THE RELATIONSHIP BETWEEN TOPOLOGY AND PROTOCOL PERFORMANCE:
CASE STUDIES

by

Pavlin Ivanov Radoslavov

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

December 2001

Copyright 2001 Pavlin Ivanov Radoslavov

To my parents,

for all of the sacrifices.

Dedication

ii

Acknowledgments

Now that I am on the finishing line of my life as a graduate student, it is time to sit
down, relax, collect my thoughts and think about those 5 years I have spent learning about
networks, routing, multicast, protocol design and implementation, but most of all how to
do research with the right sense for practicality. Nothing comes out of nowhere, and it
would not be possible to gain the knowledge without the interaction with the large number
of people I had the privilege to work with.

First of all, T would like to express my deepest gratitude to my advisors, Prof. Deborah
Estrin and Dr. Ramesh Govindan who have been the primary source of knowledge and
ideas, and have been extremely supportive through my study. I feel extremely lucky that I
had the chance to work under their supervision. They gave me the right balance between the
high-level picture and the low-level details. Indeed, it took more than two years for me to
realize that my initial idealism for “optimality-first” is a very wrong approach. Thankfully,
both of them were extremely patient with my stubbornness, and helped me learn by heart
that “simplicity-first” is the right philosophy. Later in my study again and again I was able
to verify that following this advice has a big payoff.

I would like to thank Dr. Sandeep Gupta for serving in my Qualifying Exam and
Dissertation Committee, and for the valuable comments and feedbacks on this work. I
am also thankful to Dr. Ashish Goel and Dr. Christos Papadopoulos, who were in my

iii

Qualifying Exam Committee as well. The interesting discussions I had with Ashish on
multicast state aggregation helped me look into the problem from a different angle. Christos
was an extremely valuable source of information about reliable multicast, and he helped
me to learn a lot about the subject. All the work about hierarchical reliable multicast in
this dissertation was a direct result of his co-supervision.

I was very fortunate to have the chance to learn from many other people as well. Michael
Speer helped me to look into the problems from engineering perspective during my Summer
internship in Sun Microsystems in 1997. The numerous discussions with Mark Handley
and Dave Thaler while working on MASC helped me to learn a lot about protocol design
and specification. The 2-day dense discussion with Steve Hanna and his colleagues from
Sun Microsystems Laboratory during the design of MASC was very important and fruitful.
My colleagues from dgroup and netgroup at the USC Computer Networks and Distributed
Systems Research Laboratory were the endless source of discussions, ideas and inspirations—
Nirupama Bulusu, Alberto Cerpa, Xuan Chen, Jeremy Elson, Lewis Girod, Xinming He,
Ahmed Helmy, Bau-Yi Polly Huang, Chalermek Intanagonwiwat, Amit Kumar, Satish
Kanna Kumar, Ching-Gung Liu (Charley), Graham Phillips, Anoop Reddy, Reza Rejaie,
Puneet Sharma, Hongsuda Tangmunarunkit, Kannan Varadhan, Haobo Yu, Yan Yu, Daniel
Zappala, and Yonggang (Jerry) Zhao among others. Special thanks to Hongsuda who
provided me with the data for most of the topologies that were used in this study, as
well as for the valuable information about network topologies, and the insightful key-ideas
and suggestions. The opportunity I had to work with Scott Shenker, Haobo, Hongsuda,
Deborah and Ramesh on characterizing network topologies was very influential, and later

part of that work became the foundation of my dissertation. I am very thankful to Paul

iv

Francis, whose original work on Yoid was very inspirational, for opening me the door and
giving me the direction to the new world of application-level multicast. My colleagues
from the Yoid project in ISI, Yuri Pryadkin and Bob Lindell, were an invaluable source
of information and enlightening discussions that were key-factors during the design of the
Yoid mechanisms presented in this work.

Long time ago I would have taken a very different path, if it wasn’t for my family—my
parents Ivan and Maria, my sister lonka and her two wonderful children Kristina and Ivailo,
and my wife Kazuyo. Their love and support, but most of all their belief in me were the
energy source I needed during this journey.

At different stages, this work was supported by the National Science Foundation through
the Routing Arbiter project at ISI under Cooperative Agreement No. NCR-9321043, a gift-
money from Sun Microsystems, and by the Defense Advanced Research Projects Agency
through the Yoid/Yallcast project at ISI under Cooperative Agreement No. F30602-00-2-
055.

