
COMPLEXITY AND SECURITY OF THE DOMAIN

NAME SYSTEM

by

KYLE GRAHAM SCHOMP

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

Department of Electrical Engineering and Computer Science

CASE WESTERN RESERVE UNIVERSITY

May 2016

CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis of

KYLE GRAHAM SCHOMP

candidate for the DOCTOR OF PHILOSOPHY degree*

Committee Chair: Michael Rabinovich

Committee Member: Mark Allman

Committee Member: Vincenzo Liberatore

Committee Member: Frank Merat

Committee Member: Soumya Ray

Date: 11/20/2015

*We also certify that written approval has been obtained for

any propriety material contained therein.

ii

Copyright 2016 by Kyle Graham Schomp

cb

This work is licensed under a Creative Commons

Attribution 3.0 Unported License.

Details available at:

http://creativecommons.org/licenses/by/3.0/

iii

http://creativecommons.org/licenses/by/3.0/

Contents

List of Tables viii

List of Figures ix

List of Acronyms xi

Acknowledgments xiii

Abstract xiv

Chapter 1 Introduction 1

Chapter 2 DNS Background 7

Chapter 3 Topology of the DNS Infrastructure 11

3.1 Related Work . 12

3.2 Client-side DNS Infrastructure . 14

3.3 Methodology Overview . 16

3.3.1 Non-Interference With Normal Operation 16

3.3.2 Discovering DNS Infrastructure 16

3.3.3 ODNS Lifetimes . 17

3.4 Methodology Details . 18

3.4.1 ODNS Server Discovery . 18

iv

3.4.2 RDNS Server Discovery . 23

3.5 Topology . 29

3.5.1 Estimating Global ODNS Population 29

3.5.2 FDNS Population Size Per-RDNS 30

3.5.3 RDNS Pool Sizes . 31

3.5.4 Distance between FDNS servers and RDNS servers 31

3.6 Summary . 34

Chapter 4 Measuring Behavior in the DNS Infrastructure 35

4.1 Related Work . 36

4.2 Techniques for Untangling Behavior . 37

4.2.1 Measuring FDNS Servers . 38

4.2.2 Measuring RDNS Servers . 39

4.3 Caching Behavior . 40

4.3.1 Aggregate Behavior . 41

4.3.2 FDNS Server Behavior . 45

4.3.3 RDNS Server Behavior . 48

4.3.4 HDNS Server Behavior . 54

4.4 Dataset Representativeness . 54

4.5 Summary . 56

Chapter 5 Characterization of DNS Client Behavior 58

5.1 Related Work . 59

5.2 Dataset . 60

5.2.1 Calibration . 60

5.2.2 Tracking Clients . 61

5.2.3 Timeframe . 62

5.2.4 Filtering Datasets . 62

v

5.3 Identifying Types of Clients . 63

5.4 Query Clusters . 65

5.5 Query Timing . 69

5.6 Query Targets . 73

5.6.1 Popularity of Names . 73

5.6.2 Co-occurrence Name Relationships 75

5.6.3 Temporal Locality . 77

5.7 Summary . 80

Chapter 6 A New Security Vulnerability in the DNS 82

6.1 Related Work . 83

6.2 Methodology . 84

6.3 Record Injection Attacks . 85

6.4 Preplay Attack . 86

6.5 Implications . 89

6.5.1 Duration of Record Injection . 89

6.5.2 Phantom DNS Records . 90

6.6 Context . 90

6.6.1 Are Open Resolvers Used? . 90

6.6.2 Industry Response . 93

6.6.3 Representativeness . 94

6.7 Vulnerability Scanner . 95

6.8 Summary . 97

Chapter 7 DNS Shared Resolvers Considered Harmful 98

7.1 Related Work . 100

7.2 Datasets and Methodology . 101

7.3 Impact on Performance . 107

vi

7.4 Impact on Scalability . 108

7.4.1 Increase TTLs . 111

7.4.2 Multiple DNS Questions . 112

7.4.3 Combining Methods . 114

7.5 Additional Considerations . 115

7.5.1 Privacy Concerns . 115

7.5.2 Policy Issues . 115

7.5.3 Transitioning to Client Resolution 116

7.6 Summary . 117

Chapter 8 Conclusion and Future Work 119

Bibliography 122

vii

List of Tables

3.1 Mapping & Measurement Datasets . 17

4.1 Aggregate TTL Behaviors . 42

4.2 Aggregate TTL Deviations . 43

4.3 FDNS TTL Behaviors . 46

4.4 FDNS TTL Deviations . 47

4.5 RDNSdi TTL Behaviors . 49

4.6 RDNSdi TTL Deviations . 49

4.7 RDNSi TTL Behaviors . 52

4.8 RDNSi TTL Deviations . 52

5.1 Characterization Datasets . 61

5.2 Markers for User-Facing Devices . 64

5.3 Details of DBSCAN Clustering . 66

6.1 Security Datasets . 84

6.2 FDNS Security Observations . 88

7.1 Breakdown of TCP Connections . 103

7.2 Load on “.com” TLD . 111

viii

List of Figures

3.1 Client-Side DNS Infrastructure . 14

3.2 Typical Resolution Path . 16

3.3 ODNS Servers per /24 IP Address Block 19

3.4 ODNS Discovery Rate . 21

3.5 Duration of ODNS Accessibility . 22

3.6 Whitelisting ODNS Discovery Rate . 24

3.7 RDNS CNAME Chain . 25

3.8 RDNS Discovery Rate . 27

3.9 RDNS Cache Contents . 28

3.10 FDNS per RDNS . 30

3.11 RDNS Pool Sizes . 32

3.12 FDNS to RDNS Distance (RTT) . 33

4.1 Aggregate Cache Duration . 44

4.2 FDNS Cache Duration . 48

4.3 RDNSi Cache Duration . 53

4.4 Mapping & Measurement Dataset Validation 56

5.1 Queries, Hostnames, and SLDs per Cluster 68

5.2 Queries in Clusters . 69

5.3 Queries per Day . 70

ix

5.4 Inter-Query Time . 71

5.5 Cluster Timing . 72

5.6 Queries per Hostname . 73

5.7 Clients per Hostname . 74

5.8 Cosine Similarity Same Client . 77

5.9 Cosine Similarity Different Clients . 78

5.10 Hostnames Queried per Day . 79

5.11 Stack Distance . 80

6.1 FDNS Cache Contents . 93

6.2 Security Dataset Validation . 94

6.3 Vulnerability Scanner . 95

7.1 Monitor Vantage Point . 102

7.2 Usage of DNS Transactions . 104

7.3 Timeline of Resolution Use . 105

7.4 Difference in Resolution Time . 106

7.5 Delay Added by Client Resolution . 109

x

List of Acronyms

ADNS Authoritative DNS Server

CDN Content Delivery Network

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DNSSEC DNS Security Extensions

FDNS Forwarding DNS Server

HDNS Hidden DNS Server

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

ISP Internet Service Provider

NAT Network Address Translation

NTP Network Time Protocol

ODNS Open DNS Server

RDNS Recursive DNS Server

xi

RDNSd Recursive Direct DNS Server

RDNSdi Recursive Direct and Indirect DNS Server

RDNSi Recursive Indirect DNS Server

RTT Round-Trip Time

SLD Second-Level Domain

TCP Transmission Control Protocol

TLD Top-Level Domain

TTL DNS Record Time-To-Live

UDP User Datagram Protocol

WPAD Web Proxy Autodiscovery Protocol

xii

Acknowledgments

Thank you to everyone who helped me make it this far. In particular, thank you to Michael

Rabinovich and Mark Allman for their guidance and advice. Thank you to my family for

supporting me for many, many years. Thank you to my dear wife, Fangfei, for encouraging

me to keep working.

KYLE GRAHAM SCHOMP

Case Western Reserve University

May 2016

xiii

Complexity and Security of the Domain Name System

Abstract

by

KYLE GRAHAM SCHOMP

The Domain Name System (DNS) provides mapping of meaningful names to arbitrary data

for applications and services on the Internet. Since its original design, the system has grown

in complexity and our understanding of the system has lagged behind. In this dissertation,

we perform measurement studies of the DNS infrastructure demonstrating the complexity

of the system and showing that different parts of the infrastructure exhibit varying behav-

iors, some being violations of the DNS specification. The DNS also has known weaknesses

to attack and we reinforce this by uncovering a new vulnerability against one component of

the system. As a result, understanding and maintaining the DNS is increasingly hard. In re-

sponse to these issues, we propose a modification to the DNS that simplifies the resolution

path and reduces the attack surface. We observe that the potential costs of this modification

can be managed and discuss ways that the cost may be mitigated.

xiv

Chapter 1

Introduction

The Domain Name System (DNS) [Moc87a, Moc87b] provides mapping of meaningful

names to arbitrary data for applications and services on the Internet. The most common

use of DNS is the resolution of hostnames to IP addresses which in turn are used to route

packets across the network. The DNS was originally specified in 1983 [Moc83a, Moc83b]

and, since its original design, the system has grown in complexity. As we will demonstrate,

the DNS ecosystem now consists of multiple layers of servers and, at some layers, multiple

servers cooperating to produce many resolution paths through the ecosystem. The policies

controlling DNS servers may also differ by operator. Further, security vulnerabilities in the

DNS allow “record injection” attacks, which can subvert replace the correct name to data

mappings with potentially malicious mappings and consequently breach the security of ap-

plications that rely upon the DNS. Some actors within the DNS ecosystem have well known

vulnerabilities and the security community continues to expose new weaknesses, leaving

users vulnerable to attacks ranging from snooping on sensitive information to phishing.

In this dissertation, we show that the DNS ecosystem is complex and parts of the

ecosystem are hidden from external observers. Different parts of the infrastructure exhibit

varying behaviors, including violations of the DNS specification and security vulnerabili-

ties. As a result, reasoning about and maintaining the system is difficult. Thus, we propose

1

a modification to the DNS that simplifies the resolution path and reduces the attack surface

of the DNS.

Topology of the DNS Infrastructure: The complexity of the DNS infrastructure has

increased dramatically to accommodate new performance and scale demands that have been

placed upon the DNS as the Internet has expanded. The increase in complexity is especially

true of the servers in the DNS infrastructure that are responsible for resolving names on

behalf of clients. The original structure of the DNS system had clients issue queries to a

local DNS resolver which in turn performs the task of resolution, then returns the answer

to the client. Now, facilitated by the simplicity of the stateless and connectionless DNS

protocol, the DNS has developed into a complex ecosystem that we demonstrate often

involves several layers of shared resolvers. The shared resolvers, in turn, may coordinate

with other resolvers producing intricate resolution paths. Resolvers operate based upon

their own, potentially different, policies and some components are hidden from external

observers. This complexity makes it difficult to understand the behavior of the resolving

infrastructure and to attribute responsibility for distinct behaviors to the individual actors if

or when those behaviors cause problems.

Our first step in this dissertation is to examine the resolver infrastructure. To study

the wide range of deployed structures, we perform scans of the Internet with the intent of

discovering large samples of DNS resolvers in Chapter 3. The resolvers that we discover

give us entry points into the DNS ecosystem from many vantage points that are globally

distributed. Using this data, we map the complex DNS resolver infrastructure, identifying

actors serving various roles within it.

Second, we develop techniques to efficiently discover samples of the infrastructure

for further measurement. As the DNS continues to evolve, techniques for efficient dis-

covery and rediscovery of the DNS resolver infrastructure allow us to update and refine

our understanding quickly. To improve our discovery techniques, we leverage observations

2

we make about the density of actors within IP address space and querying techniques to

maximize the number of actors discovered per probe sent by our measurement apparatus,

reducing the cost of discovering a sample of the infrastructure. We reuse these techniques

in subsequent measurements because many of the individual actors in the DNS ecosystem

are short-lived and therefore must be discovered again for each new experiment.

Measuring Behavior in the DNS Infrastructure: From discovering the resolver infras-

tructure, we turn to measurements of its behavior. In Chapter 4, we develop measurement

techniques for isolating the behavior of individual actors within the system, some of whom

cannot be accessed directly. Then, using the efficient discovery techniques detailed in

Chapter 3, we apply our methodologies to assess the caching behavior of the various ac-

tors. Caching in the DNS has a large impact on performance—by reducing the latency

of the iterative DNS resolution process—and scalability—by reducing the load in queries

that components of the system must handle. Further, the duration that DNS answers re-

main within caches determines how long systems must maintain stale mappings to avoid

service disruptions. We measure caching behavior both in aggregate and separately for the

different actors.

The first component of our assessment of caching behavior is how various actors

treat the time-to-live (TTL) setting, which controls how long resolvers should store answers

in their cache. Despite being a simple notion, we find that different actors handle the TTL

differently and exhibit a variety of behaviors. Previous studies demonstrate that in many

cases the TTL is distorted before reaching the original requesting client and we confirm

this observation. Next, we expand upon previous studies by demonstrating which actors

cause modification and how they modify the TTL setting, thus misleading other actors into

using an incorrect TTL.

We also assess the time an unused answer remains in the cache of the various actors

within the resolving infrastructure. Two possible reasons for an eviction of an answer are

3

the TTL expiring or cache capacity is reached and space must be freed. We find scant

evidence of a general capacity limitation problem in resolvers’ caches.

Characterization of DNS Client Behavior: Individual clients on the Internet issue DNS

queries for a variety of different purposes leading to a complex DNS querying behavior.

Yet, our understanding of DNS query streams is largely based on aggregate populations of

clients leaving our knowledge of individual client behavior limited. Focus on the aggregate

traffic obstructs our knowledge of how DNS traffic is distributed among clients and how

DNS traffic varies with population size. Further, the traffic patterns in aggregate popula-

tions obscure the processes generating DNS traffic. Knowledge of how individual clients

use the DNS may inform better choices in (i) dimensioning of the DNS resolver infrastruc-

ture, (ii) protecting the system against malicious individuals via anomaly detection, and

(iii) modifying the current DNS system or designing future naming systems.

In Chapter 5, we present what is to the best of our knowledge the first characteri-

zation of DNS client behavior. It paves the way for eventual construction of models and

workload generators. We monitor DNS transactions between a population of thousands of

clients and their local resolver such that we are able to directly tie lookups to individual

clients. The study presented here uncovers a variety of behaviors and characteristics that

significantly increase our comprehension of how DNS operates. Our ultimate goal for this

work is an analytical model of DNS client behavior and this characterization moves us

towards that analytical model.

Our measurements provide insight into how the DNS is utilized by real clients today.

Broadly, we study two topics: the number and spacing of queries in time and which names

individual clients lookup. We identify a wide variety of devices producing DNS traffic

with differing behaviors and find that general purpose user-facing devices can be detected

by markers of Web browsing behavior.

4

A New Security Vulnerability in the DNS: Because many applications depend upon

DNS, the security of DNS has a large impact on the security of the overall network. Re-

placing an authoritative mapping from hostname to IP address with a fraudulent mapping

will divert users to malicious hosts. Once diverted, users may be subject to a variety

of follow-up attacks from phishing to malware installation. In Chapter 6, we uncover a

new vulnerability to an attack that enables replacing authoritative mappings with malicious

ones. Attacks of this type are known as “record injection” attacks. Using the discovery

techniques introduced in Chapter 3, we issue specifically tailored queries to the uncovered

resolver infrastructure and observe evidence of vulnerability to the record injection attack.

Given that record injection attacks may impact users, we built a Web-based tool that

helps users learn about how their DNS resolutions are being handled directly from their

Web browser [Sca]. The tool alerts users to any specific vulnerabilities uncovered in the

resolver infrastructure they use and suggests alternatives. We also report on the adoption

of a variety of mitigation strategies and the timing performance of DNS lookups.

DNS Shared Resolvers Considered Harmful: In this dissertation, we demonstrate the

complexity of the DNS client-side infrastructure and show that it is constituted of many

distinct components, potentially making the system difficult to manage and troubleshoot.

Additionally, resolvers have previously been shown to be vulnerable to multiple forms of

attack and we detect a new vulnerability in a specific component of the infrastructure. In

Chapter 7, we analyze and motivate a change to the resolution path by removing the DNS

resolver infrastructure entirely and pushing the functionality of iterative resolution back

upon the clients. The clients themselves become more complex, but in a way that is easier

to manage and more transparent than our current nebulous situation where a resolution pro-

ceeds along a path of hidden actors with diverse behaviors. Direct client resolution also (i)

eliminates the threat of record injection attacks against shared resolvers for clients conduct-

ing their own resolutions and (ii) reduces the overall attack surface of the DNS ecosystem

5

since fewer components are needed in client resolution than traditional resolution.

There are two primary costs that arise from direct client resolution: increased delay

in responses for clients and increased load in terms of queries for DNS servers. In simu-

lations of the new resolution path, we show that the cost in terms of delay is low and the

cost in terms of load may be manageable. We suggest potential mitigation techniques. Fur-

ther, we note that direct client resolution is individually deployable as technical changes

are only necessary on the client devices. However, for large scale transition to direct client

resolution, we lay out several barriers to deployment and suggest future directions to make

a large scale transition to client resolution practical.

6

Chapter 2

DNS Background

This chapter provides a minimum background on DNS needed to understand this disserta-

tion. The concepts discussed here will be used repeatedly in the subsequent chapters. DNS

is a query and response system using a simple datagram protocol to collect answers from

a distributed database. Clients ask questions by sending queries for specifically structured

names from within a hierarchical namespace. The responses to queries contain answers

known as resource records. The process of obtaining an answer to a query is called res-

olution and there are three pieces of the system that participate. First, authoritative DNS

servers maintain resource records and are queried by other components to obtain the author-

itative resource records that match the given query. Second, clients use stub DNS resolvers

to issue the query. Third, the stub resolvers commonly issue the query to recursive DNS

resolvers that perform resolution by iteratively querying authoritative DNS servers. In the

following sections, we describe each component in turn.

Authoritative DNS Servers: Authoritative DNS (ADNS) servers maintain the resource

records for names within sections of the namespace. Partitioning the namespace into zones

splits responsibility for maintaining the resource records across many ADNS servers and

enables DNS to scale as the number of records grows. The zones are organized into a

tree and often operated by different organizations. Names used in queries indicate their

7

position within the tree via labels separated by periods. For illustration, we use the name

“www.google.com.” throughout this chapter. The root is represented by an empty label on

the right of the name and each label moving to the left is a step further down the tree.

At the root of the tree, the root ADNS servers only hold records for names that

are within the root zone. This includes records that provide information on how to reach

ADNS servers for zones below the root, e.g., “com.”. Similarly, the ADNS servers for

“com.” also hold records with the information needed to reach ADNS servers for zones

below “com.”, e.g., “google.com.”. This process of zone delegation may continue at the

operator’s preference. The ADNS servers for “google.com.” contain records for names

within the zone, e.g., “www.google.com.”.

Among the contents of each resource record are the following important fields:

NAME is the name of the record, e.g., “www.google.com.”.

TYPE indicates what information the record holds, e.g., “A” means that the record holds

an IPv4 address. While IP addresses are the most commonly queried record types,

many other types are also supported.

TTL (time-to-live) is the duration that a record remains valid in seconds. The contents of

the record may continue to be used by whoever obtained the record until the TTL

elapses. Use of the contents after the TTL expires is a violation.

RDATA holds the data to which the name maps. The structure of RDATA is determined

by the TYPE, e.g., with TYPE “A”, RDATA is an IPv4 address.

The ADNS servers accept queries from external agents and return responses con-

taining associated resource records if any exist using the DNS protocol. Both the query

and response are typically a single UDP datagram. For cases where the payload will not fit

within a single datagram, TCP is used as a backup transport method. The port number—in

both UDP and TCP—that ADNS servers listen upon for queries is 53.

8

Stub DNS Resolvers: Clients resolve names via the use of a stub resolver that is often

a component of the operating system. The stub resolver then issues queries to a recursive

DNS resolver and stub resolvers are commonly configured to use the IP addresses of one or

more recursive DNS resolvers through DHCP, but the sufficiently technical users may man-

ually configure another choice. In particular, Google Public DNS [Goob] and OpenDNS

[Opeb] both offer recursive DNS resolvers for public use. Stub resolvers interact with the

recursive DNS resolvers using the same DNS protocol used by the ADNS servers.

The stub resolver may cache the resource records returned in responses according

to the TTL of the record. The stub resolver will use the same record to answer multiple

queries for the same name from the client. Once the TTL has elapsed since receiving the

record, the stub resolver discards the record.

Recursive DNS Resolvers: Recursive DNS (RDNS) resolvers are charged with resolv-

ing names for clients. After receiving the query from the stub resolver, the RDNS servers

perform all of the work necessary to obtain an answer to the query and then return the an-

swer to the stub resolver. To this end, the RDNS servers navigate the DNS tree by issuing

queries to authoritative DNS servers and following delegations to other authoritative DNS

servers. To anchor the resolution process, the RDNS servers always hold well-known IP ad-

dresses of the root servers. Like ADNS servers, RDNS servers listen on port 53 for queries.

After receiving a query for a name, e.g., “www.google.com.”, the RDNS server follows the

delegations provided by ADNS servers starting at the root until the RDNS server arrives

at an ADNS server that maintains the resource record for “www.google.com.”. Then, the

RDNS server returns the records to whomever issued the query.

As with stub resolvers, RDNS servers may cache records locally—constrained by

TTL—and use the same record to answer multiple queries without issuing another query

to the ADNS servers. The delegation records between ADNS servers may also be cached

and reused. When an RDNS server returns a record to a stub resolver from cache, the

9

TTL value of the record is decreased to account for the time the record spent in the RDNS

server’s cache.

This concludes the minimum background on the DNS. For a detailed specifica-

tion, the reader is encourage to consult the DNS specification [Moc83a, Moc83b, Moc87a,

Moc87b].

10

Chapter 3

Topology of the DNS Infrastructure

In this chapter, we present the results of wide scale measurements of the client-side DNS in-

frastructure1. With the crucial role DNS plays, the complexity of the DNS infrastructure—

especially the client-side query-resolving aspect—has increased dramatically. In § 2, we

indicate a client using a stub resolver communicates with a single recursive DNS resolver,

which in turn queries authoritative nameservers on the clients’ behalf. However, this is a

simplification of what often actually occurs. DNS has become a complex ecosystem often

involving multiple layers of shared resolvers, which can, in turn, coordinate with additional

resolvers. This chapter targets the challenge of improving our understanding the client-side

DNS infrastructure as it is presently deployed. We make the following key contributions:

• We develop a set of methodologies for discovering the client-side DNS infrastructure

efficiently. Given the vastness of this infrastructure and a short lifetime of some of

its actors [DPLL08, LL10], probing strategies that improve the rate of discovery can

facilitate subsequent measurements. The methodologies developed in this chapter

will be used in subsequent chapters to aid in our experiments.

• We double, from 15 to 32 million, previous estimates of the how many open resolvers

there are on the Internet.
1This work originally appeared in [SCRA13].

11

• We find evidence of wide adoption of complex resolution topologies including large

shared pools of resolvers at certain layers in the infrastructure.

• We observe that DNS queries frequently travel large distances within the resolving

infrastructure in terms of network delay. We find 20% of open resolvers experiencing

at least 100 msec of delay before their queries leave the resolution infrastructure.

3.1 Related Work

Our over-arching methodology for studying the DNS ecosystem—as developed in the next

three sections—involves actively discovering and characterizing DNS resolvers that will

answer queries from arbitrary hosts throughout the Internet. In this manner, we can deter-

mine how the client-side DNS infrastructure behaves with regard to a wide range of test

queries. The closest related work to ours is [DPLL08], which scans open resolvers in order

to assess answer rewriting occurring on DNS paths. That work further contributes the idea

of building a mapping between resolvers found by probing Internet hosts and the resolvers

that ultimately contact an authoritative DNS server. Our work extends the probing method-

ology presented in [DPLL08] and again used in [Cal12] to effectively discover resolver

pools and examines resolver characteristics not discussed in those papers.

Efficiently scanning the IPv4 address space for service discovery (including DNS)

while avoiding complaints is discussed in [LL10]. While [LL10] explores reducing the

burden of probing on the targets of probes, we focus on reducing the number of probes

required without losing insight. Our additional methodological contributions are in probing

strategies that (i) increase the discovery rate, and (ii) identify pools of recursive resolvers.

We also consider this work related to [AMSU10], which performs DNS lookups

from several vantage points in order to compare performance among various local resolvers

and public DNS services. Ager, et al. [AMSU10] find that ISP-provided resolvers often

outperform public DNS services in query latency. Huang, et al. [HMLG11] confirms this

12

result. Another performance-centric study is [LSZ02], which shows that DNS performance

can vary widely between resolver infrastructure used. In our work, we offer an explana-

tion for the variation in performance by demonstrating large latencies that queries must

sometimes suffer within the resolving infrastructure.

Several studies [WMS03, RMTP08, GSG02] show that information gleaned from

DNS resolvers may be used to measure various aspects of the Internet such as popularity

of Web sites and inter-host delays. Our work supports these efforts by developing effective

discovery strategies and showing the diversity of behavior in differing implementations.

