilitate spam blocking, based on
size distribution of the incoming SMTP flows [21]. The idedhat SMTP servers that perform prefiltering
terminate spam flows quickly after processing the envelbpece flow size from these servers can be used
to rate client MTAs for the benefit other SMTP servers thathhigot use prefiltering. The flow-based
approach is complimentary to these techniques, in thatides on non-content features in the traffic.

The idea of using transport features was originated by Beesid Sollins [6]. Besides validating their
general approach using a larger dataset, we also develothadrfer automatic generation of ground truth,
examine additional transport features, investigate miffe machine learning techniques (decision trees—
which are far less computationally expensive and therefuree attractive to real-world use), consider data
that spans one year and evaluate a strawman usage scenario.

"Note, we used the SpamAssassin daemon in these experimbatainning time without the daemon is approximately anorde
of magnitude longer. In addition, as when using SpamAssasgiroduce ground truth we did not use non-local nor sieditests.
Therefore, SpamAssassin’s running time should be takeriaxges bound.
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7 Conclusions and Future Work

In this work, we have conducted a large scale empirical sintly the effectiveness of using transport
level features to detect email spam. Though the idea hasresented in prior work, to the best of our
knowledge, our work is the first thorough exploration of tlagieus issues involved. We conduct our study
using data collected over the course of a year. Because hheting such a large corpus is impractical,
we develop a methodology for constructing sound groundh twithin the context of a large email corpus
that is both too big and sensitive to hand label. Our methgedgs on four spam tools that use different
assessment strategies. Using manual validation of a sashpimail we find the error in the ground truth
to be roughly 2%. Using this data, we explore several hymathe First, we validate prior results on our
corpus. We discuss the significance of the feature testsritterimodels, address the issue of false positives
and establish the limits of flow-based email classificatigve then consider the stability of flow features
and find that they remain stable over long periods of time amth €0 some extent across major network
events. Next, we consider the individual features in ouadatd establish that several features capture
important aspects of the data; however, they overlap sathaingle feature is critical to our model, which
contributes to its robustness if a feature should be unmedsar noisy. Further, there does not appear to
be any truly irrelevant features in our model. Finally, weelep a possible use-case that involves using
transport layer-based filtering as a first step in the ovepdin detection process. By using this first step
to eliminate a fraction of the messages before passing thaingler on to more expensive content filtering
schemes we show an overall savings in the amount of work nexdjtd process incoming messages. While
there are certainly additional ways to leverage transgyr classification, our initial use-case shows the
efficacy of the additional information.

There are a number of directions we intend to investigateitimré. First, as mentioned in the previous
section, we intend to assess the overall performance ofatbestage filter we have sketched in terms of
classification ability. In addition, we intend to investigahe degree to which we can more tightly integrate
transport layer and content layer filtering. That is, raten considering these as two distinct steps in a
process we hope to leverage key features in both dimensiassjbly adding network-level features, to
produce stronger and more efficient email classifiers. Finak plan to implement the developed approach
and deploy it in a real setting.
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