Last, but not least, I would like to thank the people behind Internet sites such as the
University of Oregon Route View Project (http://www.routeviews.org/) and the National
Laboratory for Applied Network Research (NLANR) (http://www.nlanr.net/) that have
provided the Internet research community with free access to extremely valuable network-

related data and information.

Contents

Dedication
Acknowledgments
List Of Tables
List Of Figures
Abstract

1 Introduction

2 Case Study: Multicast Forwarding State Aggregation
2.1 Introduction L e
2.2 Motivationo L
2.2.1 Multicast Routing and Forwarding
2.2.2 Forwarding State Aggregation L.
2.2.3 Why is aggregation important?

2.3 Topology Impact on Multicast Forwarding State
Aggregatability
2.4 Leaky Aggregation of Multicast Forwarding State
24.1 Istherehope? L
24.2 Design Space e
2.4.3 Non-Leaky Aggregation
2.4.4 Leaky Forwarding Entry Aggregation
2.4.5 Estimating the bandwidth of individual groups
24.6 Aggregation Heuristic oL 0oL,
2.4.7 Dynamics of Groups Join/Leave and Multicast Data Bandwidth
2.5 Simulation Results
2.5.1 Network-wide Simulations L.
2.5.1.1 Methodology Lo
25.1.2 Results
2.5.2 Join/Leave and Multicast Data Traffic Dynamics Simulations
2.5.2.1 Methodology
2522 Results Lo

ii

iii

x1

XV

10
13
13
15
16
18

19
26
26
28
29
30
32
34
38
40
41
41
43
48
48
50

vi

2.6 Discussion of Leaky Aggregation, .. 55

2.7 BGMP-specific Loop Problem and its Prevention 58
2.8 Pseudo Code for Leaky Aggregation 60
2.8.1 Leaky Aggregation Main Procedure 60
2.8.2 Greedy Heuristic Aggregation Algorithm 62

2.9 Conclusions 64
Case Study: Replica Placement for Content Distribution Networks 66
3.1 Imtroduction L e e 67
3.2 Replica and Client Placement Models 69
3.2.1 Client-Replica Assignment 69
3.2.2 Replica Placement Models, 70
3.2.3 Client Placement Models 72

3.3 Performance Evaluation L. 73
3.3.1 Metric Space e 74
3.3.2 Simulation Setup Lo L 76
3.3.3 Network Efficiency Results. 7
3.3.3.1 Replica Placement Impact 78

3.3.3.2 Client Placement Impact 81

3.3.3.3 Client Number Impact 82

3.3.3.4 Network Topology Impact 85

3.4 Results Discussion L e 88
3.5 Conclusions L e e 90
Case Study: Hierarchical Reliable Multicast 91
4.1 Introduction L e e e 92
4.2 Hierarchical Multicast Data Recovery Schemes 95
4.2.1 Application-Level Hierarchical Schemes 97
4.2.2 Router-Assisted Hierarchical Schemes 98
4.2.3 Metric Space o 104
4.2.4 Examples of Measuring ALH and RAH Performance 107

4.3 K-ary Tree Analysesof RAHand ALH 108
4.3.1 RAH and ALH control overhead analyses results 109
4.3.2 RAH and ALH data overhead analysesresults 113
4.3.2.1 RAH data overhead analyses results 113

4.3.2.2 ALH data overhead analyses results 114

4.3.3 RAH and ALH data recovery latency analyses results. 116
4.3.3.1 RAH data recovery latency analyses results 117

4.3.3.2 ALH data recovery latency analyses results 118

4.4 Simulation Results 120
4.4.1 Simulation Setup Lo 120
4.4.2 RAH and ALH Simulation Results 122
4.4.3 Simulation Results Sensitivity 127
4.4.3.1 ALH Hierarchy Organization Sensitivity 127