Wills, et al. [WMS03] study how long DNS records for Websites remain in cache to infer

how popular the Websites are. Rajab, et al. [RMTP08] extend this technique by using

it to estimate the popularity of several services that rely on DNS and not just Web site

popularity. Also, Su, et al. [SCKB06] propose a method of using redirections for the

Akamai content delivery network to find quality Internet paths without performing path

probing and monitoring themselves.

Several prior studies consider the number of open resolvers on the Internet [LL10,

Sis10]. Leonard and Loguinov [LL10] perform a full Internet scan and report the number

of open resolvers responding in 2010. Sisson [Sis10] uses a sample of the IP address space

to estimate the number of open resolvers. In our work, we again estimate how many open

resolvers there are on the Internet to see how it has progressed with time.

The distance between clients and their resolvers is studied in [STA01, MCD+02,

ARS13, Cal12]. Shaikh, et al. [STA01] find that clients and their resolvers are often topo-

logically quite far apart. Mao, et al. [MCD+02] find that clients and their resolvers are

often within the same autonomous system. Alzoubi, et al. [ARS13] show that the physical

distance between clients and their resolvers can be surprisingly large. Callahan [Cal12]

demonstrates large distances between actors in the resolver infrastructure. We confirm the

findings of [Cal12] and expand upon them by devising a method to measure latency be-

tween actors in the resolver infrastructure.

13

ODNS

RDNSd

FDNS
HDNS

RDNSi

ADNS

Client-side
RDNS

Origin

Figure 3.1: Structure of the client-side DNS infrastructure.

3.2 Client-side DNS Infrastructure

In this section, we provide descriptions of the various actors within the client-side DNS

infrastructure that, as a whole, resolve names on behalf of clients. These descriptions

have previously appeared in [SCRA13, Cal12]. The components of the client-side DNS

infrastructure are depicted in Figure 3.1 and we define our terminology below.

Origin devices are end-user devices (i.e., stub resolvers). Origin devices also represent the

measure points that we use to send DNS requests for discovering componets of the

infrastructure.

ODNS (“open DNS”) servers accept and process DNS requests from arbitrary sources on

the Internet. Best practices recommend that DNS resolvers be limited to “internal”

use.

RDNS (“recursive DNS resolvers”) servers communicate directly with ADNS servers.

FDNS (“forwarding ODNS”) servers are ODNS servers that do not perform recursive res-

olution. Instead, an FDNS server forwards the request to an RDNS server. More

formally, the FDNS servers are {x|x ∈ ODNS and x /∈ RDNS}.

14

RDNSd (“direct RDNS”) servers are both RDNS servers and ODNS servers, i.e., {x|x ∈

ODNS and x ∈ RDNS}.

RDNSi (“indirect RDNS”) servers are RDNS servers that issue queries to ADNS servers

on behalf of one or more FDNS servers.

RDNSdi (“indirect and direct RDNS”) servers are RDNS servers that are both RDNSd

servers and RDNSi servers, i.e., RDNSdi servers respond to DNS queries from abi-

trary sources and support a population of FDNS servers. We highlight this set as

particularly important for validating our measurement techniques because RDNSdi

servers may be probed both directly and indirectly.

HDNS (“hidden DNS”) are servers which we cannot observe with our measurements.

HDNS servers lie between FDNS servers and RDNSi servers. Although not de-

tectable by our measurements, these servers are known to exist [Goob] and we ac-

count for them when designing our experiments.

The path of a typical resolution in the infrastructure (Figure 3.2) follows these steps:

1. A stub resolver (origin) within the client sends the DNS request to a home router

(FDNS server).

2. The home router sends the request to a DNS provider, either to an HDNS server or

directly to an RDNSi server.

3. Ultimately, the request arrives at an RDNSi server, which sends the request to ADNS

servers as needed to complete the resolution.

4. The answer travels through the reverse path to the origin.

Some resolution paths may coordinate with each other and, as a result, multiple requests

from the same FDNS server may actually arrive at the ADNS server through different

RDNSi servers. These structures are called “RDNS pools” [Cal12]. We discuss RDNS

pools in more detail in § 3.5.

15

Figure 3.2: Typical path a resolution will take through the client-side DNS infrastructure.

3.3 Methodology Overview

In this section we sketch our general methodology and datasets. The specific methodology

will vary with each experiment and is described with the details of the experiment in the

subsequent sections and chapter. Our measurements cover only a fraction of the Internet

and therefore we must consider bias, namely, the degree to which the DNS infrastructure

we discover and assess is representative of the broader Internet. We defer this question

to § 4.4—after we have further developed experiments that can be brought to bear on the

question.

3.3.1 Non-Interference With Normal Operation

While we are investigating the components of the DNS ecosystem, we use our own reg-

istered domain. Our probing rates are limited to ensure we do not interfere with normal

operation of any of the components of the system that probe, and all DNS requests are for

subdomains of our own domain. Thus, we do not interfere with any actual name-to-address

bindings in use.

3.3.2 Discovering DNS Infrastructure

To examine the client-side DNS infrastructure, we must have an efficient method for finding

both ODNS servers and RDNS servers. Discovering DNS infrastructure is a challenge

16

Scan Format Start Duration (Days) ODNS RDNS
S1 Random IP 7/3/12 32 1.98M 72.6K
S2 Random /24 8/5/12 17 841K 43.9K
S3 Scan on First Hit 10/4/12 25 17.6M 72.1K
S4 Rescan of S2 11/16/12 9 892K 29.9K
S5 Scan on First Hit 2/26/13 31 11M 65.8K

Table 3.1: Mapping & Measurement Datasets

because many of the components have policy restrictions preventing the acceptance of DNS

requests from arbitrary hosts. We extend the measurement methodology from [DPLL08].

We register a domain name—“dnsresearch.us”—and deploy a customized ADNS server

for this domain. Using approximately 100 PlanetLab [CCR+03] nodes as the origins of our

measurements, we randomly probe the IP address space with DNS requests for hostnames

within our domain. By embedding the probed IP address in the hostname request and

observing the queries arrive at our ADNS server, we collect the IP addresses that are willing

to handle our probes—thus discovering ODNS servers. The IP addresses from which the

queries arrive at our ADNS server illuminate the set of RDNS servers. Finally, since the

ADNS server has the addresses of both the RDNS and ODNS, we can identify RDNSd

when the IP addresses are the same. When the IP addresses are different, we can associate

FDNS servers with the RDNS servers they use for DNS resolution. Thus, we can elicit a

response from an RDNS server that will not respond to direct probes by indirectly probing

via the FDNS server.

3.3.3 ODNS Lifetimes

We note that during our measurements we find that ODNS servers are often short-lived—

with around 40% becoming unreachable within one day (see § 3.4.1). Hence, techniques for

quick rediscovery are important for our subsequent measurement studies and future study

of the DNS infrastructure. We describe these techniques below and use them to collect

different datasets for different experiments, as summarized in Table 3.1. Our datasets are

publicly available [SCRA].

17

3.4 Methodology Details

We turn our attention to discovering components of the client-side DNS infrastructure.

To facilitate our exploration of discovery methodologies, we use two datasets. The first

dataset is from the S1 scan in Table 3.1 and represents the probing of 255M unique random

IP addresses using 267M DNS requests from 7/3/2012 to 8/3/2012. Our S1 scan discovered

1.9M ODNS servers and 73K RDNS servers. The second dataset is from the S2 scan in

Table 3.1 and was collected between 8/5/2012 and 8/21/2012 using a methodology based

on completely scanning random /24 IP address blocks. This scan represents a probing of

465K random /24 IP address blocks—11.9M IP addresses—via 121M DNS requests. The

S2 dataset includes 841K ODNS servers and 44K RDNS servers. The number of probes

exceeds the number of IP addresses because some ODNS servers use RDNS pools, which

we attempt to discover through repeated probes to ODNS servers (see § 3.4.2 for details).

Previous work finds evidence that ODNS servers are mostly home network devices

[Cal12]. These residential devices forward DNS queries from client devices to the recursive

resolvers of ISPs and other major DNS providers.

3.4.1 ODNS Server Discovery

The fundamental aspect of discovery is finding ODNS servers since, as we will show, these

are the windows into the client-side DNS infrastructure. Several projects leverage full scans

of the Internet address space [LL10, Opea] to understand the prevalence of open resolvers.

However, we are interested not only with discovering the existence of ODNS servers, but

also with understanding their characteristics and behavior, which entails sending far more

requests than discovery alone would dictate (as detailed in subsequent sections). Addi-

tionally, we find—as previously developed in the literature [DPLL08, LL10]—the window

of accessibility for ODNS servers to be in general fairly short (for details, see § 3.4.1).

Therefore, we must do in-depth probing in conjunction with ODNS discovery as returning

18

1 10 100 256
0

0.2

0.4

0.6

0.8

1

Number of ODNS servers

C
D

F
 p

e
r

/2
4
 I
P
 a

d
d
re

s
s
 b

lo
c
k

Figure 3.3: Distribution of the number of ODNS servers per /24 IP address block, excluding
empty blocks.

to the given address later may well be fruitless. Finally, our probing rate has to result in a

manageable load on the ADNS—both the server itself and the hosting network—where ul-

timately the measurement traffic converges. For our ADNS server, the resource constraints

and desire to finish experiments in a reasonable time frame necessitates a partial scan. The

key questions that arise from this choice involve (i) understanding the effectiveness of ran-

domly probing arbitrary IP addresses with DNS requests in the hope of stumbling upon

ODNS servers, and (ii) whether there are probing strategies to improve the efficiency of

this process.

Our first observation is that ODNS servers are unevenly distributed throughout IP

space. As sketched above, in S2 we choose and probe random /24 address blocks. We

find that only 14% of these blocks contain ODNS servers. Further, as Figure 3.3 shows, the

distribution of ODNS servers among the blocks that have ODNS servers is uneven. We find

a small number of “dense” blocks with many ODNS servers. For instance, the top 10% of

the address blocks each contain over 30 ODNS servers while 40% of the blocks have no

19

more than two ODNS servers. The average across all blocks with at least one ODNS server

is approximately 13 ODNS servers per /24 block.

Discovery within such a sparse address space requires extensive scanning. One

approach is a complete scan of the address space. While comprehensive, this strategy is

onerous in terms of time and load on the scanning infrastructure. A plausible alternative is

to collect a sample of the ODNS population and use that sample to gain general insights

about the population. For collecting a sample of ODNS servers with a partial scan, we

examine two methods of ODNS discovery. The first method is a random scanning of IP

addresses labeled “Random IP”. The second method, “Scan on First Hit”, acts like “Ran-

dom IP” but, once an ODNS server is discovered, proceeds to scan the entire /24 block

in which the ODNS resides. This latter method utilizes the above observation of uneven

ODNS distribution among /24 blocks to increase the ODNS discovery rate.

To compare the two methods fairly, we simulate both of them based on the same

dataset from the S2 scan using the following methodology. We consider the Internet’s

232 IP addresses divided into 224 /24 blocks. We mark a random 14% of /24 blocks as

“productive” —which as previously discussed is the fraction of /24 blocks found to contain

at least one ODNS server—and in each productive block we mark a number of IP addresses

as ODNS according to the distribution from Figure 3.3. ”Random IP” is then simulated by

selecting randomly without replacement from the full 232 address range and counting the

rate of discovering ODNS servers. For “Scan on First Hit”, we again select an address

randomly without replacement. If the selected address is an ODNS server, we count not

only this address, but also all addresses marked as ODNS servers in the encompassing /24

block and remove the block from the address pool for further selection.

Figure 3.4 shows the discovery rate for both methods. We find a drastically higher

initial discovery rate using the “Scan on First Hit” strategy, which maintains its advantage

for all scan sizes until the techniques converge to discover the entire set of ODNS servers

with a complete scan. The discovery rate of “Scan on First Hit” decreases over time. The

20

0 1B 2B 3B 4B
0

10M

20M

30M

Number of probes sent

N
u
m

b
e
r

o
f
O

D
N

S
 s

e
rv

e
rs

 d
is

c
o
ve

re
d

Random IP

Scan on First Hit

Figure 3.4: ODNS discovered versus DNS requests sent for the two discovery methods
(extrapolation from S2 scan to Internet scale).

reason is that the more dense a /24 address block is the higher the probability of finding

an ODNS server. Therefore, dense /24 address blocks have a greater chance of being dis-

covered early. The purely random scan shows steady progress across the entire scan but

is overall less productive for limited scans. As noted above, only 14% of the /24 blocks

contain ODNS servers. So, the random scan misses opportunities to learn about the “neigh-

borhood” when finding an ODNS server and chances are that neighborhood is populated

with additional ODNS servers.

While the “Scan on First Hit” strategy discovers more ODNS servers with fewer

probes, it has a downside in that it introduces a bias in the set of discovered ODNS servers.

Blocks with higher concentrations of ODNS servers have a greater chance of being discov-

ered, thus biasing the resulting dataset towards ODNS servers in well-populated address

blocks. Thus, when using this efficient discovery method, one must consider implications

of its bias. We consider effects of this bias on our measurement results in § 4.4 after we

detail the measurements we perform.

21

1 10 100 1K 10K 100K 1M
0

0.2

0.4

0.6

0.8

1

Length of ODNS accessibility (seconds)

C
C

D
F

 p
e
r

O
D

N
S

 s
e
rv

e
r

Figure 3.5: Distribution of the duration of ODNS accessibility.

Rediscovery and Whitelisting

ODNS servers have previously been found to be short lived [DPLL08, LL10, Cal12] and

we confirm these results. In our S5 scan conducted from 2/26/2013 through 3/28/2013 we

repeatedly probe discovered ODNS servers for a period of 1M seconds after discovery. De-

tails of the S5 scan and the intervals at which the ODNS servers were probed are discussed

in § 4. As shown in Figure 3.5 shows the period of the last probe to which the ODNS

servers respond. Roughly 40% of the discovered ODNS servers did not answer any queries

after one day and nearly 80% of the ODNS servers stop responding within one week. As

noted above, there is evidence that the ODNS servers we find are predominantly home net-

work devices. Therefore, we suspect that short ODNS lifetimes are due to DHCP lease

expirations. Thus, we conclude that our lists of ODNS servers become stale and biased

quickly and for this reason we discover ODNS servers anew for each of our studies. Also,

we note that 3% of ODNS servers never responded to probes again after the initial probe.

Thus, their lifetime appears as 0 seconds in Figure 3.5.

22

Rescanning can be an expensive and time consuming process. Fortunately, we find

that ODNS servers demonstrate a tight IP spatial cohesion: while an individual ODNS can

be short lived, productive /24 blocks that contain ODNS servers tend to remain produc-

tive. We rescanned the same /24 address blocks from the S2 scan between 11/16/2012 and

11/24/2012, nearly three months after the S2 scan ended; this scan is labeled S4 in Ta-

ble 3.1. We also find that 76% of the 67K productive /24 address blocks during the former

scan remain productive during the repeat scan. This spatial cohesion over time enables the

use of “whitelisting” to rescan just those /24 address blocks which were previously produc-

tive. Using the same simulation methodology we employ to explore Random IP vs. Scan

on First Hit above (Figure 3.4) we study re-scanning previously productive /24 blocks. Fig-

ure 3.6 shows the discovery rate for rescanning the 67K productive /24 address blocks from

the S4 scan using Random IP—i.e., scanning random IP addresses from the whitelisted /24

address blocks—in contrast to random IP selection from the entire Internet address space

based on the S1 scan. Clearly, rescanning using whitelisting is more efficient than random

scanning. We also note that whitelisting may be used in conjunction with the “Scan on First

Hit” strategy to generate a whitelist containing dense /24 address blocks. Rescanning using

such a whitelist would likely have a much higher discovery rate than Figure 3.6 suggests.

3.4.2 RDNS Server Discovery

RDNS discovery provides more of a challenge than ODNS discovery for two reasons. First,

unlike ODNS discovery, RDNS discovery is an indirect process whereby the characteristics

and behaviors of the ODNS servers may impact the process. Second, the RDNS resolver

topologies are complex, unlike the ODNS population, which is by definition just a set of

simple servers. In particular, an ODNS may forward DNS queries to a pool of resolvers

[Cal12], which may optionally utilize another layer of resolvers before the queries egress

the infrastructure and are visible at our ADNS server. For example, Google’s public DNS

resolvers utilize a two-level topology that hashes the requested hostnames to particular

23

0 4M 8M 12M 16M
0

200K

400K

600K

800K

Number of probes sent

N
u
m

b
e
r

o
f
O

D
N

S
 s

e
rv

e
rs

 d
is

c
o
ve

re
d Random IP on Whitelist

Random IP on Internet

Figure 3.6: ODNS discovered using whitelisting in the S4 scan compared to the discovery
rate of the S1 scan.

egress resolvers to improve their cache effectiveness [Goob]. Unfortunately, we can only

discover the egress RDNS servers and do not have a technique for discovering HDNS

servers in the middle of the infrastructure.

We use a two-pronged approach for RDNS discovery. First, for a given ODNS

server we send multiple DNS requests for hostnames within our domain in an attempt to

spread those requests throughout the RDNS pool—if such exists. For this we use unique

hostnames such that each request must move through the entire infrastructure and end up at

our ADNS server rather than be answered from a cache. Second, our ADNS server returns

a variable-length chain of CNAME records to queries from RDNS servers. The record type

CNAME indicates a “canonical” name for the hostname queried. On receiving this record,

the resolver will issue a new query for the name contained in the CNAME record. Thus,

by providing canonical names that are within our domain, we can elicit repeat queries from

the RDNS servers. We observe that the RDNS server that sends a DNS request is often not

the same RDNS that resolves the CNAME redirections; see an example in Figure 3.7. We

24

Figure 3.7: Illustration of RDNS discovery using a CNAME chain.

use both these mechanisms until we stop discovering new members of the observed RDNS

pool. Specifically, our strategy is as follows.

• When a first probe to a newly discovered ODNS server arrives at our ADNS server

through a previously discovered RDNS server, the ADNS server responds with a

special A record indicating that no new RDNS discovery has occurred.

• However, when this first query arrives from a previously unknown RDNS server, the

ADNS server responds to a query with a CNAME type record for a new hostname

within our domain. After receiving the subsequent query for this new hostname we

repeat the process four additional times. When this batch of five CNAME queries

leads to the discovery of at least one new RDNS server then the entire process is

repeated with five additional CNAMEs. This process continues until no new RDNS

25

server is found, at which point a special A record is returned to the client indicating

that new RDNS servers were discovered.

• When the A record returned—through the ODNS server—indicates new RDNS

servers were discovered, the client sends five more probes for distinct hostnames to

the same ODNS server. Note that these subsequent probes may trigger a series of

CNAME responses by our ADNS as described above. As long as the A record from

the ADNS indicates new RDNS discovery, probing extends with another batch of

five probes.

• When the A record returned to the client indicates that no new RDNS servers were

found, the discovery process terminates.

Our S1 scan uses the above procedure. Furthermore, to enable exploration of alter-

nate scanning strategies—as well as to discover RDNS pools in § 3.5—our S2 scan uses a

modified version of the above procedure that triggers a new CNAME batch as long as new

RDNS servers are discovered for the current ODNS server rather than consulting the full

set of RDNS servers from all probing.

We test this basic RDNS discovery mechanism with four ODNS probing strate-

gies: “Random IP”, “Scan On First Hit”, and “Random /24 Block” described earlier, plus

“Aborted Random Block”, which is a scan of random /24 address blocks that terminates

after the first ODNS server in that block is found. The idea behind the last strategy is that

the ODNS servers in a /24 block will all share the same RDNS infrastructure and so the

first ODNS server will trigger the discovery of the lion’s share of the RDNS servers. The

results for all four strategies reflect simulations driven by the dataset collected by the S2

scan.

Figure 3.8 shows the discovery rates of our four methods. The “Scan on First Hit”

method has a higher rate than the alternate strategies for two reasons. First, we find that

ODNS servers within the same /24 address block do not all use the same RDNS server or

26

0 20M 40M 60M 80M 100M 120M
0

10K

20K

30K

40K

Number of probes sent

N
u
m

b
e
r

o
f
R

D
N

S
 s

e
rv

e
rs

 d
is

c
o
ve

re
d

Random IP

Scan on First Hit

Aborted Random Block

Random Block

Figure 3.8: RDNS discovery rate versus DNS requests sent, simulated from the S2 scan.

RDNS pool—contrary to our expectation. Therefore, learning about the “neighborhood”

is beneficial not only for ODNS discovery but also for RDNS discovery. This accounts

for “Scan on First Hit” achieving a higher RDNS discovery rate than Random IP. Second,

because the vast majority of /24 blocks do not contain any ODNS servers, much of the

scanning in Aborted Random Block and Random Block is wasted. We note that Aborted

Random Block was unable to discover 13K of the 43.9K RDNS servers within the S2

dataset. The undiscovered RDNS servers were not reachable through the first ODNS server

found within each /24 block. The “Scan on First Hit” technique provides the best ODNS

and RDNS discovery rate in terms of scanning infrastructure cost and time.

RDNSd Evaluation

The RDNSd servers deserve special attention here. These servers have been counted during

both ODNS and RDNS discovery. Yet, unlike RDNSi servers, it is unclear if all RDNSd

servers have clients. They could, for instance, be misconfigured authoritative DNS servers

that happen to be willing to accept external queries for external domains as discussed in

27

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Number of Alexa Top 100 hostnames in RDNS's cache

C
D

F
 p

e
r

R
D

N
S

RDNS
d

without FDNS

RDNS
di

Figure 3.9: Number of the Alexa top 100 Web sites in the caches of RDNS servers.

[GSG02]. We find that 51% of the RDNSd servers in the S1 scan are used by at least one

FDNS, i.e., are in fact RDNSdi servers. The remaining 49% could be resolvers which might

be accessed by origins directly, or whose client FDNS servers are hidden from our scans’

view or have been missed by our scans.

To determine if the 49% (17K) of RDNSd servers which are not used by any FDNS

servers in our dataset from the S1 scan are actually acting as resolvers for some client

population we query them for the top 100 Web sites as listed by Alexa [Ale]. If the RDNSd

servers are resolvers, then they are likely handling DNS requests from their clients for some

of these Web sites. Therefore, some of these popular hostnames should be in the RDNSd

servers’ caches. We detect if a record is in the cache by sending a DNS request for the

hostname to the RDNSd and comparing the returned time-to-live (TTL) value with the TTL

we expect to be set by the Web site’s ADNS server—which we establish separately. A TTL

value in a DNS response that is less than the ADNS assigned TTL indicates that the Web

site’s record is in the RDNSd server’s cache, suggesting that some real client previously

28

requested the record. Figure 3.9 shows the distribution of the number of popular Web site

records that appear to be in the caches of RDNSd servers without FDNS servers and in the

caches of RDNSdi servers. Although we will later show in § 4.3.3 that some RDNS servers

are prone to inaccurate reporting of TTLs, the difference between the two curves indicates

a difference in the behavior of the two sets of RDNS servers. We opt to remove RDNSd

servers without FDNS servers from our analysis since their purpose is unclear. Instead, we

focus the remainder of our study upon RDNSi servers which have a clear purpose within

the client-side DNS infrastructure.

3.5 Topology

In this section, we present our findings on the size and structure of the client-side DNS

infrastructure.

3.5.1 Estimating Global ODNS Population

Extrapolating from our limited scans of IP space, we estimate that there are approximately

32M ODNS servers on the Internet today. We arrive at this result from two independent

scans. First, we find almost 2M ODNS within a set of 254.7M probed IP addresses in

the “Random IP” scan S1 where addresses are chosen randomly from the complete 232

address space. Therefore, we estimate the population size as 2M/254.7M × 232 = 33M

ODNS servers across the Internet. Second, from the “Random /24” scan S2, the fraction

of productive /24 address blocks (those with at least one ODNS server) is 0.141 and a

productive block contains on average 13 ODNS servers. Therefore, the ODNS population

across the entire Internet is 0.141× 13× 224 = 31M .

These estimates significantly exceed previous results of complete Internet scans

[LL10] and estimates [Sis10], which show around 15M responding DNS resolvers. One

of our partial scans (S3) using the “Scan on First Hit” strategy directly identifies 17.6M

29

1 10 100 1K 10K
0

0.2

0.4

0.6

0.8

1

Number of FDNS servers that use the RDNS server

C
D

F
 p

e
r

R
D

N
S

 s
e
rv

e
r

Figure 3.10: Number of FDNS servers per RDNSi in the S2 scan.

ODNS servers—more than found in previous full scans. Additionally, [Opea], a complete

Internet scan, reports 33M open resolvers as of May 2013 which agrees with our estimate.

The results show the population of ODNS servers on the Internet has increased dramatically

since previous studies. We do not have an explanation for this increase, and note that since

our scans, [Opea] has observed a drop in the number of open resolvers to approximately

19M at the time of writing.

3.5.2 FDNS Population Size Per-RDNS

We find that many FDNS servers use the same RDNS servers. Figure 3.10 shows the

number of FDNS servers per RDNSi server in the S2 dataset. Over 80% of the RDNSi

servers are used by more than one FDNS server and 50% of RDNSi servers appear with at

least 10 FDNS servers in the dataset. This result indicates that many FDNS servers use the

same resolution infrastructure upstream. While expected, it is an important observation to

keep in mind when performing measurements.

30

3.5.3 RDNS Pool Sizes

The ODNS servers we find in both our S1 scan and S2 scan utilize RDNS servers in roughly

99% of the cases—i.e., they are in fact FDNS servers. Moreover, approximately 70%

of FDNS servers use an RDNS pool in both scans. Per § 3.4.2, we use repeated DNS

requests and CNAME chaining triggered by per-ODNS discovery of a new RDNS server

to identify RDNS pools used by an FDNS server. Figure 3.11 shows the size distribution of

the discovered RDNS pools in the S2 scan. The plot shows that 10% of FDNS servers use

RDNS pools consisting of more than 10 servers. Also, note that these pools can encompass

multiple providers, e.g., an ISP’s own DNS infrastructure and OpenDNS, which could

occur when either the FDNS server is configured to use both, e.g., one as the primary DNS

server and the other as the secondary DNS server, or the ISP is utilizing an alternate DNS

infrastructure for some queries. The pools we discover are smaller than those discovered

by a previous study [Cal12] where roughly 20% of RDNS pools are larger than 10 servers.

The difference may be due to the timescale of the experiment. We perform our discovery of

RDNS servers immediately after discovering the FDNS server, whereas the previous work

continues to probe over an extended period of time (up to 1 billion seconds). If FDNS

server to RDNS server assignment changes with time, [Cal12] will discover all RDNS

servers used and interpret them as belonging to a single pool, while our measurements will

only discover the RDNS servers that are used by the FDNS server at the time that the FDNS

server is discovered.

3.5.4 Distance between FDNS servers and RDNS servers

As discussed in § 3.4.1, ODNS servers—and consequently FDNS servers—are predomi-

nantly in residential settings and thus close to the client. Several previous studies look at

the distance between clients and the RDNS servers that they use because (i) large distances

can lead to high DNS latency and (ii) content delivery networks assign clients to replicas

that are near the RDNS server based on the assumption that clients are also near to their

31

1 10 100 1K
0

0.2

0.4

0.6

0.8

1

RDNS pool size

C
D

F
 p

e
r

F
D

N
S

 s
e
rv

e
r

Figure 3.11: Distribution of the RDNS pool size for each FDNS in the S2 scan.

RDNS server.

Prior studies [HMLG11, ARS13, Cal12] consider the physical distance between the

clients and their DNS resolvers, finding that some clients are far from the resolvers that

they use. We measure the distance between FDNS servers and RDNS servers in terms of

latency. For this, we measure (1) the rough-trip-time (RTT) from our measurement point to

the FDNS server and (2) the RTT from our measurement point to the RDNS server through

the FDNS server. The difference between (2) and (1) is the RTT between the FDNS server

and the RDNS server. We cannot measure RTT to the FDNS server by querying for a

record previously placed in the FDNS server’s cache because there is no way to determine

whether the record is returned via the FDNS server’s cache or an RDNS server’s cache.

Fortunately, we found that some FDNS servers respond to ICMP Echo requests. In the S5

scan, we obtained (1) the RTT from our measurement point to the 22% of the FDNS servers

that were responsive to a ping.

To measure (2), the RTT between our measurement point and the respective RDNS

32

1 10 100 1K 10K
0

0.2

0.4

0.6

0.8

1

RTT from FDNS to RDNS pool (milliseconds)

C
D

F
 p

e
r

F
D

N
S

 s
e
rv

e
r

Min

Mean

Max

Figure 3.12: Distribution of round trip time between FDNS and RDNS.

server through the FDNS server, we leverage our observation that many FDNS servers use

the same RDNS server (§ 3.5.2). Using 2 FDNS servers that both query the same RDNS

server upstream, we add a record to the RDNS server’s cache via a probe from the first

FDNS server. We then obtain the distance from our measurement point to the RDNS server

through the second FDNS server by querying for the same record through the second FDNS

server. We also repeat the process by swapping the roles of the two FDNS servers. We

perform this measurement for each FDNS pair we discover using the same RDNS during

discovery. Using this technique, we are able to obtain the round trip time from FDNS server

to RDNS server for 5.6M FDNS/RDNS pairs across 1.3M unique FDNS servers.

In the case of multiple measurements per FDNS/RDNS pair, we choose the mini-

mum delay value as it most accurately reflects the actual network delay between the FDNS

and RDNS servers. We plot the results in Figure 3.12. The median round trip time is about

10 ms, however nearly 20% of the FDNS servers experience delays in excess of 200 ms to

at least one of their RDNS servers. While the delay may be more closely related to net-

33

work conditions and server load than transmission time and distance, these FDNS servers

nevertheless suffer a high cache miss cost.

3.6 Summary

In this chapter, we present a set of methodologies for efficiently discovering the client-side

DNS infrastructure. Using these methodologies, we assess various aspects of the client-

side DNS infrastructure. We double previous estimates of the number of open resolvers

on the Internet, find evidence of wide use of shared resolver pools, and observe significant

round-trip-times that DNS messages travel within the infrastructure.

34

Chapter 4

Measuring Behavior in the DNS

Infrastructure

In the previous chapter, we demonstrated the complex topology of the client-side DNS in-

frastructure1. This complexity makes it difficult to understand the behavior of the resolving

infrastructure and to attribute responsibility for distinct behaviors to the individual actors.

In this chapter, we develop measurement techniques for teasing apart the behavior of the

actors within the system, some of whom cannot be accessed directly. Then, we apply our

methodologies and strategies to assess some aspects of the client-side DNS infrastructure

and its behavior with respect to caching, both in aggregate and separately for different

actors. Our key observations from this assessment include the following:

• To the best of our knowledge, we contribute the first assessment of how various

actors treat the time-to-live (TTL) settings given by authoritative nameservers to set

the behavior of DNS caches. Despite being a simple notion, we find that different

actors handle the TTL differently. The overall effect is that in many cases the TTL is

distorted before reaching the original requesting client. We find that only 19% of all

open resolvers consistently return correct TTL values to all our probes. A 2004 study

1This work originally appeared in [SCRA13].

35

[PAS+04] reports a wide violation of TTLs by end-clients while a 2012 study from

a client site with “honest” resolvers shows a much lower violation rate by clients

[CAR13]. We expand upon these studies by demonstrating not only which actors

cause violation but also how they behave regarding the TTL setting and, thus, cause

other actors to violate TTL.

• We assess the time an unused record stays in the cache of various actors within the

resolving infrastructure, which in particular determines whether the TTL or cache ca-

pacity is the cause of eviction. We find scant evidence of a general capacity limitation

problem .

How the client-side DNS infrastructure handles TTLs and caching are of particular

importance because of its effect on the widely used DNS-based approach to scalability and

reliability of Internet platforms. DNS is used to distribute load across servers—by provid-

ing directing different clients to one of several content replicas—and to mitigate downtime

when individual servers fail—by changing the assignment of client to replica with time.

How long records remain in cache directly impacts how quickly content providers may re-

act to failures and balance load between replicas. Several studies consider DNS caching

behavior [PAS+04, SKAT12, CAR13] and we show the different ways in which distinct

actors frequently misrepresent how long name-to-address bindings should be valid and, in

some cases, discover actors who retain the name-to-address bindings beyond validity.

4.1 Related Work

In this work, we explore behaviors involving the TTL. Liston, et al. [LSZ02] report on

the behavior of the DNS in how TTL values are set at ADNS servers. The authors show

low variation in the distribution of TTL values assigned per record suggesting that different

operators assignment similar TTL values.

Several other works find that the authoritative TTL value is often violated [PAS+04,

36

SKAT12, Cal12, CAR13]. Pang, et al. [PAS+04] find that, while most resolution paths do

not violate TTL, the resolution paths that do violate TTL do so by a large amount. Shue, et

al. [SKAT12] find that many TTL violations are caused by Web browsers pinning name-to-

address bindings to mitigate cross-site scripting attacks. Callahan [Cal12] shows that TTL

violations occur in the resolution paths of ODNS servers. Finally, Callahan, et al. [CAR13]

provide evidence in 2013 that the number of violations as well as their size is decreasing.

We expand upon previous works by showing which actors within the infrastructure are

responsible for modifications of the TTL.

4.2 Techniques for Untangling Behavior

We now discuss techniques that we developed to tease apart the behavior of FDNS from

RDNS. We maintain our non-interference with normal operation requirement.

When measuring DNS behavior, it is often necessary to identify the actor respon-

sible for the behavior, e.g., when a violation of the DNS protocol is detected. A key con-

tribution of this work is measurement techniques to isolate FDNS behavior from RDNS

and HDNS behavior. Through cache injection2 on FDNS servers, to which we found a

sizable fraction of FDNS servers are susceptible, we short-circuit HDNS and RDNS from

processing a measurement probe. Therefore, any artifacts are the sole result of the FDNS

server. Similarly, we develop a technique of coordinated probing through two or more

FDNS servers to determine the behavior of a shared RDNS server in near isolation from

FDNS behavior. We validate the latter technique using the RDNSdi servers —which we can

probe both through an FDNS server and directly—as ground truth of RDNS behavior. Es-

timating from our experiments, over 77% of RDNSi servers will not respond to direct DNS

requests from external hosts and are assumed hidden from an outside observer. Despite

that, our technique provides the ability to assess their behavior.

2A technique for inserting records into a DNS cache against the spirit of the protocol. See § 6 for details.

37

4.2.1 Measuring FDNS Servers

The vast majority of ODNS servers we discovered in our mapping are in fact FDNS servers

(over 95% across all of the datasets). Gaining an understanding of FDNS servers in isola-

tion from the remainder of the client-side DNS infrastructure is a challenge. Fortunately,

we find that a fraction of FDNS servers allow a primitive form of cache injection which

we leverage to gain insight into the behavior of this FDNS server subset. Specifically,

these FDNS servers do not perform any of the following security checks on DNS responses

which could prevent cache injection: (i) change and/or verify the transaction ID, (ii) verify

the source IP address, and (iii) verify the destination port number. The absence of such

checks makes it straightforward to follow a request to an FDNS server with an acceptable

response which only involves the FDNS server and not the rest of the infrastructure. We

discuss the cache injection attacks in general and the attack we use for measurement in

specific within Chapter 6.

Hence, we can study these FDNS servers in isolation from HDNS servers and RDNS

servers using the following procedure. We begin by sending a DNS request for a hostname

within our domain to the FDNS server under study and then immediately issue a DNS

response for the same hostname to the FDNS server that binds the requested name to IP

address X . On the other hand, when the request arrives to our ADNS server in a normal

way, the latter answers with a response containing IP address Y . Then, any subsequent

requests made by our probing host that are responded to with IP address X must have

come from the FDNS server cache and the FDNS server is effectively isolated from the

rest of the client-side infrastructure, which never touched record X . We stress that the

FDNS servers we study may be a biased set since the set only includes FDNS servers that

exhibit the cache injection vulnerability.

38

4.2.2 Measuring RDNS Servers

Since typically we cannot query RDNSi servers directly, we utilize FDNS servers as our

window into RDNSi behavior. This, however, poses a problem as FDNS servers may alter

DNS requests, responses and caching phenomena, hence obscuring RDNS behavior. A

second response for a domain name through a single FDNS server may be returned from

either the FDNS server cache or the RDNSi server cache, ambiguously. Fortunately, it is

common to find multiple FDNS servers which use the same RDNSi server. We leverage a

general experimental strategy which requires at least two FDNS servers per RDNSi server

to succeed—F1 and F2. While the exact details of the technique vary with different exper-

iments and will be detailed separately, the general framework is as follows. We begin by

requesting a unique subdomain of our domain from F1. Our ADNS server responds to this

query with a randomly generated record, which should be cached at the RDNSi server on

the return path to F1. Then, after a predetermined amount of time, we query for the same

subdomain through F2. If the RDNSi server still has the record in its cache, the response

from F2 will match the response from F1. In this case, we further know that the record is

from the RDNSi server cache and not from F2 because the request was previously unseen

by F2. If the record is no longer in the RDNSi server cache, the request will arrive at our

ADNS server, which will respond with a different record. In this way, we eliminate FDNS

caching behavior when studying RDNSi caching behavior.

This technique relies upon discovering two FDNS servers which use the same

RDNSi server at roughly the same time. In § 3.5.2, we find that over 80% of RDNSi

servers are used by more than one FDNS server and the coordinated probing technique

has a chance of succeeding. Further, 50% of RDNSi servers appear with at least 10 FDNS

servers in the dataset, vastly increasing the chances of successful measurement.

FDNS server behavior may still distort the measurement by altering records. We

discuss ways to mitigate this problem—such as using all available FDNS servers— in § 4.3.

39

4.3 Caching Behavior

Caching aids the scalability of the DNS system and hides delay for hostname resolution.

Additionally, DNS caching has important performance and security implications.

In terms of performance, DNS caching complicates Internet sites’ traffic engineer-

ing ability because a single hostname-to-address binding may pin all clients behind a given

resolver to the selected server for an extended period of time. Not only does this hand-

icap sites’ control over client request distribution but it also complicates the removal of

unneeded infrastructure without risking failed interactions from clients using old bindings.

DNS nominally provides sites with the capability to bound these effects by specifying a

time-to-live (TTL) value within DNS responses to limit the amount of time recipients can

reuse the response. However, recipients are known to disobey TTL [PAS+04, SKAT12,

CAR13]. With regard to security, caching determines the lingering effect of a success-

ful record injection (e.g., using the Kaminsky attack [Kam08]). TTLs and the subsequent

pinning of clients is of particular importance to content delivery networks (CDNs) which

attempt to redirect clients among content replicas via dynamically adjusting hostname-to-

address bindings. Thus, DNS caching determines how rapidly CDNs may adjust assign-

ments of clients to replicas.

The extent of these phenomena depends on two inter-related aspects: how long a

resolver keeps a record in its cache and how the resolver treats the TTL. We first explore

the aggregate behavior of all components of the client-side DNS infrastructure, as this will

be the view of the clients leveraging the infrastructure. We then use the measurement

techniques described above to tease apart the behavior of the components in isolation to

gain insight into which components are responsible for various behavior.

The results in this section come from the S5 scan (see Table 3.1). The scan covers

79M IP addresses with 1.3B DNS requests from 2/26/2013 through 3/28/2013. The S5

scan encompasses 11M ODNS servers and 66K RDNS servers—46K of which are RDNSi

servers. The S5 dataset uses the “Scan on First Hit” methodology to increase the ODNS

40

discovery rate and thus the probability of finding multiple FDNS servers which use the

same RDNSi server at roughly the same time. This assists with the coordinated probing

strategy sketched in § 4.2.2. In the next section, we describe our observations of the aggre-

gate behavior of the resolution path and then tease apart the behaviors and attribute them to

various actors in the following sections.

4.3.1 Aggregate Behavior

To investigate aggregate behavior of the DNS resolution infrastructure, we perform in-

depth probing of 2.4M FDNS servers during the S5 scan. We did not test all of the FDNS

servers because of limitations in the amount of traffic our ADNS server can handle. There-

fore, we limit the number of FDNS servers which can be concurrently assessed to 25K

per measurement origin (PlanetLab node). When a measurement origin finds a new FDNS

server we skip in-depth measurement if 25K FDNS servers are presently being assessed.

We examine how FDNS servers and RDNSi servers behave when presented with

DNS records with different TTL values: 1, 10, 30, 60, 100, 120, 1,000, 3,600, 10,000,

10,800, 86,400, 100,000, 604,800 and 1,000,000 seconds. For each TTL value, we re-

probe at intervals taken from the same series of values as the TTLs to determine whether

the records are still available in cache. We use intervals slightly below the TTL values

(by two seconds), to check if the record is retained for the full TTL. We also use intervals

slightly above the TTL values (by two seconds), to check if the record is retained longer

than the TTL. For this experiment, our ADNS server returns a random IP address. Thus,

if subsequent DNS requests for the same hostname return the same IP address we know—

with high likelihood—the request was satisfied by a cache somewhere within the resolution

infrastructure, either at the FDNS, HDNS, or RDNSi servers.

First, we observe that some of the responses to our queries arrive at the measure-

ment origins with TTL values differing from those set by our ADNS server. Furthermore,

we find cases where the correct TTL is returned in the initial response for a hostname and

41

Behavior Percentage of Measurements
Honest 19%

Lie on Initial 38%
Lie on Subsequent 9%

Constant TTL 7%
Increment TTL 1%

Table 4.1: TTL behaviors for the whole resolution path.

an incorrect TTL is returned in subsequent responses for the same hostname. This behavior

was also observed in [Cal12] and is interpreted as the DNS actor distorting TTL not when

conveying the record back to the requester but when storing the record in its cache. Ta-

ble 4.1 summarizes our results for aggregate behavior. In total, 19% of the FDNS servers

and their underlying infrastructure always report the correct TTL value. Meanwhile, 38%

of the FDNS servers respond with an incorrect TTL value to an initial request. The remain-

ing 62% of FDNS servers honestly report the TTL on at least the first DNS request. This

will be important in studying RDNSi servers below.

Beyond changing the TTL of DNS records, we find some FDNS servers do not

correctly decrement the TTL that they return for records in cache3. We find that 7% of the

FDNS servers return a constant TTL value, without ever decrementing, roughly agreeing

with a previous study that found 5% of FDNS servers return constant TTL values [Cal12].

An additional 1% of the FDNS servers actually begin to increment the TTL after counting

down to zero! Both these behaviors will eventually result in a TTL which disagrees with

the one initially set by the ADNS server. Downstream devices—regardless of how they

treat the TTL themselves—may unknowingly use such records in violation of the TTL set

by the ADNS server.

Table 4.2 shows the TTL deviations we observe including those in response to both

the initial and subsequent requests. The table shows the percentage of cases when TTL is

less than (“< %”) and greater than (“> %”) the ADNS-assigned value. In addition, we

show the most common TTL modification (Mode Lie) and the percentage of the lies the

3A resolver is supposed to decrement the TTL to account for time spent in the resolver’s cache.

42

Expected (sec) % < % > Mode Lie
Value % of All Lies

1 0% 11% 10000 35%
10 0% 8% 10000 37%
30 0% 6% 10000 43%
60 0% 4% 10000 48%

100 1% 4% 10000 48%
120 1% 3% 10000 55%
1000 1% 3% 10000 62%
3600 2% 2% 10000 51%
10000 5% 0% 3600 40%
10800 8% 0% 3600 27%
86400 16% 0% 21600 36%
100000 22% 0% 21600 27%
604800 22% 0% 21600 26%

1000000 64% 0% 604800 67%

Table 4.2: TTL deviations for the whole resolution path.

mode represents. For example, we find 11% of FDNS servers deviate from a 1 second au-

thoritative TTL. Further, 35% of the lies are for a TTL of 10,000 seconds. The prevalence

of lies increases for both small and large TTL values. For instance, most resolvers appear

to cap the TTL at one week (604,800 seconds). These results confirm previous observa-

tions [Cal12] that authoritative TTLs of 0 or 10 seconds are frequently increased to 10,000

seconds while authoritative TTLs of 1M seconds are frequently capped at 604,800 seconds

(1 week) somewhere in the resolution path. In a study of DNS clients (see Chapter 7), we

observe that 64% of the queried hostnames return records with authoritative TTLs of less

than 1,000 seconds. According to our findings, all of these records will have their TTLs

increased by 3-11% of resolution paths, potentially leading to caching violations.

We next consider how long a record remains cached and accessible in the client-side

DNS infrastructure. Using repeated probes at the intervals mentioned above, we record the

latest time at which a record is returned to our probing host. While it is possible that the

record was still in some cache at this point and resolution merely took a different path

through the infrastructure, our experiment reflects the behavior a user of the system would

experience. Figure 4.1 shows the length of time records remain in some cache within the

43

1 10 100 1K 10K 100K 1M
0

0.2

0.4

0.6

0.8

1

Record lifetime (seconds)

C
C

D
F

 p
e
r

a
g
g

re
g
a
te

 c
a
c
h
e

All 1M Second

Accessible 1M Second

Accessible 30 Second

All 30 Second

Figure 4.1: Distribution of record availability in the whole resolution path for records that
have TTLs of 30 and 1 million seconds.

resolution infrastructure. We present results for 30 second TTL records, a short TTL value

similar to those used by content delivery networks (e.g., we observe that Akamai returns

records to us with a 20 seconds TTL and Limelight returns records with a 350 second TTL).

Additionally, we use 1 million second TTL records, a value chosen to determine how long

the infrastructure will retain rarely used records. The “All” lines reflect the longest record

lifetime we observe from a given FDNS server. However, a number of FDNS servers

become unreachable in the course of the experiment. When this happens due to IP address

reassignments as discussed in § 3.4.1, the records may still be in the cache. Thus, the

“All” line may be an underestimate of the length of time the infrastructure retains DNS

records. Consequently, we report results separately for the 189K FDNS servers that remain

accessible throughout the experiment (the “Accessible” line). The true cache duration lies

somewhere between these two lines.

Our results show that 90% of FDNS servers and their supporting infrastructure re-

tain 30 second TTL records for no longer than the TTL—with 60% of the FDNS servers

44

retaining the record for the full 30 seconds. We find that 10% of FDNS servers retain the

record for longer than the TTL—with 4% retaining the record for over 100 seconds. This

indicates that in general short TTLs are relatively effective in controlling DNS caching

behavior. These results deviate from the findings from a 2004 passive study that shows

TTL violations on the order of hours were not uncommon [PAS+04] suggesting that DNS

behavior has changed since 2004.

The records assigned a TTL of 1 million seconds show much longer retention, with

over 40% active for more than 1 hour. This indicates that short cache retention of the 30 sec-

ond TTL records is due to the TTL setting rather than cache capacity constraints. Another

study of cache retention in resolution paths [Cal12] finds that a record also with a 1 million

second TTL remains in cache over 1 hour for roughly 70% of resolution paths. The dif-

ference is likely due to reprobing policy. Before the 1 hour mark, our experimental setup

issues 7 queries to examine whether the record is still cached as compared to 11 queries in

the [Cal12]. Further, the most recent probe before the 1 hour mark occurs at 1,000 seconds

in our study and 2,048 seconds in [Cal12]. Thus, the records in [Cal12] are queried more

frequently and more recently than the records in our study. Assuming a caching policy of

evicting the least recently used or least frequently used record, the records in [Cal12] are

more likely to be “saved” from eviction.

4.3.2 FDNS Server Behavior

We now study the behavior of FDNS servers in isolation by using the record injection

technique described in § 4.2.1. We find 683K FDNS servers in the S5 dataset (6%) accept

our injected response records and were thus amenable to our measurement.

We utilize the same experimental technique as in § 4.3.1 with the exception that

we follow up the initial DNS request for a hostname with a DNS response that binds the

hostname to IP address X . The same binding is never returned by our ADNS server, so

whenever X appears in a DNS response we know the request was satisfied from the FDNS’

45

Behavior Percentage of Measurements
Honest 60%

Lie on Initial 12%
Lie on Subsequent 30%

Constant TTL 26%
Incrementing TTL 10%

Table 4.3: TTL behaviors for the FDNS servers in isolation.

cache. If the DNS response contains an address other than X , we know X is no longer in the

FDNS’ cache. We perform the experiment for the same TTL values and re-probe intervals

as in § 4.3.1.

Table 4.3 summarizes our general findings on FDNS’ TTL behavior. First, 60% of

the FDNS servers never lie with respect to the TTL. However, we find that 12% of FDNS

servers lie in response to the initial request and 30% lie in response to the subsequent

requests. As we note above, we interpret this latter behavior as due to the FDNS distorting

TTL not when conveying the record back to the origin but when storing the record in its

cache. We also determine that 26% of FDNS servers report a constant TTL value without

ever decrementing it. Finally, 10% of the FDNS servers began to increment the TTL value

upon decrementing it to zero.

Table 4.4 shows the TTL deviations we observe for FDNS servers that allow cache

injection, including both initial and subsequent deviations. The table shows the same gen-

eral trend as aggregate behavior but with more deviations at the low end of TTL spectrum

and less prevalence of capping the TTL at 1 week. We conclude that FDNS servers that

allow cache injection are less likely to cap the TTL value than other actors. The number

of cases where the authoritative short TTL is replaced by a 10,000 second value jumps by

roughly 50% for the authoritative TTL of 1 second as compared to 10 seconds. Thus, the

ADNS server often will retain better control over FDNS caching by assigning a TTL larger

than 1 second.