4.4.3.2 Network Topology Sensitivity 130

4.4.3.3 Receiver Placement Sensitivity 131

vii

4.5 Conclusions e e e 135

5 Improving Protocol Performance with End-to-end Mechanisms: Design-

case for Application-Level Multicast 136

5.1 Topology Impact on Endsystem Multicast 137

5.1.1 Endsystem Multicast with Closest Receiver Heuristic 138

5.1.1.1 Discussion of Tree Stretch Results 138

5.1.1.2 Discussion of Tree Stress Results 140

5.1.2 Endsystem Multicast with Minimum Spanning Tree Heuristic 141

5.2 Introduction to Yoid Application-Level Multicast System 143

5.3 Tree Management Algorithms 149

5.3.1 Loop-Detection Algorithm 149

5.3.2 Tree Refinement 158

5.3.2.1 Latency Refinement Algorithm 159

5.3.2.2 Loss-rate Refinement Algorithm 161

5.3.2.3 Discussion e 164

5.4 Performance Results o o 166

54.1 Simulation Results o oL, 166

5.4.2 Experimental Results 000, 173

5.5 Conclusions L e 176

6 Related Work 178

6.1 Multicast Forwarding State Aggregation Related Work 178

6.2 Replica Placement Related Work 181

6.3 Reliable Multicast Related Work 182

6.4 Application Level Multicast Related Work 185
6.5 Network Topology and Protocol Performance Related

Work 187

7 Conclusions and Future Work 190

7.1 Summary of Case Studies o oo 190

7.2 Conclusions L e e 192

7.3 Future Work L 195

Reference List 197

Appendix A

Multicast Address Allocation Lo Lo 207
Al Introduction e e e e e 207
A2 MASC Description o . oL e 209
A2.1 MASCOverview i ittt it 210
A.2.2 Claim-Collide Mechanism Description 213
A.23 MASC Algorithms L oo 216
A3 Simulation Results 221
A3.1 Methodology e 221
A.3.2 Simulation Results L. 225

viii

A.4 Related Work
A.5 Conclusions .

ix

List Of Tables

1.1 Relation between thesis questions and case-studies. 4
2.1 Metrics of used topologies. 21
2.2 Simulation results summary: aggregation. 54
2.3 Simulation results summary: leaks. oL L. 54
3.1 Metrics of used topologies. L L 76
4.1 Metrics of used topologies. oL oL 121
A.1 Demand parameters change over time. 222

List Of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

Example of multicast data distribution. 11
Forwarding a multicast packet for source = “any” and group = 224.0.1.2 . . 14
Example of aggregating multicast forwarding entries. 16
Example of multicast forwarding entries concentrations. 17
Example of a reduced mesh topology. 23
Average interface entropy. Lo Lo 24
Example of prefix-based strict, pseudo-strict and leaky aggregation. 29
De-aggregation for bandwidth estimation. 33
An example of the steps of the leaky aggregation algorithm. 36
Examples of different classes of multicast applications. 39
Prefix-based strict, pseudo-strict and leaky aggregation. 44
Effect of bandwidth ratio on leaky aggregation. 44

Leaky aggregation for different percentage number of high bandwidth groups. 45

Number of entries (Uniform traffic). 51
Number of entries (Exp ON/OFF traffic). 51
Number of entries (Pareto ON/OFF traffic). 51
Amount of leaks (Uniform traffic). 52

xi

2.18 Amount of leaks (Exp ON/OFF traffic). 52
2.19 Amount of leaks (Pareto ON/OFF traffic). 52

2.20 BGMP-specific loop potential problem because of the leaky entries aggregation. 59

3.1 Internet core: replica placement impact (random clients). 78
3.2 Internet core: replica placement impact (extreme affinity clients). 79
3.3 Internet core: replica placement impact (extreme disaffinity clients). 79
3.4 Internet core: replica placement impact (extreme clustering clients). 80
3.5 Internet core: replica placement impact (web clients). 80
3.6 Internet core: client number impact (random clients). 82
3.7 Internet core: client number impact (extreme affinity clients). 83
3.8 Internet core: client number impact (extreme disaffinity clients). 83
3.9 Internet core: client number impact (extreme clustering clients).. 84
3.10 Random graph: replica placement impact (random clients). 85
3.11 Power-law graph: replica placement impact (random clients). 86
3.12 Mbone topology: replica placement impact (random clients). 86
4.1 ALH example: optimal hierarchy organization. 96
4.2 ALH example: sub-optimal hierarchy organization. 96
4.3 LMS vanilla example: data loss and recovery. 101

4.4 LMS vanilla example: data loss by replier only and exposure to other receivers.101

4.5 LMS enhanced example: data loss by replier only and unicast recovery. . . . 102
4.6 LMS enhanced example: two-step data recovery. 102
4.7 Example of k-ary tree parameters. L. 109