We now consider how long a record remains accessible in the cache of FDNS

servers. Using repeated probes at the intervals mentioned at the beginning of § 4.3.1, we

46

Expected (sec) % < % > Mode Lie
Value % of All Lies

1 0% 31% 10000 88%
10 0% 19% 10000 95%
30 0% 19% 10000 96%
60 0% 19% 10000 99%
100 1% 19% 10000 97%
120 1% 19% 10000 97%

1000 1% 19% 10000 97%
3600 1% 19% 10000 97%
10000 1% 0% 60 92%
10800 19% 0% 10000 97%
86400 19% 0% 10000 97%
100000 19% 0% 10000 97%
604800 19% 0% 10000 97%
1000000 25% 0% 10000 75%

Table 4.4: TTL deviations for the FDNS servers in isolation.

record the latest time at which the injected record is returned to our probing host. Again, we

present results for records supplied by our ADNS server with the TTLs set to 30 seconds

and 1 million seconds. Figure 4.2 shows how long the records are retained in the caches.

See § 4.3.1 for an explanation of the “All” and “Accessible” lines. For this experiment, the

“Accessible” line contains the results for 22.5K (3.3%) of the 683K tested FDNS servers.

The results show that roughly 40% of the FDNS servers retain the record with a

TTL of 30 seconds for longer than the TTL. Additionally, 28% of FDNS servers hold the

record for over 100 seconds, more than twice the TTL. This deviates from the aggregate

results in Figure 4.1 indicating that FDNS servers which allow cache injection are more

likely to retain records past the TTL value than the general FDNS population. We find that

1 million second TTL records are retained for at least 10,000 seconds in 50% of the FDNS

servers.

As an aside, we observed that 47K FDNS servers (6.9%) returned the injected record

in response to the first DNS request but did not return the injected record for any subsequent

requests. Additionally, 43K of these FDNS servers always reported the correct TTL. This

likely indicates that these 43K FDNS servers do not have caches and are pure forwarders

47

1 10 100 1K 10K 100K 1M
0

0.2

0.4

0.6

0.8

1

Record lifetime (seconds)

C
C

D
F

 p
e
r

F
D

N
S

 c
a
c
h
e

All 1M Second

Accessible 1M Second

All 30 Second

Accessible 30 Second

Figure 4.2: Distribution of record availability in FDNS caches for records that have TTLs
of 30 and 1 million seconds.

that do not perform any application layer logic on the DNS datagrams they receive.

4.3.3 RDNS Server Behavior

We now turn to the behavior of RDNSi servers in near isolation from FDNS servers.

RDNSdi servers are particularly convenient in that we can examine their behavior in perfect

isolation since there is no other actor to interfere with our results. We have results for 4.9K

RDNSdi servers. We use the same experimental technique as in § 4.3.1 with the same TTL

values and re-probe intervals. Table 4.5 shows our general results while Table 4.6 shows

the TTL deviations we observe. RDNSdi servers do not exhibit either the constant TTL nor

the pathological TTL incrementing behavior we observe in FDNS servers and the aggregate

data. However, there is more TTL distortion with virtually no consistently honest RDNSdi

servers. The most common TTL distortion is to lower very large TTL values (e.g., 88% of

RDNSdi lower TTLs of 1M seconds).

For RDNSi servers that do not respond to direct probes, we leverage the coordinated

48

Behavior Percentage of Measurements
Honest 2%

Lie on Initial 80%
Lie on Subsequent 18%

Constant TTL 0%
Incrementing TTL 0%

Table 4.5: TTL behaviors for the RDNSdi servers in isolation.

Expected (sec) % < % > Mode Lie
Value % of All Lies

1 0% 22% 3600 53%
10 0% 22% 3600 52%
30 0% 22% 3600 52%
60 0% 22% 3600 54%

100 0% 22% 3600 53%
120 0% 22% 3600 53%
1000 3% 19% 3600 53%
3600 3% 7% 86400 69%
10000 16% 7% 3600 53%
10800 16% 7% 3600 52%
86400 16% 0% 3600 72%
100000 40% 0% 86400 59%
604800 40% 0% 86400 59%

1000000 88% 0% 604800 54%

Table 4.6: TTL deviations for the RDNSdi servers in isolation.

49

probing strategy to assess their violations. As described in § 4.2.2, we begin by requesting

a unique hostname via FDNS F1. Our ADNS server responds to this query with two IP

addresses, one random and the second uniquely bound to the RDNSi server from which the

DNS request arrives. We assign the same set of TTL values as in § 4.3.1. Both records pass

through RDNSi server on the return path to F1 and may be cached for subsequent requests.

Next, our experiment requests the same hostname via F2. If the RDNSi server still has the

records in its cache and is leveraged by both F1 and F2, the random IP address from the

response to F1 will be re-used and hence the response to F2 will show the same address.

However, at this point, any TTL deviations cannot be attributed to the RDNSi server,

the FDNS servers or even some HDNS in the path. To gain confidence in our attribution

of TTL deviations to RDNSi server, we leverage two pieces of information. First, as noted

in the previous two sections, a significant number of FDNS servers are honest on the initial

DNS response. We find 62% of FDNS servers are honest on the initial response in § 4.3.1

and 88% of FDNS servers are honest on the initial response in § 4.3.2. Second, we can

utilize more than two FDNS servers in coordinated probing to mitigate the effect of FDNS

lies. Instead of F1 and F2 representing single FDNS servers in the above description of the

experiment, we utilize up to 10 FDNS servers that we divide into two sets. We send the

same request through each FDNS at roughly the same time.

If any FDNS responds with the correct TTL value, then we conclude the RDNSi

server must be truthful since every component was truthful in this case. On the other hand,

if no FDNS responds with the correct TTL, then it is probable that the RDNSi server is

responsible for the lie. In this situation, there are three scenarios:

• First, some of the FDNS servers are in the set of FDNS servers that were honest in

initial responses and the TTL values from these FDNS servers all agree. In this ideal

case, their responses collectively identify the actual TTL the RDNSi server provides.

• In the second scenario, the TTL values arriving at honest FDNS servers do not agree.

One potential cause of this case is HDNS servers interposing between some of the

50

FDNS servers and the RDNSi server. In this case, we assume that the RDNSi server

returns the most common TTL value among the honest FDNS servers.

• In the final scenario, none of the FDNS servers are honest. In this case, we assume

that the RDNSi server returns the most common TTL value among all the FDNS

servers.

If the majority of FDNS servers access an RDNSi server through the same HDNS,

then our experiment will conflate the behavior of the RDNSi server and the HDNS server.

However, we note that if an RDNSi server is only accessible through a single HDNS server,

then learning the RDNSi server’s behavior in isolation is moot because only the aggregate

behavior of both components will ever impact client devices in the resolution path.

We validate our technique for determining RDNSi TTL behavior using RDNSdi

servers, which allow us to obtain ground truth by direct probing. Specifically, if through

direct probing of the RDNS, we discover that it does not deviate from the ADNS server

assigned TTL value and, through coordinated probing, we discover the same, that is a case

of agreement. On the other hand, if our coordinated probing concluded that the RDNSdi

deviated, then that is a case of disagreement. Similarly, if direct probing indicates a TTL

deviation and coordinated probing indicates the same TTL deviation, that is also a case

of agreement. The results using our coordinated probing technique agree with the ground

truth in 98% of the cases, and not only in detecting whether an RDNSi server is honest but

also in determining the quantitative TTL violations (as we will show, most lies are from a

small fixed set of TTLs). Therefore, we find that our dataset contains a sufficient number of

FDNS servers that respond to an initial request with the correct TTL, regardless of whether

we were able to identify them as such in the previous two sections, per RDNSi server to

attribute TTL behavior to RDNSi servers.

In our dataset, there are 46K RDNSi servers and we conduct in-depth probing for

22K of them (due to logistical issues, as sketched above). Table 4.7 shows our findings. We

determine that 36% of RDNSi servers are honest. Further, 55% of RDNSi servers lie on the

51

Behavior Percentage of Measurements
Honest 36%

Lie on Initial 55%
Lie on Subsequent 5%

Constant TTL 5%
Incrementing TTL 0%

Table 4.7: TTL behaviors for the RDNSi servers.

Expected (sec) % < % > Mode Lie
Value % of All Lies

1 0% 1% 300 34%
10 0% 1% 300 34%
30 0% 1% 300 37%
60 0% 1% 300 44%

100 1% 1% 300 41%
120 1% 1% 300 48%
1000 1% 0% 900 29%
3600 1% 0% 80 19%
10000 2% 0% 3600 35%
10800 2% 0% 7200 20%
86400 5% 0% 21600 32%
100000 11% 0% 86400 55%
604800 11% 0% 86400 53%

1000000 49% 0% 604800 71%

Table 4.8: TTL deviations for the RDNSi servers.

initial response to F1, but only 5% of RDNSi servers lie in response to subsequent requests

from F2 indicating that the behavior of caching a different TTL than initially returned is less

prevalent in RDNSi servers than FDNS servers. This supports our conjecture that FDNS

servers, being mostly home-based devices, represent more primitive implementations of

DNS. In addition to incorrect TTLs, we find 8% of RDNSi servers return constant TTL

values without decrementing. The TTL deviations from RDNSi servers, merged with the

results for RDNSdi servers are shown in Table 4.8. When RDNSi servers do lie, virtually

all lies occur at high TTL values. For authoritative TTLs set less than 1 hour, there is little

deviation attributable to RDNSi servers.

We now consider how long a record remains cached and accessible at RDNSi

52

1 10 100 1K 10K 100K 1M
0

0 .2

0 .4

0 .6

0 .8

1

Record lifetime (seconds)

C
C

D
F

 p
e

r
R

D
N

S
 c

a
c
h

e All 1M Second

Accessible 1M Second

All 30 Second

Accessible 30 Second

Figure 4.3: Distribution of record availability in RDNSi caches for records that have TTLs
of 30 and 1 million seconds.

servers. Again, we use the experimental setup described earlier in this section with one

exception. Instead of querying from F2 immediately after receiving the response from F1,

we wait before repeating the query (using the same intervals as in § 4.3.1 up to the TTL

value4). For each RDNSi server, we track the latest time at which the record is available.

Again, when FDNS servers become unavailable in the course of the experiment we

cannot detect how much longer a record stays in the RDNS server’s cache. Thus, Figure 4.3

shows the duration of record retention separately for all measured RDNS servers (the “All”

lines, representing 22K tested RDNSi servers and underestimating the result) and for those

RDNS servers that remained accessible throughout the experiment (the “Accessible” lines,

representing 8.8K and 2.4K RDNSi servers for the 30 second TTL and the 1 million second

TTL, respectively).

Concentrating on the “Accessible” lines as more reliable, we show that 1 million

second TTL records stay in the cache for a long time, with the records still present 10K

seconds (2.8 hours) after being inserted in 90% of the cases. Furthermore, step-wise drops
4Unfortunately, we neglected to measure intervals beyond TTL and hence do not check if RDNS servers

cache records beyond the authoritative TTL as we did for FDNS servers.

53

indicate record evictions at fixed values of time in cache, indicating some configuration

parameters rather than capacity eviction, and a more gradually descending line in the ag-

gregate behavior (Figure 4.1) is likely due to FDNS affects. The 30 second TTL record

remains in the cache for the full TTL in 94% of the tested RDNSi servers.

4.3.4 HDNS Server Behavior

We found in the previous two sections, that some FDNS servers and RDNSi servers report

the TTL assigned by the ADNS server honestly. Thus, an honest FDNS server that forwards

queries to an honest RDNS server should always report the correct TTL. However, we find

occasions of TTL deviation when both the FDNS server and RDNS server are honest,

indicating the presence of an intermediary (i.e., an HDNS server). Thus, we are able to

observe HDNS behavior without ever directly communicating with the HDNS server from

either a measurement origin or our ADNS server. For 2.3K honest FDNS servers using 179

honest RDNS servers, we observe TTL deviations for at least 1 TTL value. Note that we

cannot identify distinct HDNS servers and do not know the number of HDNS servers that

we observe. This result suggests cases where the HDNS server and RDNS server enact

differing policies on the handling TTLs.

4.4 Dataset Representativeness

In this section, we turn to the issue of bias in our datasets first mentioned in § 3.3. Since our

scans do not encompass the entire Internet and utilize the “Scan on First Hit” technique, it

is possible that our results are not demonstrative of the entire population of FDNS servers

and RDNSi servers due to biases in our scanning methodology. In particular, our results

on FDNS behavior encompass a subset of FDNS servers, i.e., those which allow cache

injection. Similarly, our results for RDNSi servers include only those RDNSi servers for

which we discover at least two FDNS servers. For these two, we demonstrate here that our

54

dataset is representative of the respective subsets of the whole population. On the other

hand, we can validate the aggregate behavior against the whole population.

We assess representativeness of our datasets by calculating the fraction of actors

which honestly report the TTL value for all TTL values we utilize. We divide our datasets

into ten slices ordered by the time of discovery. For the aggregate behavior and FDNS

behavior, the 10 slices each include an identical number of measured FDNS servers while

for the RDNSi behavior, the 10 slices each include an identical number of measured RDNSi

servers. We then calculate a cumulative snapshot of the fraction of honest actors found in

the first n slices for 1–10 slices. The cumulative rate should flatten out if the dataset is

typical of the broader population.

Figure 4.4 shows the results. The fraction of honest actors in the aggregate data

remains constant throughout the 10 snapshots, indicating that we quickly discover a repre-

sentative sample in this study. In particular, these results indicate that the “Scan on First

Hit” method of discovery used in this study and which has a bias potential, does not bias

this particular metric. The fraction of honest RDNSi servers decreases over time but ap-

pears to converge to a constant value by the 7th snapshot. This shows that (1) honest RDNSi

servers are discovered at a higher rate towards the beginning of the scan and (2) we dis-

cover a sufficient number of RDNSi servers to be representative of the general population.

Finally, the fraction of honest FDNS servers increases throughout the 10 snapshots though

the growth is flattening. This result indicates that our dataset is not sufficient to capture a

representative set of FDNS servers that allow cache injection. The fraction of honest FDNS

servers in the true population is likely higher than what we report here.

A larger question of representativeness is whether open DNS resolvers are repre-

sentative of the overall population of DNS resolvers users employ. In other words, do the

behaviors we find in ODNS servers more broadly apply to first hop resolvers in general?

Our methodology does not afford any way to directly assess this question given that we

would have to do so from inside many edge networks to gain an understanding of resolver

55

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Chronological Snapshots

F
ra

c
ti
o
n
 o

f
A

c
to

rs

Aggregate

FDNS

RDNSi

Figure 4.4: Fraction of honest actors over the discovery process.

behavior for first hop resolvers that are not arbitrarily accessible.

4.5 Summary

In this chapter, we present a set of methodologies for teasing apart the behavior of the ac-

tors within the system including components that cannot be directly probed. Using these

methodologies, we assess the behavior of the client-side DNS infrastructure with respect

to caching, both in aggregate and separately for different actors. We show how long var-

ious actors retain records and how they report TTL values. In general, we observe that

the authoritative TTL value is frequently modified by the client-side DNS infrastructure.

We show that large TTLs are reduced in 64% of the cases, and small TTLs are increased

in 11% of our measurements. We tease apart these behaviors and attribute the former be-

havior predominantly to RDNSi servers and the latter behavior predominantly to FDNS

servers. Additionally, we find that cache evictions due to capacity limits occur infrequently

in RDNSi servers even for rarely accessed records. At the same time, while the TTL is

56

frequently mis-reported to clients, resolvers themselves do not retain records much past

authoritative TTL. We observe that records are returned past TTL in only 10% of the cases,

even for records that have a relatively short TTL of 30 seconds.

57

Chapter 5

Characterization of DNS Client

Behavior

Individual clients on the Internet issue DNS queries for a variety of different purposes lead-

ing to a complex DNS querying behavior. Previous studies show that DNS lookups precede

over 60% of TCP connections [SAR14]. As a result, individual clients issue large numbers

of DNS queries. Yet, our understanding of DNS query streams is largely based upon aggre-

gate populations of clients—e.g., at an organizational [GYC+13] or at best network address

translation (NAT) device level [CAR13]—leaving our knowledge of individual client be-

havior limited.

This chapter represents an initial step towards understanding individual client DNS

behavior. We monitor DNS transactions between a population of thousands of clients and

their local resolver such that we are able to directly tie lookups to individual clients. Our

ultimate goal is an analytical model of DNS client behavior that can be used for everything

from workload generation to resource provisioning to anomaly detection. In this chapter we

provide a characterization of DNS behavior along the dimensions our model will ultimately

cover and also anecdotally show promising modeling approaches.

Broadly, the remainder of this chapter follows the contours of what a model would

58

capture. We first focus on understanding the nature of the clients themselves in § 5.3,

finding that while most are traditional user-facing devices, there are others that interact

with the DNS in distinct ways. Next we observe in § 5.4 that DNS queries often occur

closely-spaced in time—e.g., driven by loading objects for a single web page from disparate

servers—and therefore we develop a method to gather together queries into clusters. We

then turn to the number and spacing of queries in § 5.5. Finally, we tackle what hostnames

individual clients lookup in § 5.6 and find that each client has a fairly distinct “working

set” of names, and also that unsurprisingly hostname popularity has power law properties.

5.1 Related Work

Models of various protocols have been constructed for understanding, simulat-

ing and predicting traffic (e.g., [Pax94] for a variety of traditional protocols and

[BC98, Mah97, CCG+04] as examples of HTTP modeling). Additionally, there is previous

work on characterizing DNS traffic (e.g., [CAR13, FA13, JBB03, GYC+13]), which

focuses on the aggregate traffic of a population of clients, in contrast to our focus on

individual clients.

Several studies model various caches including those in DNS resolvers [JB01, JB99,

BCF+99, JBB03]. The authors of [JB99] note the presence of temporal locality in request

streams and we explore this notion for DNS traffic for each client and among groups of

clients.

Finally, we note—as we discuss in § 5—that several recent studies involving DNS

make assumptions about the behavior of individual clients or need to analyze data for spe-

cific information before proceeding. For instance, the authors of [FA13] model DNS hi-

erarchical cache performance using a general assumption of the arrival process, while in

[SAR14], the authors use simulation to explore changes to the resolution path. Both studies

would benefit from a greater understanding of DNS client behavior.

59

5.2 Dataset

The dataset utilized in this chapter comes from two packet taps at Case Western Reserve

University at the routers connecting the two data centers that house all five University DNS

resolvers. Thus, our vantage point lies between client devices and their recursive DNS

resolvers. We collect full payload packet traces of all UDP traffic involving port 53 (the

default DNS port). The campus wireless network connects mobile devices via NATs and

therefore we cannot isolate DNS traffic to individual clients. Hence, we do not consider

this traffic in our study (although, future work remains to better understand DNS usage on

mobile devices). The University Acceptable Use Policy prohibits the use of NAT on the

wired networks. Meanwhile, the University offers wireless access throughout the campus.

Therefore, we believe the traffic we capture from the wired network does represent indi-

vidual clients. Our dataset includes all DNS traffic from two separate weeks and is further

partitioned by whether the end hosts are located in the residential or office portions of the

University network. Details of the datasets are given in Table 5.1 including the number of

queries, the number of clients that issue those queries, and the number of distinct hostnames

queried.

5.2.1 Calibration

During the February data collection, we collect query logs from the five campus DNS

resolvers to validate our datasets1. Comparing the packet traces and logs we find a 0.6% and

1.8% measurement-based loss rates in the Feb:Residential and Feb:Office packet traces,

respectively. We believe these losses are an artifact of our measurement apparatus given

that the packets appear in the logs at the DNS resolvers. The loss rate is correlated with

traffic volume: the Feb:Office dataset shows higher volume than the Feb:Residential dataset

and hence the discrepancy in loss rates between the two datasets.

1We prefer traces over logs due to the better timestamp resolution (msec vs. sec).

60

Dataset Dates Queries Clients Hostnames
Feb:Residential Feb. 26 - Mar. 4 32.5M 1359 (IPs) 652K
Feb:Residential (filter) Feb. 26-27, Mar. 2-4 16.4M 1262 (MACs) 505K

Feb:Residential:Users 15.3M 1033 499K
Feb:Residential:Others 1.11M 229 7.94K

Feb:Office Feb. 26 - Mar. 4 232M 8770 (IPs) 1.98M
Feb:Office (filter) Feb. 26-27, Mar. 2-4 143M 8690 (MACs) 1.87M

Feb:Office:Users 118M 5986 1.52M
Feb:Office:Others 25.0M 2704 158K

Jun:Residential Jun. 23 - Jun. 29 11.7M 345 (IPs) 140K
Jun:Residential (filter) Jun. 23-26, 29 6.22M 334 (MACs) 120K

Jun:Residential:Users 5.81M 204 116K
Jun:Residential:Others 408K 130 4.13K

Jun:Office Jun. 23 - Jun. 29 245M 8335 (IPs) 1.61M
Jun:Office (filter) Jun. 23-26, 29 133M 8286 (MACs) 1.52M

Jun:Office:Users 108M 5495 1.42M
Jun:Office:Others 25.0M 2791 63.1K

Table 5.1: Details of the datasets used in the DNS client characterization study.

Further, for the day of Feb. 26th, we match the queries in the datasets to the

queries in the logs to ensure we are capturing correct data. We match on the follow-

ing fields that are available in the logs: (i) source IP address, (ii) source port number,

(iii) question hostname/class/type, and (iv) timestamp rounded to 10 second bins. For the

Feb:Residential and Feb:Office datasets respectively, 99.6% and 99.5% of the queries

match to a query in the log indicating that we are capturing correct data. Manual inspection

of the queries that do not match indicates edge cases where the timestamp in the logs and

in the capture were not well synchronized.

5.2.2 Tracking Clients

Next we aim to track individual clients in the face of dynamic address assignment. Si-

multaneously with the DNS packet trace, we gather logs from the University’s three DHCP

servers. Therefore, we can map dynamically assigned IP addresses to client MAC addresses

and track the client’s behavior across any changes in IP address. We find that less than 3%

of MAC addresses change IP address during our study and less than 0.1% of IP addresses

61

are assigned to more than a single MAC address. Also, note, we could not map 1.3% of the

queries across our datasets to a MAC address because the source IP address in the query

never appears in the DHCP logs. These likely represent static IP address allocations. Fur-

ther, without any DHCP assignments and rarity of cases where the same IP address is used

by multiple MAC addresses we are confident that these IP addresses represent a single host.

5.2.3 Timeframe

Since we consider clients in both residential and office settings, we exclude Saturday and

Sunday from our datasets for a better comparison across the two settings.

5.2.4 Filtering Datasets

While exploring the datasets we found two anomalies that skew the data in ways that are

not indicative of user behavior. First, we noticed roughly 25% of the queries requesting the

TXT record for debug.opendns.com, 130M queries in total. (The next most popular record

represents less than 1% of the lookups!) Further investigation indicates this query is not

in response to users’ actions, but is automatically issued to determine whether the client is

using the public OpenDNS resolver (which the answer to the query indicates) [Opeb]. We

observe 298 clients querying this domain name, which we assume use OpenDNS on other

networks or used OpenDNS in the past. We remove these queries from further analysis.

The second anomaly involves 18 clients whose prominent behavior is to query for de-

bug.opendns.com and other domains repeatedly without evidence of accomplishing much

work. The campus information technology department informed us that these clients serve

an operational purpose and are not user-facing devices. Therefore, we remove the 18 clients

as they are likely unique to this network and do not represent users.

Table 5.1 shows the impact of filtering on each dataset. In addition, we find com-

monality across the various partitions of our data and therefore unless otherwise noted we

focus on the Feb:Residential dataset for conciseness—and discuss when the other datasets

62

differ as appropriate.

5.3 Identifying Types of Clients

Since our focus is on characterizing general purpose user-facing devices, we aim to separate

them from other types of end systems. We expect general-purpose systems are involved in

tasks, such as (i) web browsing, (ii) accessing search engines, (iii) using email, and (iv)

conducting institutional-specific tasks2. Therefore, we develop the following markers to

identify general-purpose hosts:

Browsing: A large number of websites embed Google Analytics [Gooa] in their pages,

thus there is a high likelihood that regular users will query for Google Analytics host-

names on occasion while browsing the Web. We look for resolution of www.google-

analytics.com or ssl.google-analytics.com to indicate browsing activity.

Searching: We detect web search activity via DNS queries for the largest search engines:

Google, Yahoo, Bing, AOL, Ask, DuckDuckGo, Altavista, Baidu, Lycos, Excite,

Naver, and Yandex. We look for resolution of either the search engine domain name

(e.g., google.com) or the hostname (e.g., www.google.com).

Email: Case uses Google to manage campus email and therefore we use queries for

“mail.google.com” to indicate email use.

Institutional-Specific Tasks: Case uses a single sign-on system for authenticating users

before they perform a variety of tasks and therefore we use queries for the corre-

sponding hostname as indicative of user behavior.

Table 5.2 shows the breakdown of the clients in the Feb:Residential dataset. Of the

1,262 clients we identify 1,033 as user-facing based on at least one of the above markers.

2In our case, this is campus-life tasks, e.g., checking the course materials portal.

63

Marker Clients %
All clients 1262 100%
Google analytics 983 78%
Search engine 1010 80%

Google 1006 80%
Any other 602 48%

Gmail 881 70%
LDAP Login 840 66%
Any 1033 82%
At least two 991 79%

Table 5.2: Feb:Residential clients that fit markers for general purpose devices.

Intuitively we expect that multiple markers likely apply to most general purpose systems

and in fact we find at least two markers apply to 991 of the clients in our dataset. Results

for our other datasets are similar.

We next turn to the 229 clients (≈ 18%) that do not match any of our markers for

user-facing clients. To better understand these clients we aggregate them based on the

vendor portion of their MAC addresses. First, we find a set of vendors and query streams

that indicate special-purpose devices:

50 Microsoft devices: Of the Microsoft devices, 48 query for names within the

xboxlive.com domain. Only 1 other client in the dataset also queries for a name

within xboxlive.com. We conclude that the 48 devices are Microsoft Xbox gaming

consoles.

33 Sony devices: All 33 devices query for names within the playstation.net domain, while

no other client in the dataset does. We conclude that the 33 devices are Sony Playsta-

tion gaming consoles.

16 Apple devices: These devices on average issue 11K queries—representing 96% of their

lookups—for the apple.com domain, even though the average across all devices that

lookup an apple.com name is 262 queries. Additionally, we observe these devices

issue queries for Netflix domains as well. We hypothesize that they are Apple TVs

64

used for streaming video.

7 Linksys devices: All 7 devices predominantly issue queries for esuds.usatech.com, a

laundry management system. We conclude that these devices are transactions sys-

tems attached to the laundry machines in the residence halls (!).

In addition to these, we find devices that we cannot pinpoint explicitly, but do not

in fact seem to be general-purpose client systems. We find 41 Dell devices that differ from

the larger population of hosts in that they query for more PTR records than A records. A

potential explanation is that these devices are servers obtaining hostnames for clients that

connect to them (e.g., as part of sshd’s verification steps or to log client connects). We also

identify 12 Kyocera devices that issue queries for only the campus NTP and SMTP servers.

We conclude that these are copy machines that also offer emailing of scanned documents.

For the IP addresses that do not appear in the DHCP logs, we cannot obtain a vendor

ID. However, we note that 97% of the queries and 96% of the unique hostnames from

these machines involve Case domains and therefore we conclude that they serve some

administrative function and are not general purpose clients. The remaining 61 devices are

distributed among 42 hardware vendors. In the remainder of the chapter we will consider

the general purpose clients (Users) and the special purpose clients (Others) separately, as

we detail in Table 5.1.

5.4 Query Clusters

Applications often call for multiple DNS queries in rapid succession—e.g., as part of load-

ing all objects on a web page, or prefetching names for links users may click. In this section,

we quantify this behavior using the DBSCAN algorithm [EKSX96] to construct clusters of

DNS queries that likely share an application event. The DBSCAN algorithm uses two pa-

rameters to form clusters: a minimum cluster size M and a distance ε that controls the

addition of samples to a cluster. We use the absolute difference in the query timestamps as

65

Dataset No. of Clusters Cluster Size Queries in Clusters
(mean) (percentage)

Feb:Residential:Users 1.0M 12 80%
Feb:Office:Users 7.4M 13 83%
Jun:Residential:Users 220K 22 84%
Jun:Office:Users 6.6M 13 79%
Feb:Residential:Others 170K 4.3 65%
Feb:Office:Others 2.5M 7.8 90%
Jun:Residential:Others 36K 6.7 58%
Jun:Office:Others 2.7M 6.5 77%

Table 5.3: Details of clustering per dataset.

the distance metric. Our first task is to choose suitable parameters. Our strategy is to start

with a range of parameters and determine whether there is a point of convergence. Based

on the recommendations in [EKSX96] we start with an M range of 3–6 and an ε range

of 0.5–5 seconds. We find that 96% of the clusters we identify with M = 6 are exactly

found when M = 3 and hence at M = 3 we have converged on a reasonably stable answer

for clusters greater than or equal to size 6. However, M = 6 (and M = 4 or 5) excludes

clusters as small as size three. Inspection of a sample of the 270K clusters of three lookups

when M = 3 finds that the queries are frequently for similar but distinct hostnames—all

three queries are for the same SLD in 48% of the clusters and 2 of the 3 queries are for the

same SLD in 83% of the clusters. This result suggests that the clusters of size 3 are in fact

valid clusters and not noise. Therefore, we use M = 3 in our analysis since smaller clusters

are included and larger clusters are rarely affected by the choice of M ∈ [3, 6]. Addition-

ally, we find that for ε ∈ [2.5, 5], the total number of clusters, the distribution of cluster

sizes, and the assignment of queries to clusters remain similar irrespective of ε value and

therefore use ε = 2.5 in our analysis. We define the first DNS query per cluster as the root

and all subsequent queries in the cluster as dependents. Table 5.3 shows the breakdown

of the number of clusters found by DBSCAN for each dataset and the percentage of the

queries in the datasets that belong to clusters. In the Feb:Residential:Users dataset we find

1.0M clusters that encompass 80% of the roughly 15M queries in the dataset.

66

We examine the clustering algorithm applied to the Feb:Residential:Users dataset.

First, we consider the 67K unique hostnames the algorithm labels as noise. The most

frequent hostnames in the queries are: WPAD [GCD99] queries for discovering prox-

ies, Google Mail and Google Docs, software update polling (e.g., McAfee and Syman-

tec), heartbeat signals for gaming applications (e.g., Origin, Steam, Blizzard, Riot), video

streaming (e.g., Netflix, Youtube, Twitch), and the Network Time Protocol (NTP). All of

these names can intuitively come from applications that require only sporadic DNS queries,

as they are either making quick checks every once in a while, or are using long-lived ses-

sions that leverage DNS only when starting.

To validate the clusters themselves, we observe that there are frequently occurring

roots. The 1M clusters we form have 72K unique roots. The 100 most frequently occur-

ring roots account for 395K (40%) of the clusters. Further, the 100 most popular roots

include popular websites (e.g., www.facebook.com, www.google.com). These are the type

of names we would expect to be roots in the context of web browsing. Another common

root is safebrowsing.google.com [Gooc], a blacklist directory used by some web browsers

to determine if a given web site is safe to retrieve. This is a distinctly different type of root

than a popular web site because the root is not directly related to the dependents by the

page content, but rather via a process running on the clients. This in some sense means

SafeBrowsing-based clusters have two roots. While use of SafeBrowsing is fairly common

in our dataset, we do not find other prevalent cases of this “two roots” phenomenon. From a

modeling standpoint we have not yet determined whether “two roots” clusters would need

special treatment.

Figure 5.1 shows the distribution of queries per cluster. While the majority of clus-

ters are small, there are relatively few large clusters. We find that 90% of clusters contain at

most 26 queries for at most 22 hostnames. Additionally, we find 90% of the clusters encom-

pass at most 10 SLDs. The largest cluster spans 95 seconds and consists of 9,366 queries for

names that match to the 3rd level label. The second largest cluster consists of 6,211 queries

67

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100
Count per metric (log scale)

C
D

F
 p

er
 c

lu
st

er

SLDs Hostnames Queries

Figure 5.1: Number of queries, hostnames, and SLDs per cluster in the
Feb:Residential:Users dataset.

for myapps.developer.ubuntu.com—which is likely a bug.

Finally, we examine that percentage of DNS queries occurring in clusters on a per-

client basis (Figure 5.2) in the Feb:Residential datasets. For Users devices, we find that

70% or more of DNS queries occur in clusters for 74% of clients. Clustering of DNS

queries is therefore common in most of the general purpose devices in our datasets. The

same is not true for Others, however, where participation in clustering varies across clients

from no participation to full participation. This result is to be expected, since the Others

category combines many different types of devices, each with their own behavior. We note

that this trend holds across all of our measurements with the Users datasets all demonstrat-

ing similar behavior while the Others datasets show variation across location (residential

vs. office) and time (February vs. June). We focus on the Feb:Residential datasets for the

68

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of queries in clusters

C
D

F
 p

er
 c

lie
nt

Feb:Residential:Others Feb:Residential:Users

Figure 5.2: Fraction of queries in clusters for each client in the Feb:Residential:Users and
Feb:Residential:Others datasets.

remainder of this work.

5.5 Query Timing

Next we tackle the question of when and how many queries clients issue. We begin with

the distribution of the average number of queries that clients issue per day, as given in

Figure 5.3 for the Feb:Residential datasets. We find that Users issue 2K lookups per day

at the median and 90% of Users issue less than 6.7K queries per day. The Others show

greater variability than Users. Relatively few clients generate more queries than the rest of

the clients—i.e., the top 5% of clients produce roughly as many total DNS queries per day

as the bottom 95%.

69

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 1 10 100 1K 10K
Mean queries sent per day (log scale)

C
D

F
 p

er
 c

lie
nt

Feb:Residential:Others Feb:Residential:Users

Figure 5.3: Queries issued by each client per day in the Feb:Residential:Others and
Feb:Residential:Users datasets.

A related subject is the time between subsequent queries from the same client,

or inter-query times. Figure 5.4 shows the distribution of the inter-query times in the

Feb:Residential:Users dataset. The “Aggregate” line shows the distribution across all

clients. The area “90%” shows the range within which 90% of the individual client

inter-query time distributions fall. The majority of inter-query times are short, with 50%

of lookups occurring within 34 milliseconds of the previous query. In the tail, 0.1% of

inter-query times are over 25 minutes. We conclude that the distribution has a heavy tail

because the tail fits well to the Pareto distribution (see below). Intuitively, long inter-query

times represent off periods when the client’s user is away from the keyboard (e.g., asleep

or at class). The Others datasets show wide ranging behavior suggesting that, since they

include a variety of device types, they are less amenable to succinct description in an

70

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.001 0.01 0.1 1 10 100
Inter−query time in seconds (log scale)

C
D

F
 p

er
 in

te
r−

qu
er

y
tim

e

90% Aggregate

Figure 5.4: Time between queries from the same client in aggregate and per client.

aggregate model.

For Users, we are able to model the aggregate inter-query time distribution using

the Weibull distribution for the body and the Pareto distribution for the heavy tail. We

find that partitioning the data at an inter-query time of 22 seconds minimizes the mean

squared error between the data and the two analytical distributions. Next, we fit the ana-

lytical distributions—split at 22 seconds—to each of the individual client inter-query time

distributions. We find that while the parameters vary per client, the empirical data is well

represented by the analytical models as the mean squared error for 90% of clients is less

than 0.0014. Therefore, DNS clients can likely be modeled well with a distribution with

parameters varied per client.

Next, we move from focusing on individual lookups to focusing on timing related

to the 1M clusters that encompass 12M (80%) of the queries in our dataset (see § 5.4).

71

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1ms 10ms 100ms 1s 10s 100s
Time (log scale)

C
D

F

Intra−cluster time Cluster duration Inter−cluster time

Figure 5.5: Duration of clusters, inter-cluster query time and intra-cluster query time.

Figure 5.5 shows our results. The “Intra-cluster time” line shows the distribution of the

time between successive queries within the same cluster and shows that nearly all are far

less than the ε value of 2.5 seconds. On the other hand, the line “Inter-cluster time” shows

the time between the last query of a cluster and the first query of the next cluster and grows

quickly beyond ε. The line “Cluster duration” shows the time between the first and last

query in each cluster. Most clusters are short, with 99% less than 18 seconds. Additionally,

we find that most of client DNS traffic occurs in short clusters: 50% of clustered queries

belong to clusters with duration less than 4.6 seconds and 90% are in clusters with duration

less than 20 seconds. In the Others datasets, a smaller percentage—roughly 60%—of DNS

queries occur in clusters.

72

1E−7

1E−6

1E−5

1E−4

1E−3

1E−2

1E−1

1E+0

1 10 100 1K 10K 100K
Index of name, sorted (log scale)

F
ra

ct
io

n
of

 to
ta

l q
ue

rie
s

(lo
g

sc
al

e)

90% Aggregate

Figure 5.6: Fraction of queries issued for each hostname per client.

5.6 Query Targets

Finally, we tackle the queries themselves including relationships between queries.

5.6.1 Popularity of Names

We analyze the popularity of hostnames in our dataset using two methods. First, we de-

termine the total number of queries per hostname across the dataset. Figure 5.6 shows

the fraction of queries for each hostname (with the hostnames sorted in terms of decreasing

popularity). Per § 5.5, we plot the aggregate distribution and a range that encompasses 90%

of the individual client distributions. Of the 499K unique hostnames within our dataset,

256K (51%) are looked up only once. Meanwhile, the top 100 hostnames account for 28%

of DNS queries. The second way we assess popularity is in terms of how many clients

73

1E−3

1E−2

1E−1

1E+0

1 100 10,000
Index of name, sorted (log scale)

F
ra

ct
io

n
of

 c
lie

nt
s

(lo
g

sc
al

e)

SLDs Hostnames

Figure 5.7: Fraction of clients issuing queries for each hostname and SLD.

look up a given name. Figure 5.7 shows the fraction of clients that query for each name.

We find that 77% of hostnames are queried by only a single client. However, over 90%

of the clients look up the 14 most popular hostnames. We find that 13 of these hostnames

are Google services and the remaining one is www.facebook.com. The plot shows similar

results for second-level domains (SLDs), where 66% of the SLDs are looked up by a single

client.

Both the distribution of queries per name and clients per name demonstrate power

law behavior in the tail. Interestingly, the Pearson correlation between these two metrics—

popularity by queries and popularity by clients—is only 0.54 indicating that a domain name

with many queries is not necessarily queried by a large fraction of the client population and

vice versa. As an example, updatekeepalive.mcafee.com is the 19th most queried host-

name but only 8.1% of clients are responsible for these queries, placing the hostname

74

3, 109th in terms of the fraction of clients per name. Similarly, 55% of the clients query for

s2.symcb.com, placing it 175th. However, in terms of total queries this hostname ranks as

only the 1, 215th most queried. This phenomenon can be explained by differences in TTL.

The record for s2.symcb.com has a one hour TTL—explaining why we do not observe more

frequent queries. Meanwhile, updatekeepalive.mcafee.com has a 1 minute TTL. Given this

short TTL and that the name implies polling activity, the large numbers of queries from a

given client is unsurprising.

The heavy tails of the popularity distributions represent the majority of DNS trans-

actions. Therefore, while tempting, we cannot disregard unpopular names—not even those

queried just once—because their sheer number is large and together they are responsible

for most of DNS activity. Therefore they have an impact on the entire DNS ecosystem

(e.g., its utilization and cache behavior).

5.6.2 Co-occurrence Name Relationships

In addition to understanding popularity, we next aim to assess the relationships between

names, as these have implications on how to model client behavior. The crucial relationship

between two names that we seek to quantify is frequent querying for the pair together. We

begin with the clusters we develop in § 5.4. Further, we leverage the intuition that the first

query within a cluster triggers the subsequent queries in the cluster and is therefore the root

lookup. This intuition follows from the structure of modern web pages, with a container

page calling for additional objects from a variety of servers—e.g., [HTT] shows that the

average web page leverages objects from 16 different hostnames.

Finding co-occurrence is complicated because of client caching of names. This

means that we cannot expect to see the entire set of dependent lookups each time we ob-

serve some root lookup. Our methodology for detecting co-occurrence is as follows. First,

we define clusters(r) as the number of clusters with r as the root across our dataset and

pairs(r, d) as the number of clusters with root r that include dependent d. Second, we

75

limit our analysis to the case when clusters(r) ≥ 10 to limit the potential for false positive

relationships based on too few samples. Across our dataset we find 7.1K (9.9%) of the

clusters meet this criteria. Within these clusters we find 7.5M dependent queries and 2.2M

unique (r, d) pairs. Third, for each pair (r, d), we compute the fraction of co-occurrence

as pairs(r, d)/clusters(r)—i.e., the fraction of the clusters with root r that include d. Co-

occurrence of most pairs is low with 2.0M (93%) pairs having a co-occurrence fraction

much less than 0.1. We focus on the 78K pairs that have high co-occurrence fractions—

greater than 0.2—and aim to understand them. These pairs include 98% of the roots we

identify. Additionally, nearly all roots have at least one dependent with which they co-occur

frequently. Also, these pairs comprise 28% of the 7.5M dependent queries we study.

We cannot test the majority of the clusters and pairs for co-occurrence because of

limited samples. However, we hypothesize that our results apply to all clusters. We note

that the distribution of the number of queries per cluster in Figure 5.1 is similar to the distri-

bution of the number of dependents per root where the co-occurrence fraction is greater than

0.2. Combining our observations that 80% of queries occur in clusters, 28% of the depen-

dent queries within clusters have high co-occurrence with the root, and the average cluster

has 1 root and 11 dependents, we estimate that at a minimum 80 ∗ 0.28 ∗ 11/12 = 21% of

DNS queries are driven by co-occurrence relationships. We conclude that co-occurrence

relationships are common, though the relationships do not always manifest as requests on

the wire due to caching.

Finally, we note that intuitively dependent names could be expected to share labels

with their roots—e.g., www.facebook.com and star.c10r.facebook.com—and this could be a

further way to assess co-occurrence. However, we find that 27% of the pairs within clusters

with co-occurrence of at least 0.2 share the same SLD and 11% share the 3rd level label

as the root. This suggests that while not rare, counting on co-occurring names to be from

the same zone to build clusters is dubious. As an extreme example, Google Analytics is a

dependent of 1,049 unique roots, most of which are not Google names.

76

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Min cos similarity for same client on consecutive days

C
D

F
 p

er
 c

lie
nt

Hostnames SLDs

Figure 5.8: Cosine similarity between the query vectors for the same client.

5.6.3 Temporal Locality

We next explore how the set of names a client queries changes over time. As a foundation,

we construct a vector Vc,d for each client c and each day d in our dataset, which represents

the fraction of lookups for each name we observe in our dataset. Specifically, we start from

an alphabetically ordered list of all hostnames looked up across all clients in our dataset,

N . We initially set each Vc,d to a vector of |N | zeros. We then iterate through N and set

the corresponding position in each Vc,d as the total number of queries client c issues for

the N th
i name on day d divided by the total number of queries c issues on day d. Thus, an

example Vc,d would be [0, 0.25, 0, 0.5, 0.25] in the case where there are five total names in

the dataset and on day d the client queries for the second name once, the fourth name twice

and the fifth name once. We repeat this process using only the SLDs from each query, as

77

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Max cos similarity between clients for any day(s)

C
D

F
 p

er
 c

lie
nt

 p
ai

r

Hostnames SLDs

Figure 5.9: Cosine similarity between the query vectors for different clients.

well.

The first question we tackle with these vectors is whether clients’ queries tend to re-

main stable across days in the dataset. For this, we compute the minimum cosine similarity

of the query vectors for each client across all pairs of consecutive days. Figure 5.8 shows

the distribution of minimum cosine similarity per client. In general, the cosine similarity

values are high—greater than 0.5 for 80% of clients for unique hostnames—indicating that

clients query for a similar set of names in similar relative frequencies across days. Given

this result, it is unsurprising that the figure also shows high similarity across SLDs, as well.

Next we assess whether different clients query for similar sets of names. We com-

pute the cosine similarity across all pairs of clients and for all days of our dataset. Figure 5.9

shows the distribution of the maximum similarity per client pair from any day. When con-

sidering hostnames, we find drastically lower similarity values than when focusing on a

78

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1K 10K
Mean names queried per day (log scale)

C
D

F
 p

er
 c

lie
nt

SLDs Hostnames

Figure 5.10: Mean hostnames and SLDs queried by each client per day.

single client—with only 3% showing similarity of at least 0.5—showing that each client

queries for a fairly distinct set of hostnames. The similarity between clients is also low for

sets of SLDs, with 55% of the pairs showing a maximum similarity less than 0.5. Thus,

clients query for different specific hostnames, but also for distinct sets of SLDs. These

results show that a client DNS model must ensure that (i) each client tends to stay similar

across time and also that (ii) clients must be distinct from one another.

A final aspect we explore is how quickly a client re-queries for a given name. As we

show above in Figure 5.3, 50% of the clients send less than 2K queries per day on average.

Figure 5.10 shows the distribution of the average number of unique hostnames that clients

query per day. We find the number of names is less than the overall number of lookups,

indicating the presence of repeat queries. For instance, at the median, a client queries

for 400 unique hostnames and 150 SLDs each day. To assess the temporal locality of re-

79

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1K
Stack Distance (log scale)

C
D

F
 p

er
 c

lie
nt

Median Mean

Figure 5.11: Mean and median stack distance for each client.

queries, we compute the stack distance [MGST70] for each query—the number of unique

queries since the last query for the given name. Figure 5.11 shows the distributions of the

mean and median stack distance per client. We find the stack distance to be relatively short

in most cases—with over 85% of the medians being less than 100. However, the longer

means show that the re-use rate is not always short. Further, the distributions also show that

variation exists among clients, with some clients revisiting names frequently while some

clients query a larger set of names with less frequency.

5.7 Summary

This work is an initial step towards richly understanding individual DNS client behavior.

We characterize client behavior along dimensions that will ultimately inform an analytical

80

model. We find that types of clients interact with the DNS in distinct ways. Further,

DNS queries often occur in clusters of related names, and short clusters account for most

DNS traffic. As a first step towards an analytical model, we show that the client query

arrival process is modeled well by a combination of the Weibull and Pareto distributions.

Additionally, we observe that clients have a “working set” of names that is rather stable over

time and fairly distinct from other clients. Finally, we note that we find these high-level

insights hold across both time—currently 4 months, but future work will explore a longer

timeframe—and qualitatively different user populations—student residential vs. University

office. This is an initial indication that the broad properties we illuminate hold the promise

to be invariants.

81

Chapter 6

A New Security Vulnerability in the DNS

Because many applications depend upon DNS, the security of DNS has a large impact on

the security of the overall network. Replacing an authoritative mapping from hostname to

IP address with a fraudulent mapping will divert users to malicious hosts. Once diverted,

users may be subject to a variety of follow-up attacks from phishing to malware installation.

In this chapter, we uncover a new DNS vulnerability to an attack designed to substitute the

authoritative mapping1 and measure the prevalence of this vulnerability.

Fraudulent hostname-to-IP address mappings originate in two places: (i) a compo-

nent in the hostname resolution machinery (e.g., a local DNS resolver) or (ii) a man-in-

the-middle that can monitor DNS transactions and either change or inject responses. A

variant of the first is a record injection attack whereby an attacker populates the cache of

a DNS resolver with an illegitimate record, which the resolver then uses to satisfy subse-

quent legitimate requests for the given hostname. The attack we uncover is a form of record

injection attack. We note that the base DNS protocol offers no protection against the latter

form of attack.

Unfortunately, assessing the extent of security threats within the DNS infrastructure

is anything but straightforward. As demonstrated in Chapter 3, DNS transactions often

take a complex path through a maze of intermediate resolvers. This work attributes the
1This work originally appeared as part of [SCRA14].

82

uncovered vulnerability to a specific actor in this infrastructure—home network routers—

and we find that 7–9% of home routers are vulnerable.

6.1 Related Work

In 2005, Arends and Koch [AK05] notes the danger of record injection attacks on open

DNS resolvers that accept DNS queries from arbitrary sources. The prevalence of such

resolvers is increasing—from 15M in 2010 [LL10] to 30M in 2013 as estimated by our

own work (§ 3.5.1). While not all open resolvers are vulnerable to known attacks, their

increasing numbers provide a larger attack surface that is important to understand.

Many previous studies discuss specific DNS security vulnerabilities. Dagon, et al.

[DAD+09] provide a model of DNS record injection and show how implementation consid-

erations weaken the security of resolvers. Ariyapperuma and Mitchell [AM07] provide an

overview of many known DNS security vulnerabilities. Schuba [Sch93] notes the lack of

authentication in the DNS even though DNS is sometimes used to identify and trust remote

machines. Callahan [Cal12] demonstrates that a large percentage of RDNS servers are

still vulnerable to Kaminsky [Kam08] style attacks many years after the vulnerability was

announced. Additionally, other forms of record injection (e.g., bailiwick rule violations,

negative response rewriting) are also still present in the modern DNS.

The Internet engineering community has spent considerable energy fortifying DNS

with DNSSEC [AAL+05] which cryptographically protects the integrity of the authorita-

tive bindings set by the holder of a name. While DNSSEC is the long-term security strategy

for the DNS, deployment is currently low—with only about 1% of the resolvers validating

DNSSEC records [GC11, Fuj12]. Given the low DNSSEC deployment, understanding the

security landscape of DNS without DNSSEC remains of critical importance.

Studies have also offered potential solutions to DNS record injection vulnerabilities.