xii

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

5.1

5.2

5.3

RAH and ALH: average network control overhead. 112

RAH and ALH: average network data overhead. 115
RAH and ALH: average data recovery latency. 119
RAH and ALH (Internet core): average data recovery latency. 124
RAH and ALH (Internet core): average receiver exposure. 124
RAH and ALH (Internet core): average network data overhead. 125
RAH and ALH (Internet core): average network control overhead. 125
ALH: latency sensitivity to hierarchy organization. 127
ALH: exposure sensitivity to hierarchy organization. 128
ALH: network data overhead sensitivity to hierarchy organization. 129
ALH: network control overhead sensitivity to hierarchy organization. 129
RAH and ALH topology sensitivity (AS): average latency. 130
RAH and ALH topology sensitivity (Mbone): average latency. 131
RAH and ALH topology sensitivity (Random graph): average latency. . . . 132
RAH and ALH topology sensitivity (Mesh): average latency. 132
RAH and ALH topology sensitivity (Tree): average latency. 133
RAH and ALH (receiver affinity): average network data overhead. 133
RAH and ALH (receiver disaffinity): average network data overhead. 134
RAH and ALH (receiver clustering): average network data overhead. 134
Endsystem tree stretch for closest receiver heuristic. 139
Endsystem tree stress for closest receiver heuristic. 140

Endsystem tree stretch for minimum spanning tree heuristic. 141

xiii

5.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

Al

A2

A3

A4

A5

A6

AT

A8

A9

Endsystem tree stress for minimum spanning tree heuristic. 142
Example of loop formation. 150
Example of loop discovery and termination. 153
Latency refinement algorithm example. 159
Loss-rate refinement algorithm example. 163
Loss-rate refinement algorithm example (cont.) 164

Simulation results: sender and 25% of receivers behind 40kbps/80ms links. . 167
Simulation results: 25% of receivers are members for only 1000 seconds. . . 168

Simulation results: two senders, 25% of receivers behind 40kbps/80ms links. 170

Latency refinement experiment topology. 173
Latency refinement experiment result. 174
Loss-rate refinement experiment results. 175
The malloc architecture. L Lo oL 208
MASC association of group ranges with AS’s. 210
MASC topology example. Lo o 211
MASC claim-collide mechanism. 214
An example of collision detecting latency that takes 2 x T}, time units. . . . 215
Increasing and decreasing the allocated addresses. 220
Flat topology of 100 nodes.o 224
Two-level topology with 100 leaf nodes nodes. 227
Three-level topology with 100 leaf nodes nodes. 228

Xiv

Abstract

The self-organized growth of the Internet has resulted in Internet topology that is
unplanned and completely decentralized. To the best of our knowledge, there is no study
in the past that has considered how this affects (or can affect) network protocols. In this
thesis we consider the impact of network topology on protocol performance. In particular,
we ask the following three questions: What is the impact of the underlying topology on
protocol performance? Can we use information about the underlying topology to improve
protocol performance, and what gain can we expect? Can we use end-to-end mechanisms
to design protocols that are adaptive to the underlying network topology?

In order to answer those questions, we study four specific problems that may be im-
pacted by the underlying topology: multicast forwarding state aggregatability for network-
layer multicast routing, Content Distribution Network replica placement, application-level
and router-assisted hierarchical reliable multicast schemes, and application-level multicast
routing.

Our findings are three-fold:

1. The underlying topology can make up to an order of magnitude difference in perfor-

mance, but typically it causes at most a factor of two performance difference.

XV

2. The performance of topology-sensitive protocols can be improved significantly even

with limited knowledge about the underlying topology.

3. End-to-end mechanisms can be adaptive to the underlying network topology and
participant placement; further, in many cases their performance can be comparable

to the performance of topology-informed mechanisms.

In our study we use numerical simulations with a variety of network topologies and client
placement, as well as real-world Internet experiments. As part of our study on application-
level multicast routing we design and implement a set of algorithms for creation and man-
agement of application-level multicast data distribution trees. This implementation is now

used in Yoid application-level multicast system.

xvi

Chapter 1

Introduction

One of the main reasons for the enormous success of Internet is its ability to support a
large variety of applications with different requirements and characteristics: from email, file
transfer, and remote telnet access to Web, real-time audio, video, and interactive games.
Yet, it is decentralized in its organization and operation, and is self-evolving without explicit
guidelines or central planning.

There are not many, if any, technological inventions that have been “left on their own”
to grow, and have been as successful as the Internet. So, we ask, is there anything special
about the Internet so it has accommodated, and continues to accommodate a large variety
of applications, and at the same time it has sustained exponential growth without sacrificing
performance or functionality.

One plausible answer for its success is its “openness” for everyone who wants to be
a part of it. We, however, argue that this is necessary, but not sufficient to achieve the
momentum it has.