Bernstein [Ber08] proposes a method of adding encryption and authentication to DNS using

83

Scan Begin Duration (Days) # ODNS # RDNS
S7 3/1/13 11 40.5K 5.3K
S8 7/19/13 12 2.31M 86.1K

Table 6.1: Datasets collected for measuring vulnerability to record injection attacks.

elliptic curve cryptography. Antonakakis, et al. [ADL+10] introduce a heuristic method

for detecting malicious records in cache. Leveraging the observation that DNS records

are generally stable over time, the authors use a combination of whitelisting and statistical

methods to determine if an IP address change is malicious or benign. Tzur-David, et al.

[TDLDA12] use anomaly detection at the RDNS server in the timing of DNS messages.

Responses that arrive too quickly—compared to an estimated round-trip-time between the

RDNS server and the ADNS server—are delayed. If another response arrives, then it is

highly probable that one of the two responses is malicious and both are dropped. Yuan,

et al. [YKMC06] propose a peer-to-peer strategy that enables groups of RDNS servers to

detect poisoned records within the group. In this chapter, we present a new vulnerability in

a different component of the infrastructure.

6.2 Methodology

Our basic methodology for studying the vulnerability of the client-side DNS infrastructure

is to probe the Internet in search of ODNS servers, similar to how we collected our previous

datasets. See § 3.3 for details of our scanning apparatus. Table 6.1 provides information

about the datasets we collect and utilize in the remainder of this chapter. We continue

labeling the datasets where we left off in Chapter 3 to avoid confusion.

Note, we return to methodological issues in § 6.6. In particular, we use the tech-

niques we develop in the following sections to address two specific issues. First, we aim to

understand whether the ODNS servers we find are actually in operational use by real users.

Second, since we do not probe the entire Internet address space, we seek to understand if

our sample is representative of the broader Internet.

84

6.3 Record Injection Attacks

The potential for an off-path attacker to poison a DNS cache via record injection is not a

new observation. Resolvers rely upon matching the contents of the response to the contents

of the request in order to validate responses. Consider an attacker A that wishes to poison

the record for “www.foo.com” from the ADNS server D in the cache of an RDNS resolver

R. A legitimate response to a request from R will have the following attributes. In the IP

header, the source IP address is the IP address of D and the destination IP address is the

IP address of R. In the UDP header, the source port number is the DNS default port of 53

and the destination port number is the source port used by R in the request. Finally, in the

UDP datagram, the querystring is “www.foo.com” and the transaction ID value matches

the value set in the request. Of these, only the destination UDP port number and DNS

transaction ID are difficult for the attacker to learn.

To execute a record injection attack, A crafts a malicious DNS response and times

sending the response to R so that the response arrives after a query for “www.foo.com”.

If A guesses both the transaction ID and port number correctly and squeezes the malicious

response in before the legitimate response from D arrives, A poisons R’s cache with the

malicious response. But, if A guesses incorrectly, the malicious response is discarded and

R will cache the valid response from D when it arrives. A must then wait until the cached

record is evicted before attempting to poison with a malicious record again.

The attack is made simpler by three insights. First, A does not need to coincide

their attack with a query from a client. Instead, A may issue a query to R themselves and

immediately follow it with a malicious response. The legitimate response from D will take

much longer to return to R than for the malicious response to arrive, so timing becomes a

non-issue. Second, A can send multiple responses per attempt, each with different guesses

for the transaction ID and port number, and improve A’s chances of guessing the correct

values. Third, in 2008, Kaminsky [Kam08] demonstrated how A need not wait for cached

records to be evicted between poison attempts, thus dramatically reducing the time needed

85

for a record injection attack to succeed.

To protect resolvers against record injection attacks, resolvers should make it as

hard as possible for the attacker to guess the correct values. The recommended way is by

selecting the transaction ID and port number at random [Kam08]. Randomization of either

value alone is insufficient to effectively protect against Kaminsky attacks [Kam08].

6.4 Preplay Attack

While Kaminsky attacks require an attacker to forge an acceptable DNS response, we de-

termine that FDNS servers are vulnerable to a previously unknown injection attack. FDNS

servers do not themselves recursively look up mappings, but they often do have caches

of previous lookups. The FDNS servers populate these caches with the responses from

upstream RDNS resolvers. In some cases we find that FDNS servers fail to validate the

DNS responses. This leaves these FDNS servers vulnerable to the crudest form of cache

injection: a “preplay” attack whereby an attacker sends a request to a victim FDNS server

and then, before the legitimate response comes back, the attacker answers the request with a

fraudulent response. The FDNS server will then forward the fake response to the originator

and cache the result. An FDNS server that (i) forwards requests with both a new random

ephemeral port number and a new random DNS transaction ID and (ii) verifies these and

the upstream RDNS server’s IP address on returning responses is protected against the pre-

play attack. Such protections would reduce an attacker to guessing a variety of values in the

short amount of time before the legitimate response from the RDNS arrives. However, we

find a non-trivial number of FDNS servers simply forward on the packets received and/or

do not verify the values on DNS responses. This leaves the door open for a crude attack

whereby an attacker does not have to guess these values, but can just use those from the

original request.

To assess the extent of this vulnerability during our S7 and S8 experiments, we

86

send a request for a hostname from our domain to each ODNS and immediately issue a

fraudulent response containing IP address X . On the other hand, our ADNS responds to

these requests with a binding to IP address Y . The probing host issues a subsequent request

and determines which IP address is in the ODNS’ cache.

In its most primitive form, the preplay attack does not involve spoofing or guessing

to make the fraudulent response appear legitimate—we use the ephemeral port number and

DNS transaction ID from the original request. Additionally, we use the probing machine’s

genuine IP address which is clearly not the IP address of RDNS server that an FDNS server

should expect. In addition to the primitive form, we also consider variants of the attack that

involve spoofing the source IP address and manipulating the destination port number in the

DNS response. To learn and use the correct source IP address in the fraudulent response,

an attacker could perform the following steps:

1. The attacker first sends the victim FDNS server V a DNS request for a hostname

within a domain controlled by the attacker. The requested name embeds V ’s IP

address. When this request arrives at the attacker’s ADNS, the attacker observes the

IP address of an RDNS R used by V .

2. The attacker sends a second DNS request to V , now for the victim domain, and

immediately follows up with a fraudulent response that appears to originate from R.

The method of constructing the fraudulent response will be discussed later.

We note that the above method of determining the IP address of the RDNS server

used by an FDNS server may not work for RDNS pools and definitely does not work for

hierarchical client-side DNS systems, e.g., Google or any other DNS resolution service

where the ingress DNS server is not the same as the egress DNS server that the attacker

observes. However, we find in § 3.5.3 that over 30% of FDNS servers likely do not use

hierarchical client-side DNS systems as they only query a single RDNS server.

87

Variant Tested Vulnerable Overlap with Default
S7 Default 41K 3.5K (8.6%) 100%

Ephemeral 41K 3.3K (8.2%) 98%
Random 41K 3.4K (8.3%) 98%
Spoof-Default 41K 2.8K (6.8%) 98%
Spoof-Ephemeral 41K 3.2K (7.8%) 97%
Spoof-Random 41K 3.3K (8.1%) 98%

S8 Default 2.3M 170K (7.3%) N/A

Table 6.2: FDNS vulnerability to preplay cache injection in the S7 and S8 datasets.

Next, we examine if an attacker can increase the attack success rate by manipulat-

ing the destination port number of the DNS response. the FDNS servers will expect the

response to come to the port number used in the request and reject other responses. We

experimentally test two possibilities for setting the destination port number of the attack

response to match the port selection of the FDNS server. First, we observe that the source

port number on DNS responses from some FDNS servers received by our probing hosts is

not always port 53 even though we send our probes to port 53. We hypothesize that the

port upon which the FDNS communicates with our probing host is the same ephemeral

port upon which the FDNS communicates with its RDNS server and therefore send the

DNS response for the preplay attack to this port number. Second, it is possible that some

FDNS servers ignore port numbers in deciding whether to accept a DNS response. There-

fore, we attempt to perform the preplay attack using a randomly selected port number. In

total, the above described variants make six possible combinations: non-spoofed source IP

address and default port 53 (Default), non-spoofed source IP address and ephemeral port

(Ephemeral), non-spoofed source IP address and random port (Random), spoofed RDNS

IP address and default port 53 (Spoof-Default), spoofed RDNS IP address and ephemeral

port (Spoof-Ephemeral), and spoofed RDNS IP address and random port (Spoof-Random).

We first test the preplay attack during the S7 scan. Unlike our previous scans which

were all performed from PlanetLab nodes, the S7 scan leverages a single machine in a

residential network.2 For each ODNS server, we attempt each attack variant three times to

2Due to some of our tests using spoofed addresses which is against PlanetLab’s acceptable use policy.

88

reduce any impact from packet loss. Of the roughly 41K ODNS servers we test, we find 2.8

to 3.5K (or 6.8 to 8.6%) to be vulnerable to the preplay attack variants. While all variants

without spoofing have similar success rates, our success rate with spoofing is lower—likely

indicating filtering of this traffic.

We conclude that ODNS servers are failing to take three simple measures to thwart

this attack: (i) use a new and random DNS transaction ID, (ii) verify that the source IP

address in DNS responses matches the IP address of the upstream RDNS, and (iii) verify

the destination port number on responses. The latter is particularly intriguing as it suggests

these devices are not running a traditional protocol stack in which packets arriving on an

unbound port number are dropped. Given we find no increase in the success rate with our

attempts at spoofing, we return to PlanetLab with the S8 scan to assess the vulnerability at a

larger scale. Of the 2.3M ODNS servers we test, we find 170K (or 7.3%) to be vulnerable to

the preplay attack. Our previous measurements of the DNS infrastructure in § 3.5.1 indicate

that there are between 31M—33M ODNS servers on the Internet. Thus, we estimate that

there are 2.2M preplay vulnerable ODNS servers on the Internet.

6.5 Implications

6.5.1 Duration of Record Injection

The injection attack we discuss above can only be successful when part of the DNS infras-

tructure caches a fraudulent record and then returns that record in response to a normal user

request. In our assessment of the caches of FDNS servers and RDNS resolvers (§ 4), we

find (i) little evidence of cache evictions based on capacity limits and (ii) that records with

long TTLs—which can be set in injected records—stay in the cache for at least one day

in 60% of the RDNSi resolvers and 50% of the FDNS servers. This shows the impact of

record injection can be long-lived.

89

6.5.2 Phantom DNS Records

A class of denial-of-service attacks relies on placing a large DNS record in a cache (at

an RDNS, say) and then spoofing requests that will cause the record to be sent to some

victim. This can both hide the actual origin of the attack, as well as amplify (in volume)

an attacker’s traffic by using records that are larger than requests. To date this requires

attackers to register a domain and serve large records to insert them into the various caches

or find an ADNS that is already serving large records. However, using record injection

techniques, an attacker does not need to be bound to any centralized infrastructure. In

fact, any hostname—real or not!—could be readily inserted in the cache and then used

in a subsequent attack. This leaves less of a paper trail that can potentially trace back to

an attacker. The preplay attack allows such record injection into millions of devices with

trivial effort.

6.6 Context

We now return to contextual issues surrounding our measurements, as sketched in § 6.2.

6.6.1 Are Open Resolvers Used?

We first turn to the question of whether ODNS servers in fact serve users or are active,

yet unused artifacts. This bears directly on whether the preplay attack represents a real

problem. First, in companion work we use several criteria—including scraping any present

HTTP content on the ODNS, consulting blacklists of residential hosts and observing DNS

protocol behavior—to determine that “78% [of ODNS servers] are likely residential net-

working devices” [SCRA13]. Using the same criteria against the FDNS servers in the S8

scan, we find that 91% of the FDNS servers that are vulnerable to the preplay attack are

likely residential network devices. While this result does not speak directly to use, our ex-

perience is that these devices act as DNS forwarders for devices within homes and therefore

90

we believe this suggests actual use.

Additionally, we seek to test directly for evidence that the FDNS servers we probe

are in use by some client population. We start by gathering round-trip time (RTT) samples

for each FDNS and the corresponding RDNS. For the FDNS we use the preplay attack to

measure the RTT by taking the time between sending a fraudulent response to the FDNS

and receiving the response back from the FDNS at our client. Measuring the RTT to the

RDNS is more complicated. The process starts with the client requesting some name N

from our ADNS. The ADNS responds with some CNAME N ′, which the RDNS then re-

solves and our ADNS returns a random address S. The mapping between N and S then

returns to the FDNS and ultimately our client. The client then issues a request for N ′—

which will presumably be in the RDNS’ cache, but given the primitive nature of preplay-

vulnerable FDNS devices not in the FDNS’ cache since the RDNS resolves the CNAME

on the FDNS’s behalf. The response for N ′ will be S when the RDNS answers the re-

quest from the cache. It is possible that there are cases when the RDNS server returns the

CNAME to the FDNS server, the FDNS server caches the CNAME, and the FDNS an-

swers the request for N ′ from cache. In this case, we will underestimate the RDNS RTT.

We address this issue below.

After we obtain RTTs for both FDNS and RDNS, we seek to understand whether

popular web site names are in the FDNS cache as a proxy for whether the FDNS is in

use by a population of users. We therefore issue DNS requests for the Alexa3 top 1,000

web sites and time the responses.4 Given unreliable TTL reporting by FDNS servers as

we previously observed in § 4.3.2, we determine that a given hostname is in the FDNS

cache using the time required to resolve the name. Since we expect individual FDNS to

have diurnal variation, we perform the lookups on each FDNS every 4 hours for one day.

Our own queries will populate the FDNS cache and therefore we must exercise care with

3www.alexa.com
4Note, we augment the list of sites by prepending each web site name from Alexa with “www”—which

is not included in the list—and we therefore probe for 2,000 names.

91

subsequent probes lest we wrongly conclude users employ the FDNS when it is our own

probes we observe. We mitigate this issue in two ways. First, we probe all names with

an authoritative TTL of 4 hours or more only once, accounting for 415 names. Second,

we inject records into FDNS cache from our ADNS with the same TTLs as the remaining

1,585 records in our corpus (all of which are less than 4 hours). At each 4 hour interval we

check our own records and if the FDNS incorrectly returns a record that had an initial TTL

of x we exclude all but the initial query for popular names with an initial TTL of at least x.

We determine that a given hostname is in the FDNS cache if the time required

to resolve the name during our S8 scan does not exceed the median FDNS RTT. Fig-

ure 6.1 shows the distribution of the fraction of FDNS servers that hold a given number

of records in their cache. The “All” line shows the distribution for all preplay-vulnerable

FDNS servers. We find 81% of the FDNS servers have at least one popular name in their

cache at some point during the experiment. However, the distribution also shows that over

30% of the FDNS servers have at least 100 hostnames in the cache. It seems unlikely

that an FDNS with few clients behind it would have a large number of records in cache.

Instead, we believe these represent cases where our heuristic is not properly delineating

between the FDNS and RDNS cache. Therefore, in an effort to better delineate the FDNS

and RDNS caches we plot the subset of FDNS servers where the maximum FDNS RTT is

at least 10 msec less than the minimum RDNS RTT, which we denote as “Far from RDNS”.

This subset encompasses 8.4K FDNS servers and we do see the tail of the distribution fall

away. Within this subset, 53% of the FDNS servers are in use. Additionally, we examine

the subset of FDNS servers that are accessible for our entire 24 hour experiment. In this

subset, we find more in-use FDNS servers—90% of all FDNS servers and 68% of FDNS

servers that are far from their corresponding RDNS resolver.

Note, our heuristic provides a lower bound on the number of in-use FDNS servers

since we only measure a fraction of the 24 hour period. Indeed, the median TTL for the

popular names is 10 minutes. Assuming the median TTL, an FDNS that enforces the TTL

92

0 1 10 100 2K
0

0.2

0.4

0.6

0.8

1

Records in cache

C
C

D
F

 p
e
r

F
D

N
S

 s
e
rv

e
r

All

Far from RDNS server

Figure 6.1: Distribution of popular websites in FDNS server caches.

and an FDNS available for 24 hours, our strategy provides a one-hour window into the

FDNS’ cache—or, just over 4% of the day. Further, our extensive probing of the FDNS’

cache may actually overflow the cache thus pushing out records added via use. Therefore,

we believe that many of the FDNS servers that do not show as in use are in fact in use, but

that short TTLs and our coarse and extensive probing conspire to hide the use. Our general

conclusion is that the FDNS servers we find are in fact in use by people during their normal

browsing.

6.6.2 Industry Response

Many residential networking devices have Web interfaces for management. As part of

the S8 scan, we probe the vulnerable ODNS servers on TCP port 80 in search of iden-

tifying information. For 4.5K (2.6%) of the vulnerable FDNS, we are able to identify

the manufacturer from either names or model numbers in the HTTP response headers or

93

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10
Snapshots in chronological order

F
ra

ct
io

n
of

 F
D

N
S

Fraction vulnerable to preplay

Figure 6.2: Vulnerability frequency at snapshots during discovery.

HTML body. The identified manufacturers include: Asus, Belkin, Buffalo, Cisco, D-Link,

Huawei, Linksys, Netcomm, Netgear, TP-Link, Yamaha, and Zyxel. Many simplistic home

networking devices rely upon common open source software—[Cal12] found that 24% of

ODNS servers run the RomPager embedded web server—and we speculate that vulnera-

bility across manufacturers indicates common software heritage. In an effort to disclose

the vulnerability, we alerted the United States Computer Emergency Readiness Team (US-

CERT) [UC] which contacted the manufacturers directly. To date, we are unaware of any

steps being taken to mitigate the preplay vulnerability.

We speculate that the Preplay vulnerability is the result of a shortcut taken for sim-

plicity in some consumer networking devices. Many of these simplistic devices are de-

ployed without methods to remotely update software, leaving vendors powerless to fix

vulnerabilities in the devices. Therefore, we note the importance of remote update func-

tionality even in simplistic pieces of networking hardware.

6.6.3 Representativeness

Finally, we return to the issue of representativeness of our results as mentioned in § 6.2.

Since our scans do not encompass the entire Internet our insights could be skewed by our

scanning methodology. To check this we divide our scans into ten chronological slices and

94

Figure 6.3: Schematic of the DNS Vulnerability Scanner Webtool.

derive the cumulative vulnerability rate at each slice for the preplay attack. The slices are

equal in size in terms of the number of vulnerable FDNS servers. The cumulative vulner-

ability rate should plateau once the dataset is typical of the broader population. Figure 6.2

shows the cumulative vulnerability rate across the ten slices. The FDNS vulnerability rate

reaches steady state immediately, illustrating that we are in fact capturing a representative

sample of FDNS servers with random sampling of IP addresses—which is not surprising.

6.7 Vulnerability Scanner

The DNS vulnerability that we uncover in this work has the potential to impact users di-

rectly. We built a Web-based tool that helps users learn about how their DNS resolutions are

being handled [Sca] directly from their Web browser. Specifically, the tool enables users to

95

learn about the servers that participate in resolving names on their behalf, whether any of

those servers expose the user to record injection vulnerabilities, and how long resolutions

take.

Figure 6.3 illustrates the functioning of the tool. It is Web-based, so the user first

navigates to a landing page using their Web browser. There is no software to install.

1. After navigating to http://dnstool.exp.schomp.info/, the user begins a measurement

by pressing a button on the Webpage, causing an HTTP request to our server.

2. Next, through Javascript, the Web browser is instructed to repeatedly fetch objects

from the server in the form http://random_string.dnstool.exp.schomp.info/small_object/.

Javascript does not expose DNS method calls, yet, because the domain names are

unique, each object fetch will cause a DNS request. The object fetches repeat for the

duration of the test.

3. The DNS requests will ultimately arrive at our authoritative DNS server, where we

can check the queries for adoption of mitigation techniques against the Kaminsky

vulnerability (See § 6.3). Our ADNS server responds to the queries with a negative

answer to prevent subsequent HTTP requests since they serve no further purpose.

4. For each resolver IP address contacting our ADNS server, we issue DNS queries to

test if the resolver is open.

5. A summary of the resolvers observed, analysis of their mitigation deployment, and

status as an open resolver is passed from our ADNS server to our Web server.

6. Concurrently with this process, the Web server tests for open FDNS server in front of

the user. In typical configurations, the IP address of the client is also the IP address

of their home WiFi router. We issue DNS queries to the source of the HTTP request

to test for an open FDNS server. If one is found, we next proceed to test for Preplay

vulnerability (See § 6.4).

96

7. Finally, the results of the scan are passed back to the client for display to the user.

6.8 Summary

In this study, we assess the susceptibility of the client-side DNS infrastructure to a new

record injection attack. Through active probing, we uncover and measure a new attack

vector—the preplay attack. We find 7–9% of the open DNS resolvers are vulnerable to the

preplay attack. The vulnerable resolvers are typically residential routers and inspection of

their caches suggest that they are in use. We develop a tool to enable users to learn about

how their DNS resolutions are being handled and discover whether the resolvers in use are

vulnerable to known record injection attacks.

97

Chapter 7

DNS Shared Resolvers Considered

Harmful

DNS recursive resolvers abstract the multi-step iterative DNS resolution procedure from

clients and provide a shared cache across clients—thus offering the possibility of better

performance to clients and scalability to DNS itself. While DNS resolvers follow the classic

architectural approach of modularity, we question whether this factorization is still useful

in the modern Internet, or whether we should eliminate resolvers and instead have the stub

resolvers on clients perform their own recursive resolutions1. Eliminating DNS resolvers

promises a number of benefits.

First, removing resolvers simplifies the overall system. As sketched in Chapter 3,

modern DNS resolvers constitute a complex infrastructure with many distinct components,

making the system difficult to manage and troubleshoot. Pushing the functionality to clients

makes the clients themselves more complex, but in a way that is easier to manage and

more transparent than our current nebulous situation where a resolution is handled by an

unknown number of hidden actors within the complex client-side infrastructure.

Second, shared DNS resolvers handicap the operation of replicated services, notably

1This work originally appeared in [SAR14].

98

content delivery networks (CDNs)—which carry 39–55% of Internet traffic [GD11]. Since

a DNS request generally precedes content requests, CDNs often use the origin of the DNS

request as a hint about the location of the client. However, in § 3.5.4, we note that clients

and their DNS resolvers may in fact be far apart and therefore the replica chosen based on

the DNS resolver’s IP address will offer suboptimal performance. This result is supported

by several other studies [STA01, MCD+02, HMLG11, ARS13]. Further, public DNS re-

solvers such as Google DNS also complicate replica selection by serving arbitrary hosts

from all over the Internet and hence obscuring any hint a CDN may be able to take from

the source address of the resolver. Our proposal of simply removing shared DNS resolvers

directly tackles this issue—without additional mechanisms—by exposing the client’s IP

address to the authoritative DNS servers that direct clients to specific replicas.

Third, DNS resolvers are vulnerable to multiple forms of attack [Kam08, SCRA14,

HS13] such as fraudulent record injection, which expose end users to critical security

threats. Further, attackers can launder requests through open resolvers that will answer

arbitrary queries from arbitrary clients. We find in § 3.5.1 that the number of open re-

solvers has increased to over 30M. These open resolvers can be used by an attacker to hide

their tracks (e.g., as part of a wider DoS campaign) or circumvent firewalls to expose closed

portions of the resolution ecosystem—i.e., that only answer queries for “internal” hosts—to

indirect attacks. Also, in § 6.4 we demonstrate a brand new cache poisoning attack against

FDNS servers. By removing DNS resolvers, we (i) eliminate the threat of resolver cache

poisoning attacks on clients conducting their own resolutions and (ii) we reduce the overall

attack surface of the DNS ecosystem as shared resolvers gradually disappear.

In addition, we note that clients may independently choose to resolve hostnames

themselves without changes anywhere else in the system—there are no barriers to transi-

tion to our approach. While this does not eliminate the security issues surrounding shared

resolvers, it makes them moot for clients that have chosen to conduct their own lookups.

We discuss transitioning to our approach in § 7.5.3.

99

In the remainder of this chapter, we empirically establish that in terms of perfor-

mance and scalability the benefits of shared DNS resolvers are at best modest. Through

trace-driven simulation, we show that direct client resolution provides similar performance

to the end user when compared to using a shared resolver. Further, we show that the over-

all load increase on the rest of the system is modest. While these are not the only two

issues to tackle when considering the removal of DNS resolvers—we briefly sketch others

in § 7.5—we believe these are the two largest initial questions to consider. We believe our

investigation shows eliding DNS resolvers to be a promising approach for strengthening

the overall name resolution process.

7.1 Related Work

There are many approaches to strengthening the DNS against attack. Perhaps the most sig-

nificant is DNSSEC [AAL+05], which is a general approach that strives to tackle security

issues not by point solutions that aim to fix parts of the infrastructure, but by cryptograph-

ically securing the information in DNS transactions. Currently DNSSEC deployment is

low—with only roughly 1% of resolvers validating DNSSEC records [GC11, Fuj12] de-

spite DNSSEC’s original specification being published in 2005. Our approach is orthogonal

to DNSSEC.

In addition to security concerns, shared resolvers pose challenges to CDNs. In par-

ticular, CDNs frequently assume DNS resolvers and clients are close, which turns out to

be wrong in some cases [ARS13, MCD+02, STA01, QMZ+07, Cal12, SCRA13]. Several

proposals develop ways to convey clients’ network location to CDNs within DNS requests

[OSRB12, HBL12, CvdGLK15]. Contavalli, et al. [CvdGLK15] suggest the inclusion of a

new DNS extension to allow RDNS servers to pass the subnet of the client to ADNS servers.

CDNs may base redirections off of the client’s subnet instead of the RDNS server’s IP ad-

dress. Otto, et al. [OSRB12] propose having clients repeat the last step of the resolution

100

process directly to obtain a CDN redirection based upon the client’s location. Huang, et al.

[HBL12] develop a solution wherein clients extend the hostnames they look up by prepend-

ing a network location identifier onto the hostname. CDNs that support this technique may

then extract the network location from the hostname and provide a CDN redirection based

upon the network location. Our proposal simply provides network location information to

CDNs as the source address of the DNS request’s that clients make.

7.2 Datasets and Methodology

We leverage three datasets in our study. Our first dataset is a 4 month long set of traffic

logs from the Case Connection Zone (CCZ) [Cas]—a fiber-to-the-home network connect-

ing roughly 100 residences to the Internet with 1 Gbps fiber. Our logs are collected using

Bro [Pax99]. For each DNS transaction, we record the request and response and corre-

sponding timestamps. For each TCP connection, we record a summary that includes the

initiation time, duration, IP addresses, port numbers, bytes transferred and some ancillary

information. We collect data between April 1 and July 31, 2012 from a vantage point be-

tween the houses and ISP’s network—which also places the monitor between the houses

and the ISP’s two shared DNS resolvers—as illustrated in Figure 7.1. This vantage point

has two implications: (i) we cannot observe which device within a house is responsible for

specific traffic as the residences are NAT’ed and previous work shows multiple devices per

house exist in our network [SSDA12], and (ii) we cannot observe the traffic between the

ISP’s shared resolvers and the authoritative DNS servers (ADNS). The delay between our

vantage point and both the users’ end hosts and the shared resolvers is typically less than

1 msec.

Our passive monitor records 58.8M DNS resolutions. Of these, we find 41M—

475K unique domain names—to have valid DNS requests and responses in the trace. We

exclude 17.8M transactions for one of three basic reasons: (i) Bro glitches that cause bad

101

Figure 7.1: Vantage point for our data collection.

timestamping2 (180K), (ii) no response to DNS queries (8M), (iii) requests with no valid

question (90K) and (iv) transactions with responses that have no resource records nor any

indication of an error (9.5M). We additionally link DNS transactions with subsequent TCP

connections3: we link a connection with the nearest preceding DNS query from the same

IP address whose response includes the remote IP address used in the TCP connection. We

find TCP traffic that leverages 20.4M (or 50%) of the DNS resolutions. Our dataset in-

cludes 242M TCP connections and we use the filtering techniques described in [SSDA12]

to remove the invalid connections such as those never completing the handshake. Table 7.1

shows the breakdown of the remaining 108M valid TCP connections. We find that 39%

do not use a remote IP address found in a previous DNS response (e.g., BitTorrent con-

nections). This leaves 66.3M (61%) TCP connections that leverage the DNS. We further

divide TCP connections into those that represent the first use of a DNS response and those

that come after a previous use of the DNS response, largely coming from the local DNS

cache without requiring additional lookups.

2We find this to be a general Bro issue not triggered by DNS traffic. The bad timestamps do not seem to
disproportionately impact a certain kind of DNS transaction and therefore we believe there is no systematic
measurement bias.

3We focus on TCP traffic because less than 0.1% of UDP traffic in the CCZ uses IP addresses from DNS
responses.

102

Count Percent
Total 108M 100%

Do not use DNS 41.7M 39%
Use DNS 66.3M 61%
First use of DNS response 20.4M 19%
Remainder 45.8M 42%

Table 7.1: Breakdown of TCP connections in the trace by how they use DNS.

As a baseline, Figure 7.2 shows the distribution of lookup duration found in our

logs on the “DNS resolution time” line. The step at less than 1 msec represents names in

the shared recursive resolver’s cache, while the step at 10 msec is due to responses from

nearby ADNS servers. Significantly, we find that hosts do not always create TCP connec-

tions immediately after DNS responses. The “Delay before use” line in the figure shows

the distribution of the time between a DNS response and the initiation of the first TCP con-

nection based on that response. Note, 20.6M DNS resolutions do not trigger subsequent

TCP activity and therefore show in the distribution as having infinite delay. We suspect

these unused and delayed-use resolutions largely indicate DNS prefetching, which is com-

mon in modern browsers [STI+, Ros]. We find a TCP connection using a DNS response

within 50 msec in 36% of the cases. Often, the end host waits significantly longer to use

the DNS response than it actually takes to obtain the response. Observing that hosts do not

immediately use DNS responses is significant because this indicates there is slack in the

process which may allow for longer DNS transactions without impacting the connections

that depend on the results.

While we cannot observe the shared resolver’s iterative resolution process from our

vantage point, we need the timing information about the process to drive our simulations.

Therefore, we collect a second dataset by using dig to iteratively resolve the names from

our passive data collection and record the durations of all iterative steps of the lookup

process from a machine within the Case Connection Zone. We perform each iterative step

five times and use the average transaction time in our simulations.

103

1us 1ms 10ms 100ms 1s 10s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (log scale)

C
D

F
 p

e
r
D

N
S

 r
e
s
o
lu

ti
o
n

DNS resolution time

Wait before use in TCP

Figure 7.2: Distribution of DNS transaction time and time between DNS response and TCP
connection.

We lookup the 475K unique domain names in our trace in two steps. Between

November 26 and December 12, 2013 we resolved the 197K names that we find in subse-

quent TCP traffic. Of these, 5K could not be resolved either due to ADNS server miscon-

figuration or because the name no longer existed. The 192K unique names we successfully

resolve account for 99% of the 20.4M used resolutions in our traces. Further, the successful

lookups also cover 98% of the 66.3M TCP connections that utilize DNS in our traces. We

conduct a second set of active probes for the unused names on April 10, 2014. This second

round of probing was conducted at much higher rate than the first, which caused queuing

delays and hence we consider the timing information to be inaccurate. However, we never

use the timing information from these lookups as they represent names without subsequent

TCP connections. Rather, our objective in this probing is to obtain the time-to-live (TTL)

of each record as this will impact our assessment of load (§ 7.4). In total, we have probe

data for 459K unique domain names, covering 97% of the resolutions in our trace.

104

Figure 7.3: Timeline of a DNS resolution from the trace with two possible simulated reso-
lutions superimposed.

Given the dataset and the iterative resolution data, we conduct trace-driven simu-

lations of end-host resolutions that use the natural traffic load we observe in our dataset,

as well as the timing and TTL information from the active probing to simulate the needed

steps of the iterative process for each lookup. We derive the following variables from our

traces (shown in Figure 7.3): Ts is the time we observe a given DNS request that starts

a resolution, Tf is the time we observe the corresponding response that finishes a reso-

lution and Tc is the time we observe a TCP connection using the given DNS response to

initiate a connection.4 Further, when simulating DNS resolutions from the client, we use

the DNS transaction start times from the traces, but the DNS responses will come back

at T ′
f—which depends on the state of the simulated client’s cache and the timing of the

required iterative DNS transactions. Thus, while in the traces Ts < Tf < Tc holds, in our

simulations, T ′
f can fall at any point after Ts. We assume that processing time between a

DNS response and subsequent TCP connection is negligible. Therefore, when T ′
f <= Tc,

our simulated DNS transaction does not interfere with follow-on TCP activity. However,

when T ′
f > Tc our simulated DNS transaction actively impedes follow-on TCP activity,

which would otherwise be ready to proceed at Tc, but would be forced to wait until T ′
f to

4Given that multiple TCP connections can leverage a single DNS lookup, Tc is actually a set of values
and we perform our computations on each value. However, for ease of exposition we often discuss it as a
single value.

105

− 100 − 75 − 50 − 25 0 25 50 75 100
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

Difference in resolution time (milliseconds)

C
D

F
 p

e
r

D
N

S
 r

e
s
o
lu

ti
o
n

Figure 7.4: Distribution of difference between simulated client resolution and resolution in
the trace with a shared resolver.

commence.

Finally, during one week of the passive monitoring of the network we sketch above,

we collect TCP SYN/FIN/RST packet traces (June 11-17, 2012). We use p0f [Zal] to de-

termine a signature for each TCP connection in our corpus which contains inferences about

the hosts based on operating system fingerprint, MSS and IP TTL. Since each home in the

network is NAT’ed these signatures allow us to gain some visibility into per-device activity

within the house. While not perfect—as two like systems will have the same signature—we

find 294 unique signatures across the 100 residences during the week of our dataset. Un-

fortunately we cannot fingerprint UDP to then correlate the DNS transactions with specific

TCP connections. We therefore assign DNS transactions the signature of the closest TCP

connection that leverages the binding in the DNS response. We consider this the worst case

since it is the soonest the binding will be needed.

106

7.3 Impact on Performance

We now turn to examining the impact of removing shared resolvers on TCP connections.

Largely the impact manifests as changes in the duration of the resolution process which is a

prerequisite for TCP connections. As a baseline we plot the distributions of the difference

between the actual (via a shared resolver) and simulated (directly by clients) resolution

times for each DNS resolution in our 4 month trace in Figure 7.4. A positive value in-

dicates that the simulated resolution took longer than the natural duration (i.e., T ′
f > Tf).

The simulated direct client resolutions take less time for 19% of the resolutions, roughly the

same amount of time in 26% of resolutions, and more time in 55% of resolutions. The fig-

ure shows that direct client resolution adds no more than 50 msec to the resolution process

in 84% of the cases.

Also, relying on client resolution can impose delay on a TCP connection only if the

DNS response comes after TCP is otherwise ready to begin (i.e., T ′
f > Tc). First, 39%

of the 108M TCP connections in our trace do not require a DNS lookup. No matter what

changes are made to the DNS resolution process, these connections cannot be delayed.

Next, we concentrate on the 61% of TCP connections that do utilize DNS responses.

These connections pose a problem because they may come from multiple devices within a

residence. Since we cannot distinguish between the devices in our full 4 month dataset we

conflate multiple devices’ caches together. To cope with our suboptimal vantage point we

first derive bounds for the impact experienced by these connections. Recall that the impact

from the removal of a shared DNS resolver is ameliorated by two factors: (i) the delayed

use of DNS resolutions and (ii) device-level DNS caches. We first assume an optimistic

case where all traffic within the residence involves a single device with a single cache. The

distribution of the added delay imposed on the TCP connections is shown in the “Unified

home caches” line in Figure 7.5. In this simulation, only 12% of TCP connections using

DNS experience an added delay under direct client resolution, and 4% experience 50 ms or

more of delay. Second, we assume no client DNS caching at all and present the distribution

107

of added time for each TCP connection requiring a DNS lookup on the “No cache” line.

The line shows that nearly 60% of TCP connections using DNS are not impacted because

their DNS resolutions complete before the use despite any added delay direct client lookup

may impose. Taking Figure 7.5 together with our finding that 39% of TCP connections do

not rely on DNS, indicates that 75–93% of all TCP connections will feel no impact from

direct client DNS resolution.

While these bounds show the impact of direct client lookup is modest at most, we

aim to more accurately determine where the performance may fall. We leverage the p0f

signatures that annotate one week of our data (see § 7.2) to develop a refined—even if not

fully accurate—view of device-level caches and re-run our simulation for the given week.

The distribution of the amount of time direct client lookup adds to TCP connections is

given by the “p0f caches” line on Figure 7.5. The results are similar to those under the

assumption of one unified cache for the entire house, which shows that reality is likely

closer to the lower-cost bound.

7.4 Impact on Scalability

In addition to performance issues, our proposal for eliminating shared resolvers also has po-

tential scalability issues. By caching records, shared resolvers shield authoritative servers

from the full workload imposed by clients. Further, by performing iterative lookups on

clients’ behalf, the resolvers relieve the end hosts from the need to perform these steps.

However, under our proposal we force each client to individually consult the authoritative

infrastructure and hence we increase the work for the network, the clients and the authori-

tative servers.

In terms of network load, we find DNS to be less than 0.1% of the total traffic vol-

ume of the CCZ network regardless of whether clients rely on a shared resolver or directly

resolve names themselves. This indicates that network load is not a concern regardless of

108

1m s 10m s 100m s 1s
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

Delay imposed (log scale)

C
D

F
 p

e
r

T
C

P
 c

o
n

n
e
c
ti
o
n

Unified home cache

p0f caches

No caches

Figure 7.5: Delay added by direct client resolution to the TCP connections that require
DNS.

approach taken since DNS remains a small component of network traffic.

Next, we divide our four month dataset into ten seconds bins for each host within

the network and record the number of DNS lookups for each bin. With a shared resolver,

we find the per bin average, 99.9th percentile and peak to be 0.267, 80, and 438 transac-

tions, respectively. With direct client resolutions, these numbers increase by 12%, 20% and

53%, respectively, but the absolute levels remain manageable for personal computers—e.g.

the 99.9th percentile remains under 100 transactions, or 10 transactions per second. We

therefore conclude that neither network nor client load present a barrier to our approach.

We next assess the load increase on the authoritative DNS infrastructure. We sim-

ulate both shared resolver and direct client resolution behavior using the workload in our

dataset. We use relative change in load as an approximation of the global load increase

that authoritative domains may experience under direct client resolution. First, we find that

roughly 93% of the authoritative domains do not experience an increase in the average load

109

(over our ten second windows) while over 99% of authoritative domains show no increase

in the peak load. This is due to sparse use of these domains—across both device and time—

and therefore low likelihood of benefiting from a shared cache. However, the domains that

do experience an increase in load are already popular domains with high loads, which we

may exacerbate. The “google.com” second-level domain (SLD) and the “.com” top-level

domain (TLD) are the most popular SLD and TLD in our dataset and would experience

average load increases of 2.6 and 3.4 times, respectively, with client resolution. Given the

popularity of these zones we may have expected an increase on the order of the number of

houses we monitor. The increases are two orders of magnitude less, indicating that clients’

caches are crucial to dampening demand.

In addition, we note that whether or not to use a shared resolver is a decision made

by clients and edge networks and not the authoritative domains. Clients could organically

choose to directly contact ADNS servers without involving a shared resolver. Thus, ADNS

servers cannot avoid dealing with the additional load such decisions would yield.5 We are

not interested in setting up a situation where clients and domains are at odds and therefore

next investigate two ways to mitigate the additional load stemming from client resolution.

Domains like “google.com” can directly manage the load increase by dynamically

tuning the TTL of their records to trade load for flexibility. Additionally, it is logical

to assume that for each DNS resolution, an organization like Google expects to handle

additional follow on traffic (e.g., an HTTP request) which in most cases will be significantly

larger than the DNS resolution. For these reasons, we conclude the load increase on SLDs

to be manageable. The TLDs, however, have less flexibility over the TTL of their records

given that these records affect another party (their client SLDs). We thus focus on the

“.com” TLD, which is the most popular TLD with 54% of all transactions across all TLDs

in our dataset. The first two rows of Table 7.2 provide a baseline for the average, 99.9th

5While domains could take steps to incentivize use of shared resolvers through various load management
techniques (e.g., preferentially dropping incoming requests not from a known shared resolver), these tech-
niques would make accessing the domains more brittle and run contrary to the goal of most domain operators
to make their domains as accessible as possible.

110

Simulation Load (DNS transactions / 10 secs)
Average 99.9th Peak

Shared resolver 0.54 17 127
Client resolution 1.84 36 145
1 week TTL 1.15 28 131
2 week TTL 0.89 25 131
3 week TTL 0.77 23 131
2 questions 0.87 33 135
5 questions 0.72 30 135
7 questions 0.68 29 135
10 questions 0.64 29 135
1 week TTL & 2 questions 0.72 31 135
1 week TTL & 10 questions 0.58 28 135
2 week TTL & 2 questions 0.64 29 135
2 week TTL & 10 questions 0.56 28 135
3 week TTL & 2 questions 0.62 29 135
3 week TTL &10 questions 0.55 28 135

5-day per-p0f signature caches
Shared resolver 0.32 4 30
Client resolution 1.60 14 62

Table 7.2: The load on the “.com” TLD for various mitigation methods.

percentile, and peak load that the “.com” TLD experiences per ten second bin when using a

shared resolver and client resolution. With client resolution, the load increases by factors of

3.4, 2.1 and 1.1 at the average, 99.9th percentile and peak, respectively. Below we consider

two potential load mitigation techniques: (i) a static increase in the records’ TTL by ADNS

servers and (ii) opportunistic use of extra DNS questions by the clients.

7.4.1 Increase TTLs

The first way for domains to shed load is to increase TTLs such that clients cache their

records longer. This has been previously proposed as a way to improve availability of

SLD mappings [PO12]. The cost of increasing the TTL is reduced flexibility in changing

the name-to-address bindings. To see the significance of this issue, we actively request

all SLD delegation records from all TLDs we observe in our dataset and find 82% have

TTLs of exactly two days. Furthermore, more than 99% of resolutions in our dataset are

111

for records under SLDs that have TTLs of two days. At the same time, we find that SLD

delegations do not change often. We actively resolve these records every day for 67 days

and find that an average of 1.1% change within a one week time interval and there is linear

growth over longer time periods (e.g., 2.3% and 3.4% change in a two and three weeks

time interval, respectively).

To understand how increasing TTLs would impact the load on the TLD servers we

vary the TTL of the “.com” delegation records in our simulation. The second group of

results in Table 7.2 shows the impact of TTLs from 1–3 weeks. As expected, the load

drops as the TTL increases. Still, while the peak load falls to within 3% of the peak load

when using a shared resolver, the average load is twice the current load for the one-week

TTL and 43% more for the three-week TTL. While we find that over 96% of these records

do not change within three weeks, we believe it is unlikely that the community will deem a

TTL of three weeks practical due to the lack of flexibility when changes are in fact needed.

Our dataset contains resolutions for 226 distinct TLDs, but many of them handle

only a few DNS transactions. In the TLDs that do experience high absolute loads, we find

similar benefits to the “.com” TLD from increasing the SLD delegation record TTLs.

One consequence of increasing SLD delegation record TTLs is reduced flexibility.

When migrating SLD ADNS servers, the SLD operators must continue to handle DNS

requests at the old location until the TTL expires. Previously, the migration period was

two days, but with our suggestion it increases to 1 or 3 weeks—increasing the expense of

migration.

7.4.2 Multiple DNS Questions

A second method to reduce the load on authoritative servers is for clients to piggyback DNS

prefetching questions on naturally occurring lookups. In current usage, all DNS transac-

tions involve asking one question. However, the DNS protocol supports multiple questions

per request. By opportunistically appending questions for SLD records that the client is

112

likely to use, the client can populate its cache and avoid a later specific query for the pig-

gybacked record. For instance, if the client suffers a cache miss for the “google.com”

delegation record and also notices that its cached copy of “amazon.com” will expire soon,

the client could ask for both records in a single request (which is required anyway). This

technique could potentially reduce the number of DNS transactions arriving at the TLDs,

but not the total number of questions. In fact, the total number of questions could increase,

as well, since clients may opportunistically request records that are never subsequently

used.

To explore opportunistic prefetching of DNS records we simulate clients that track

client accesses for each SLD. For each DNS resolution, we increment a counter for the

corresponding SLD and at the end of each day all counters are halved to decay historical

popularity.6 When making a necessary DNS request to a TLD, the client adds questions to

the request for the most popular SLD delegation records that are either not in the cache or

are close to expiring. We explore requests with 2–10 questions in our simulations because

answers for 10 questions generally fit within a 1500B packet.

The third group of results in Table 7.2 shows the load client resolution places on

the “.com” TLD server with 2–10 questions per DNS transaction. Including a second

question in each request decreases the average load to less than half that of as-needed client

resolution. The savings at the 99.9th percentile and peak are more modest at 9% and 7%,

respectively. Increasing the number of questions to 10 cuts the load of direct resolutions by

almost two-third and yields the average load in transactions within 20% of using a shared

resolver. For 10 questions per request, the “.com” TLD server must process 12 times the

number of questions as compared a shared resolver with a single question per request.

One issue with prefetching is that—unlike everything else we propose—leveraging

multiple questions per DNS transaction will require changes to authoritative servers. While

posing multiple questions is consistent with the DNS protocol and hence no specification

6This is a simple algorithm that could be refined in many ways but suffices to get an initial understanding
of the efficacy of the general technique.

113

changes are needed, we find that authoritative servers generally ignore all but the first ques-

tion in a request. Further, answering multiple questions per DNS request naturally will in-

crease the processing cost of completely answering the request. An attacker could leverage

this feature to coax a busy TLD server into becoming even busier—and ultimately over-

loading the server to the point of impacting normal requests. TLD servers can mitigate

this in a number of ways, including prioritizing resources to clients making only a small

number of requests [VS12] and declining to answer multiple questions per query when the

load is high.

7.4.3 Combining Methods

Finally, the two mitigations we investigate above are not mutually exclusive and therefore

we next study the efficacy of both extending the TTL and opportunistically prefetching

delegation records, as we show in the fourth group of results in Table 7.2. The first com-

bination involves setting the TTL to one week and using two questions per DNS request.

In this case we increase the average load by one-third, the 99.9th percentile load by 82%

and the peak load by 6% compared with using a shared cache. On the other end of our

parameter space, a three-week TTL with ten questions per transaction produces an average

load that is nearly the same as the load with a shared resolver. However, the 99.9th per-

centile and peak load show a 65% and 6% increase, respectively. Note that extra questions

can actually increase peak rates due to changing the timing of the query flow and sending

unnecessary requests.

While the two mitigations we explore help lower the costs for client resolution on

the authoritative servers, they do not eliminate it for realistic parameter settings. Additional

capacity will be needed by popular domains if clients decide to switch to direct DNS reso-

lution. Further, no parameter setting appears to be a “sweet spot” that provides the optimal

benefit to all points on the load distribution.

114

7.5 Additional Considerations

We now discuss additional considerations which we cannot directly quantify, but are part

of the tradeoffs of eliding shared resolution infrastructure and moving to direct client reso-

lution.

7.5.1 Privacy Concerns

Direct client resolution can reduce users’ privacy. When using a shared resolver, clients

gain a measure of anonymity as outside their edge network lookups cannot be directly

attributed to a specific client. Therefore, a downside to removing the shared resolver is

the loss of this measure of privacy. This may be viewed by some users as too revealing

to eavesdroppers or simply ADNS servers that log individuals’ activities. On the other

hand, as we discuss in § 7.1, the ability to directly locate clients is useful for CDNs. As

a comment on this tussle we note that many users are willing to use open shared resolvers

(e.g., Google DNS [Goob]) and are therefore comfortable with directly attributable DNS

requests arriving at a large third-party network. Further, we note that the DNS extension

to specify a client’s subnet in queries [CvdGLK15] also reduces the client’s ability to hide

behind a shared resolver. Google DNS already supports the extension [Wan] and, thus,

client privacy may already be reduced.

7.5.2 Policy Issues

Additionally, shared resolvers also allow network operators to implement edge network

policy (e.g., not allowing resolution of some site a company does not wish employees

to use while working). Using our approach of direct client resolution removes the DNS

resolver as a control point in the network. However, our proposal does not preclude the use

of a shared resolver in such cases. We simply view this as akin to web downloads where

the expectation is that clients and web servers directly communicate, but in some cases a

115

proxy is placed in the path to implement policy.

Currently, some networks block DNS traffic (e.g., networks that use a captive portal

to authenticate users or require users to read an Acceptable Use Policy). In these networks,

DNS traffic not destined for the specific IP addresses of the network’s recursive resolvers

is blocked, presenting a barrier to the use of client resolution. However, we note that

ISPs generally do not fall into this category of network and therefore devices in residential

settings are not exposed to this barrier. Also, we again note that our proposal does not

preclude the use of shared resolvers in special purpose networks.

7.5.3 Transitioning to Client Resolution

As previously discussed, direct client resolution is individually deployable because tech-

nical changes are only necessary at the stub resolver running on the client. However, the

technical proficiency needed to make such a change means that wide scale deployment

will not happen via individual user action. We see three actors that may need appropriate

motivations before large scale transition to direct client resolution is possible.

First, operating system developers who package and distribute stub resolvers with

their OS need to add the functionality to perform recursive resolution. Logically, develop-

ers will add a feature if the benefits of adding the feature outweigh the costs. Recursive

resolver software is readily available as a starting point. In this chapter, we have laid out

a case for why client resolution is advantageous for users over using a shared resolver—a

case that may be used to provide a competitive edge between OS developers. We note

that the FreeBSD operating system already ships with a recursive resolver included [Fre].