Another answer is the end-to-end design principle of the Internet [105] that has been a

guideline for designing new Internet protocols for more than two decades. The end-to-end

argument suggests that “specific application-level functions usually cannot, and preferably
should not, be built into the lower levels of the system—the core of the network.” The
end-to-end principle explains the universality and adaptability of Internet, but does not
explain why Internet has been able to grow exponentially and keep-up with the increased
demand for performance. Indeed, as a result of the end-to-end principle, the network is
not required to support any particular application, which not only simplifies the network
management, but allows to build simpler and faster routers.

Faster routers and links are necessary to better performance, but there is no guarantee
that all users will observe performance improvement, unless the whole Internet is upgraded
or re-engineered to achieve the desired performance.

The work in this thesis is motivated by the following question:

Is there anything else beyond raw wire speed and router throughput that has impact on

network performance?

In our search for an answer, we study the impact of network topology itself on protocol

performance.! In particular, we address the following three questions:

1. What is the impact of the underlying topology on protocol performance? In other
words, if the Internet topology were substantially different, should we expect similar

performance?

1For the rest of this thesis we use the term “protocol performance” to denote the performance of either
an abstract or a particular architecture. Also, we do not define explicitly the term “performance” in general,
because it has to be associated with a particular metric that typically has meaning only within a particular
architecture.

2. Can we use information about the underlying topology to improve protocol perfor-

mance, and what gain can we expect?

3. Can we use end-to-end mechanisms to design protocols that are adaptive to the

underlying network topology?

In order to answer these questions, we look into some specific problems that may be
impacted by the underlying topology. Below are the four particular problems we consider,

and a brief description of each of them.

1. Multicast forwarding state aggregatability for network-layer multicast routing. The
multicast forwarding state is much more difficult to aggregate than the unicast for-
warding state, because the outgoing interface set of each entry can change dynami-
cally. Therefore, the amount of state in a router can be proportional to the number
of existing multicast data distribution trees that use that router. The number of mul-
ticast trees a router belongs to depends not only on the number of active multicast
groups and participants placement, but also the topology itself. E.g., the router in

the center of a star topology will belong to all active multicast trees. Theoretically,

228 2120

this number is limited only by the size of the multicast address space (2° and
for IPv4 and IPv6 respectively), therefore the amount of state a router may need to

keep can be beyond its capacity. By aggregating the multicast forwarding state in a

router, that router can continue to operate and perform its functions.

2. Content Distribution Network replica placement. Server replication is used in Content
Distribution Networks (CDNs) to improve the access latency, server availability, and

to reduce network overhead. Because the number of replicas we can have is limited,

the question is, given some number of replicas, how to place them in the network to

achieve maximum performance (e.g., low access latency).

3. Hierarchical reliable multicast schemes. There is a variety of hierarchical schemes
for reliable multicast. Some of them require explicit support from the network,
while others do not make any assumption about the network (router-assisted and
application-level multicast hierarchical schemes respectively). In our study we com-

pare the performance of such two schemes.

4. Application-level multicast routing. Application-level multicast (also called endsystem
multicast) is a truly end-to-end alternative to traditional, network-layer multicast,
and has the advantage that it does not require special support from the network.
Its drawback however is that the communication may be sub-efficient compared to
network-layer multicast. Further, even if estimated performance difference may be

acceptable, designing a practical scheme to minimize that difference may not be an

easy task.
Question Multicast state | Replica Reliable | Application-level
aggregation placement | multicast multicast
Topology impact X X X X
Topology knowledge X X
End-to-end mechanisms X X

Table 1.1: Relation between thesis questions and case-studies.

Table 1.1 summarizes the relation between each of the above examples we study and

the questions we try to answer. For example, we use the the replica placement study, and

the hierarchical reliable multicast schemes study to understand better the impact of using
knowledge about the underlying topology to improve protocol performance.

We should note that our interest of studying protocol performance is within the context
of multi-party architectures. The impact of topology on protocols that involve only two
participants can be simplified to studying single-chain topologies. We believe this is a
problem that is also interesting to study, but is outside the primary focus of our work.

In our study we use a number of topologies, including a real-world router-level topology.
As part of our evaluation, we consider the placement of the end-users participants (hence-
forth called clients or receivers) as well, because it is directly related to how a topology is
“used.”

How the findings from our case studies relate to the questions we ask in this thesis?

Below we summarize those findings, which are also the main contribution of this thesis.

The underlying topology can make up to an order of magnitude difference
in performance, but typically it causes at most a factor of two performance
difference.