By default, it is configured to an upstream resolver, but it can perform the full iterative

resolution process with a configuration change.

Second, ISPs typically provide DNS recursive resolvers as a service to their clients.

In direct client resolution, this hardware is no longer necessary. Additionally, as sketched

in § 7.4, the load increase on the network is minimal. Together, these two observations

116

indicate that direct client resolution does not have a negative impact on ISPs and may ac-

tually reduce their cost in servers and maintenance. We also note that no technical changes

are required of the ISP for their clients to perform direct client resolution. Also, the avail-

ability of open services (e.g., Google DNS [Goob] and OpenDNS [Opeb]) means that the

ISP may shift their clients that do not use client resolution over to an open service. Thus

we conclude that ISPs do not require motivation for a transition to client resolution.

Third, the TLD operators who will experience additional load need to be willing to

incur the expense of additional infrastructure to mitigate the load. While it is true that no

technical changes are needed in the DNS protocol to allow client resolution, any large scale

transition must include a consideration of how the TLDs will resolve the costs. Ma, et al.

[MCL+11] discusses the economics behind ISP peering and show a Shapely value solution

for fair paid-peering between different types of ISPs. We believe a similar solution may

exist between ISPs and TLDs involving ISPs paying TLDs for resolution service based

upon the DNS traffic volume between the ISP and the TLD. We highlight this as important

future work before large scale transition to client resolution is practical.

Additionally, we note that Verisign—operator of the TLDs “.com”, “.net”, “.edu”,

and many others—maintains shared resolvers for public use [Ver]. Thus, Verisign implic-

itly expresses a willingness to interface directly with client stub resolvers.

7.6 Summary

Traditionally, our community’s response to security problems is to harden a protocol or its

implementation. In this chapter we take an alternate approach to DNS security, suggesting a

different factorization of the work that eliminates shared DNS resolvers. The benefit of this

approach is to reduce DNS’ attack surface. Through an initial study of a single network,

we show that while there are costs, those costs are modest and manageable. For instance,

less than 10% of TCP connections will be delayed by direct client resolution. Further, the

117

99.9th percentile load does not increase at all for 90% of authoritative DNS servers and by a

factor of two at the “.com” TLD server–with no effort to mitigate the additional load. There

are policy and privacy concerns, as well, but we believe this initial investigation shows that

leaning on clients to do their own lookups deserves serious consideration. Further, we

believe this effort illustrates that revisiting the fundamental way we arrange networks in

the context of modern network realities may well be useful across other components of the

system, as well.

118

Chapter 8

Conclusion and Future Work

In this dissertation, we show that the topology of DNS ecosystem is complex and parts

of the ecosystem are hidden from external observers. We measure many components of

the ecosystem including the clients and the various parts of the client-side DNS resolver

infrastructure. The different parts of the infrastructure exhibit varying behaviors, includ-

ing violations of the DNS specification and security vulnerabilities. As a result, reasoning

about and maintaining the system is difficult. Thus, we propose removing the client-side

resolution infrastructure from the resolution path and have clients perform their own iter-

ative resolutions. This modification simplifies the resolution path and reduces the attack

surface of the DNS.

In studying the DNS ecosystem, we first turn to the DNS client-side infrastruc-

ture which is responsible for resolving names on behalf of clients. To better understand

the DNS client-side infrastructure, we develop tools to enable discovery of components

of the infrastructure for further measurement. Since the infrastructure may vary by orga-

nization and some components have short lifetimes, we present a methodology to enable

efficient discovery and rediscovery of large samples of the infrastructure in Chapter 3. Us-

ing these methodologies, we assess the topology and confirm previous observations that

recursive resolvers operate in “pools” and that some actors that we expect to be close to-

119

gether may actually are be far apart. Further, our measurements show that the number of

open resolvers—which can be used in reflection attacks and record injection attacks—on

the Internet doubled between our measurements and previous measurements.

In Chapter 4, we present a set of methodologies for teasing apart the behavior of the

actors within the system including components that cannot be directly probed. Using these

methodologies, we assess the behavior of the client-side DNS infrastructure with respect to

caching, both in aggregate and separately for distinct actors. We show that the various ac-

tors within the infrastructure handle the record time-to-live (TTL) value differently. Some

actors put an upper threshold on the maximum TTL value while others increase the TTL of

records with low TTL values. Further, we demonstrate that some actors continue to modify

the TTL after the initial query, indicating that repeated probing is needed to capture the

actor’s full behavior. We also find that cache evictions due to capacity limits occur infre-

quently in recursive resolvers even for rarely accessed records. At the same time, while

the TTL is frequently mis-reported to DNS clients, the majority of resolvers do not retain

records past authoritative TTL. We observe that records are returned past TTL in only 10%

of the cases, even for records with a relatively short TTL of 30 seconds.

We switch from studying the behavior of the client-side DNS infrastructure to the

behavior of individual DNS clients in Chapter 5. Using datasets from a University campus

with a 4 month interval between them, we provide a characterization of client behavior

along dimensions that will ultimately inform an analytical model. We find clients interact

with the DNS in distinct ways and develop markers for distinguishing general purpose user-

facing devices from other types of devices. Further, we find that DNS queries often occur in

clusters of related names, and short clusters account for the majority of DNS traffic. Lastly,

we show that clients have a “working set” of names the size of which varies among clients,

and the working set is stable over time and fairly distinct from other clients. Our high-level

insights hold across the time period of our datasets and with qualitatively different user

populations: students in campus housing vs. University offices and labs.

120

In Chapter 6, we uncover and measure a new attack vector against the DNS client-

side infrastructure: the preplay attack. While record injection attacks against most actors

in the DNS infrastructure require effort on the part of the attackers, 7–9% of open resolvers

are vulnerable to a record injection attack that requires no guessing on the attackers part at

all! The vulnerable devices are typically residential routers and inspection of their caches

suggests that they are in use. We develop and deploy a Web-based tool for users to deter-

mine whether they are vulnerable to preplay and other forms of record injection.

In our measurements, we demonstrate the complexity of the DNS client-side in-

frastructure and observe hidden components, potentially making the system difficult to

manage and troubleshoot. Further, the infrastructure remains vulnerable to record injection

attacks including a new attack that we uncover. In Chapter 7, we study an alternative ap-

proach to DNS resolution: iterative resolution by the clients themselves. The benefits of

this approach are (i) reduced complexity of the system compared to using multiple layers of

shared resolvers, thus making the DNS potentially easier to troubleshoot, and (ii) a reduced

DNS attack surface. Through simulations of direct client resolution using a dataset from

a single network, we examine two potential costs. First, we find that the cost in delay of

DNS resolutions is modest—only 7% of TCP connections are delayed by more than a few

milliseconds. Second, the cost in load on authoritative DNS servers may be manageable

and we suggest mitigation methods. For example, the average load on the “com.” TLD

authoritative DNS servers increases by 3.4 times using client resolution and our mitiga-

tion techniques reduced the load increase to below 1.5 times. There are privacy and policy

considerations as well. However, we believe that our initial work shows that direct client

resolution deserves serious consideration.

121

Bibliography

[AAL+05] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Secu-

rity Introduction and Requirements. http://www.faqs.org/rfcs/

rfc4033.html, 2005.

[ADL+10] M. Antonakakis, D. Dagon, X. Luo, R. Perdisci, W. Lee, and J. Bellmor.

A Centralized Monitoring Infrastructure for Improving DNS Security. In

Recent Advances in Intrusion Detection, pages 18–37, 2010.

[AK05] R. Arends and P. Koch. DNS for Fun and Profit. DFN-CERT Workshop,

2005.

[Ale] Alexa. http://www.alexa.com/topsites.

[AM07] S. Ariyapperuma and C.J. Mitchell. Security Vulnerabilities in DNS and

DNSSEC. In IEEE International Conference on Availability, Reliability and

Security, 2007.

[AMSU10] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig. Comparing DNS

Resolvers in the Wild. In ACM Internet Measurement Conference, pages

15–21, 2010.

[ARS13] H.A. Alzoubi, M. Rabinovich, and O. Spatscheck. The Anatomy of LDNS

Clusters: Findings and Implications for Web Content Delivery. In Interna-

tional Conference on World Wide Web, 2013.

122

http://www.faqs.org/rfcs/rfc4033.html
http://www.faqs.org/rfcs/rfc4033.html
http://www.alexa.com/topsites

[BC98] P. Barford and M. Crovella. Generating Representative Web Workloads for

Network and Server Performance Evaluation. In ACM SIGMETRICS, pages

151–160, 1998.

[BCF+99] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching and

Zipf-Like Distributions: Evidence and Implications. In IEEE International

Conference on Computer Communications, 1999.

[Ber08] D. Bernstein. Introduction to DNSCurve. http://dnscurve.org/,

2008.

[Cal12] T. Callahan. Understanding Internet Naming: from the Modern DNS

Ecosystem to new Directions in Naming. Doctoral dissertation, Case West-

ern Reserve University, 2012.

[CAR13] T. Callahan, M. Allman, and M. Rabinovich. On Modern DNS Behavior

and Properties. ACM SIGCOMM Computer Communication Review, pages

7–15, 2013.

[Cas] Case Connection Zone. http://www.caseconnectionzone.org/.

[CCG+04] J. Cao, W.S. Cleveland, Y. Gao, K. Jeffay, F.D. Smith, and M. Weigle.

Stochastic Models for Generating Synthetic HTTP Source Traffic. IEEE

International Conference on Computer Communications, 2004.

[CCR+03] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and

M. Bowman. PlanetLab: An Overlay Testbed for Broad-Coverage Services.

ACM SIGCOMM Computer Communication Review, pages 3–12, 2003.

[CvdGLK15] C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari. Client

Subnet in DNS Queries. http://datatracker.ietf.org/doc/

draft-ietf-dnsop-edns-client-subnet/, 2015.

123

http://dnscurve.org/
http://www.caseconnectionzone.org/
http://datatracker.ietf.org/doc/draft-ietf-dnsop-edns-client-subnet/
http://datatracker.ietf.org/doc/draft-ietf-dnsop-edns-client-subnet/

[DAD+09] D. Dagon, M. Antonakakis, K. Day, X. Luo, C.P. Lee, and W. Lee. Re-

cursive DNS Architectures and Vulnerability Implications. In Network and

Distributed System Security Symposium, 2009.

[DPLL08] D. Dagon, N. Provos, C.P. Lee, and W. Lee. Corrupted DNS Resolution

Paths: The Rise of a Malicious Resolution Authority. In Network and Dis-

tributed System Security Symposium, 2008.

[EKSX96] M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm

for Discovering Clusters in Large Spatial Databases with Noise. In Interna-

tional Conference on Knowledge Discovery and Data Mining, 1996.

[FA13] N.C. Fofack and S. Alouf. Modeling Modern DNS Caches. In ACM Inter-

national Conference on Performance Evaluation Methodologies and Tools,

2013.

[Fre] FreeBSD Handbook, Network Servers, Domain Name System (DNS).

https://www.freebsd.org/doc/handbook/network-dns.

html.

[Fuj12] K. Fujiwara. Number of Possible DNSSEC Validators Seen at jp. In DNS-

OARC Workshop, 2012.

[GC11] O. Gudmundsson and SD Crocker. Observing DNSSEC Validation in the

Wild. In Workshop on Securing and Trusting Internet Names, 2011.

[GCD99] P. Gauthier, J. Cohen, and M. Dunsmuir. The Web Proxy Auto-Discovery

Protocol. IETF Internet Draft. https://tools.ietf.org/html/

draft-ietf-wrec-wpad-01, 1999.

[GD11] A. Gerber and R. Doverspike. Traffic Types and Growth in Backbone Net-

works. In Optical Fiber Communication Conference, 2011.

124

https://www.freebsd.org/doc/handbook/network-dns.html
https://www.freebsd.org/doc/handbook/network-dns.html
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01

[Gooa] Websites Using Google Analytics. http://trends.builtwith.

com/analytics/Google-Analytics.

[Goob] Google Load-Balancing for Shared Caching. https://developers.

google.com/speed/public-dns/docs/performance#

loadbalance.

[Gooc] Google Safe Browsing. https://developers.google.com/

safe-browsing.

[GSG02] K.P. Gummadi, S. Saroiu, and S.D. Gribble. King: Estimating Latency

Between Arbitrary Internet End Hosts. In 2nd ACM SIGCOMM Workshop

on Internet Measurment, pages 5–18, 2002.

[GYC+13] H. Gao, V. Yegneswaran, Y. Chen, P. Porras, S. Ghosh, J. Jiang, and H. Duan.

An Empirical Reexamination of Global DNS Behavior. In ACM SIGCOMM,

2013.

[HBL12] C. Huang, I. Batanov, and J. Li. A Practical Solution to the Client-LDNS

Mismatch Problem. ACM SIGCOMM Computer Communication Review,

2012.

[HMLG11] C. Huang, D.A. Maltz, J. Li, and A. Greenberg. Public DNS System and

Global Traffic Management. In IEEE International Conference on Com-

puter Communications, 2011.

[HS13] A. Herzberg and H. Shulman. Fragmentation Considered Poisonous, or:

One-domain-to-rule-them-all.org. In IEEE Communications and Network

Security, 2013.

[HTT] HTTP Archive. http://httparchive.org.

125

http://trends.builtwith.com/analytics/Google-Analytics
http://trends.builtwith.com/analytics/Google-Analytics
https://developers.google.com/speed/public-dns/docs/performance#loadbalance
https://developers.google.com/speed/public-dns/docs/performance#loadbalance
https://developers.google.com/speed/public-dns/docs/performance#loadbalance
https://developers.google.com/safe-browsing
https://developers.google.com/safe-browsing
http://httparchive.org

[JB99] S. Jin and A. Bestavros. Temporal Locality in Web Request Streams:

Sources, Characteristics, and Caching Implications. Technical report,

Boston University Computer Science Department, 1999.

[JB01] S. Jin and A. Bestavros. GreedyDual* Web Caching Algorithm: Exploiting

the Two Sources of Temporal Locality in Web Request Streams. Computer

Communications, 2001.

[JBB03] J. Jung, A.W. Berger, and H. Balakrishnan. Modeling TTL-Based Internet

Caches. In IEEE International Conference on Computer Communications,

2003.

[Kam08] D. Kaminsky. Black Ops 2008: It’s the End of the Cache As We Know It.

Black Hat USA, 2008.

[LL10] D. Leonard and D. Loguinov. Demystifying Service Discovery: Implement-

ing an Internet-wide Scanner. In ACM Internet Measurement Conference,

pages 109–122, 2010.

[LSZ02] R. Liston, S. Srinivasan, and E. Zegura. Diversity in DNS Performance

Measures. In ACM SIGCOMM Workshop on Internet Measurment, pages

19–31, 2002.

[Mah97] B.A. Mah. An Empirical Model of HTTP Network Traffic. In IEEE Inter-

national Conference on Computer Communications, 1997.

[MCD+02] Z.M. Mao, C.D. Cranor, F. Douglis, M. Rabinovich, O. Spatscheck, and

J. Wang. A Precise and Efficient Evaluation of the Proximity Between Web

Clients and Their Local DNS Servers. In USENIX Annual Technical Con-

ference, pages 229–242, 2002.

126

[MCL+11] R.T.B. Ma, D.M. Chiu, J. Lui, V. Misra, and D. Rubenstein. On Coop-

erative Settlement Between Content, Transit, and Eyeball Internet Service

Providers. IEEE/ACM Transactions on Networking, pages 802–815, 2011.

[MGST70] R.L. Mattson, J. Gecsei, D.R. Slutz, and I.L. Traiger. Evaluation Techniques

for Storage Hierarchies. IBM Systems Journal, 1970.

[Moc83a] P. Mockapetris. RFC 882: Domain names: Concepts and Facilities. http:

//www.ietf.org/rfc/rfc882.txt, 1983.

[Moc83b] P. Mockapetris. RFC 883: Domain names: Implementation and Specifica-

tion. http://www.ietf.org/rfc/rfc883.txt, 1983.

[Moc87a] P. Mockapetris. RFC 1034: Domain Names - Concepts and Facilities.

http://www.ietf.org/rfc/rfc1034.txt, 1987.

[Moc87b] P. Mockapetris. RFC 1035: Domain Names - Implementation and Specifi-

cation. http://www.ietf.org/rfc/rfc1035.txt, 1987.

[Opea] Open Resolver Project. http://openresolverproject.org/.

[Opeb] OpenDNS. http://www.opendns.com/.

[OSRB12] J.S. Otto, M.A. Sánchez, J.P. Rula, and F.E. Bustamante. Content Delivery

and the Natural Evolution of DNS: Remote DNS Trends, Performance Is-

sues and Alternative Solutions. In ACM Internet Measurement Conference,

2012.

[PAS+04] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy, and S. Seshan. On the

Responsiveness of DNS-based Network Control. In ACM Internet Measure-

ment Conference, pages 21–26, 2004.

[Pax94] V. Paxson. Empirically Derived Analytic Models of Wide-Area TCP Con-

nections. IEEE/ACM Transactions on Networking, 1994.

127

http://www.ietf.org/rfc/rfc882.txt
http://www.ietf.org/rfc/rfc882.txt
http://www.ietf.org/rfc/rfc883.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://openresolverproject.org/
http://www.opendns.com/

[Pax99] Vern Paxson. Bro: A System for Detecting Network Intruders in Real-Time.

Computer Networks, 1999.

[PO12] V. Pappas and E. Osterweil. Improving DNS Service Availability by Us-

ing Long TTL Values. IETF Draft. http://tools.ietf.org/id/

draft-pappas-dnsop-long-ttl-04.txt, 2012.

[QMZ+07] H. Qian, E. Miller, W. Zhang, M. Rabinovich, and C.E. Wills. Agility in Vir-

tualized Utility Computing. In IEEE Workshop on Virtualization Technology

in Distributed Computing, 2007.

[RMTP08] M. Rajab, F. Monrose, A. Terzis, and N. Provos. Peeking Through the

Cloud: DNS-based Estimation and its Applications. In Applied Cryptog-

raphy and Network Security, pages 21–38, 2008.

[Ros] J. Roskind. DNS Prefetching (or Pre-Resolving).

http://blog.chromium.org/2008/09/

dns-prefetching-or-pre-resolving.html.

[SAR14] K. Schomp, M. Allman, and M. Rabinovich. DNS Resolvers Considered

Harmful. In ACM Workshop on Hot Topics in Networks, 2014.

[Sca] DNS Vulnerability Scanner. http://dnstool.exp.schomp.info/.

[Sch93] C. Schuba. Addressing Weaknesses in the Domain Name System Protocol.

PhD thesis, Purdue University, 1993.

[SCKB06] A.J. Su, D.R. Choffnes, A. Kuzmanovic, and F.E. Bustamante. Drafting

Behind Akamai (Travelocity-based Detouring). ACM SIGCOMM Computer

Communication Review, pages 435–446, 2006.

[SCRA] K. Schomp, T. Callahan, M. Rabinovich, and M. Allman. Client-Side DNS

Infrastructure Datasets. http://dns-scans.eecs.cwru.edu/.

128

http://tools.ietf.org/id/draft-pappas-dnsop-long-ttl-04.txt
http://tools.ietf.org/id/draft-pappas-dnsop-long-ttl-04.txt
http://blog.chromium.org/2008/09/dns-prefetching-or-pre-resolving.html
http://blog.chromium.org/2008/09/dns-prefetching-or-pre-resolving.html
http://dnstool.exp.schomp.info/
http://dns-scans.eecs.cwru.edu/

[SCRA13] K. Schomp, T. Callahan, M. Rabinovich, and M. Allman. On Measuring the

Client-Side DNS Infrastructure. In ACM Internet Measurement Conference,

2013.

[SCRA14] K. Schomp, T. Callahan, M. Rabinovich, and M. Allman. Assessing DNS

Vulnerability to Record Injection. In Passive and Active Measurement Con-

ference, 2014.

[Sis10] G. Sisson. DNS Survey. http://dns.measurement-factory.

com/surveys/201010/, 2010.

[SKAT12] C. Shue, A. Kalafut, M. Allman, and C. Taylor. On Building Inexpensive

Network Capabilities. ACM SIGCOMM Computer Communication Review,

pages 72–79, 2012.

[SSDA12] M. Sargent, B. Stack, T. Dooner, and M. Allman. A First Look at 1 Gbps

Fiber-To-The-Home Traffic. Technical Report 12-009, International Com-

puter Science Institute, 2012.

[STA01] A. Shaikh, R. Tewari, and M. Agrawal. On the Effectiveness of DNS-based

Server Selection. In IEEE International Conference on Computer Commu-

nications, pages 1801–1810, 2001.

[STI+] F. Scholz, Teoli, D. Illsley, Znerd, and E. Shepherd. Controlling DNS

Prefetching. https://developer.mozilla.org/en-US/docs/

Web/HTTP/Controlling_DNS_prefetching.

[TDLDA12] S. Tzur-David, K. Lashchiver, D. Dolev, and T. Anker. Delay Fast Pack-

ets (DFP): Prevention of DNS Cache Poisoning. Security and Privacy in

Communication Networks, pages 303–318, 2012.

[UC] US-CERT. https://www.us-cert.gov/.

129

http://dns.measurement-factory.com/surveys/201010/
http://dns.measurement-factory.com/surveys/201010/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Controlling_DNS_prefetching
https://developer.mozilla.org/en-US/docs/Web/HTTP/Controlling_DNS_prefetching
https://www.us-cert.gov/

[Ver] Verisign Public DNS. http://www.verisign.com/en_US/

innovation/public-dns/index.xhtml.

[VS12] P. Vixie and V. Schryver. DNS Response Rate Limiting (DNS RRL). Tech-

nical Report ISC-TN-2012-1, Internet Systems Consortium, 2012.

[Wan] S. Wan. Google Public DNS now auto-detects nameservers that support

edns-client-subnet. https://groups.google.com/forum/?hl=

en#!topic/public-dns-announce/67oxFjSLeUM.

[WMS03] C.E. Wills, M. Mikhailov, and H. Shang. Inferring Relative Popularity of

Internet Applications by Actively Querying DNS Caches. In ACM Internet

Measurement Conference, pages 78–90, 2003.

[YKMC06] L. Yuan, K. Kant, P. Mohapatra, and C.N. Chuah. DoX: A Peer-to-Peer An-

tidote for DNS Cache Poisoning Attacks. In IEEE International Conference

on Communications, pages 2345–2350, 2006.

[Zal] M. Zalewski. p0f: Passive OS Fingerprinting tool. http://lcamtuf.

coredump.cx/p0f.shtml.

130

http://www.verisign.com/en_US/innovation/public-dns/index.xhtml
http://www.verisign.com/en_US/innovation/public-dns/index.xhtml
https://groups.google.com/forum/?hl=en#!topic/public-dns-announce/67oxFjSLeUM
https://groups.google.com/forum/?hl=en#!topic/public-dns-announce/67oxFjSLeUM
http://lcamtuf.coredump.cx/p0f.shtml
http://lcamtuf.coredump.cx/p0f.shtml

	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgments
	Abstract
	Chapter Introduction
	Chapter DNS Background
	Chapter Topology of the DNS Infrastructure
	Related Work
	Client-side DNS Infrastructure
	Methodology Overview
	Non-Interference With Normal Operation
	Discovering DNS Infrastructure
	ODNS Lifetimes

	Methodology Details
	ODNS Server Discovery
	RDNS Server Discovery

	Topology
	Estimating Global ODNS Population
	FDNS Population Size Per-RDNS
	RDNS Pool Sizes
	Distance between FDNS servers and RDNS servers

	Summary

	Chapter Measuring Behavior in the DNS Infrastructure
	Related Work
	Techniques for Untangling Behavior
	Measuring FDNS Servers
	Measuring RDNS Servers

	Caching Behavior
	Aggregate Behavior
	FDNS Server Behavior
	RDNS Server Behavior
	HDNS Server Behavior

	Dataset Representativeness
	Summary

	Chapter Characterization of DNS Client Behavior
	Related Work
	Dataset
	Calibration
	Tracking Clients
	Timeframe
	Filtering Datasets

	Identifying Types of Clients
	Query Clusters
	Query Timing
	Query Targets
	Popularity of Names
	Co-occurrence Name Relationships
	Temporal Locality

	Summary

	Chapter A New Security Vulnerability in the DNS
	Related Work
	Methodology
	Record Injection Attacks
	Preplay Attack
	Implications
	Duration of Record Injection
	Phantom DNS Records

	Context
	Are Open Resolvers Used?
	Industry Response
	Representativeness

	Vulnerability Scanner
	Summary

	Chapter DNS Shared Resolvers Considered Harmful
	Related Work
	Datasets and Methodology
	Impact on Performance
	Impact on Scalability
	Increase TTLs
	Multiple DNS Questions
	Combining Methods

	Additional Considerations
	Privacy Concerns
	Policy Issues
	Transitioning to Client Resolution

	Summary

	Chapter Conclusion and Future Work
	Bibliography