For example, the topology significantly affects multicast forwarding state aggregatability:
for low receiver occupancy the aggregatability for some topologies can be on the order of
10 times and higher (e.g., real-world topologies, random graph), but for other topologies
it is on the order of 2 times (e.g., tree, mesh, some generated topologies). In other cases,
such as hierarchical reliable multicast and application-level multicast, the performance
results do not vary significantly for different topologies (typically the difference is within a

factor of 2). Based on the particular metrics we use in our evaluation, we believe that the

topology impact is smaller on protocol performance metrics that are based on relative values
(e.g., if the metric is the relative tree size difference between two protocols), because the
topology factor that has impact on protocol performance will, in most cases, affect similarly
all evaluated protocols. On the other hand, the topology impact is larger on protocol
performance metrics that are based on absolute values (e.g., a metric such as multicast
distribution tree size in number of hops). The only exception among the topologies we
have studied is the mesh topology for which even the relative performance difference is
notably larger than the other topologies. Based on those findings we conclude that the
topology indeed has impact on performance, but in many cases that impact is on the order

of two.

The performance of topology-sensitive protocols can be improved significantly
even with limited knowledge about the underlying topology.

A topology-sensitive protocol would benefit most from information about the underlying
topology if it has knowledge about the complete topology. However, for large networks
such as the Internet it not practical to require complete topology information for reasons
such as lack of a scalable mechanism for collecting the information and keeping it up to
date. Therefore, a protocol should not require complete knowledge about the topology
in order to operate properly and efficiently. Instead, it should, whenever possible, use
limited topology knowledge as hints to improve performance, as long as this knowledge
is easily inferred. Our argument, supported by our findings, is that even small amount
of information may be useful to improve protocol performance. For example, information

about node fanout may be sufficient to place a limited number of replicas in the network and

achieve performance that usually requires much more complicated solutions. Similarly, the
performance of application-level reliable multicast hierarchies can be improved significantly
to a level that is comparable to the performance of solutions that require router support,
if information such as end-to-end node distance is available to the participants. Therefore,
a protocol should be allowed to use mechanisms to collect information about the topology,

as long as those mechanisms are practical and scalable.

End-to-end mechanisms can be adaptive to the underlying network topology
and participant placement; further, in many cases their performance can be
comparable to the performance of topology-informed mechanisms.

If no topology-related information is available, it is possible to design protocols that use
only end-to-end mechanisms and that are adaptive to the underlying network topology
and participant placement. In many cases, their performance is comparable to the per-
formance of protocols that use the help of topology information. For example, in case of
application-level multicast we can use end-to-end mechanisms to improve significantly the
end-to-end data propagation latency so it can be within a factor of 2.5-3.0 of the unicast
latency. Similarly, application-level assisted hierarchies for reliable multicast data recovery
can be modified to use traceroute mechanisms to compute the number of hops between
participants, and then this information can be used to create an efficient hierarchy that
has performance typically within a factor of two of router-assisted hierarchies.

We acknowledge that network topology is not the only factor that has impact on per-

formance. It, however, is one of the major factors, or at least a factor that can explain

the less-than-expected impact that other factors such as client location can have on pro-
tocol performance. Our study is far from being completed. It is only a small step toward
understanding the mechanisms behind complex systems such as the Internet.

The rest of the dissertation is organized as follows. Chapter 2 is our case-study of
topology impact on protocol performance within the context of multicast forwarding state
aggregatability. In that chapter we also describe some practical solutions of the problem.
Chapter 3 is our case-study of the replica placement problem within the context of Content
Distribution Networks (CDNs). In Chapter 4 we study the performance of hierarchical
reliable multicast schemes. In Chapter 5 we present our work on application-level multicast
and demonstrate its adaptability. Related work is in Chapter 6. Conclusions and future
work are in Chapter 7. Appendix A contains our work on multicast address allocation,
which is not directly related to the main topic of this thesis, but relates to our work on

multicast forwarding state aggregation.

Chapter 2

Case Study: Multicast Forwarding State Aggregation

Scalable and efficient distribution of multicast data is achieved by multicast routing pro-
tocols. These protocols usually construct a multicast distribution tree, and create state
in the intermediate routers. Due to the difficulties of aggregating the multicast state, the
amount of state in a router can be proportional to the number of multicast distribution
trees it belongs to, and theoretically this number can be as large as the multicast address
space (e.g., 22% addresses for [Pv4). Intuitively, the amount of state in all routers will be
different; e.g., the core routers will have more state than edge routers. In this chapter
we investigate the topology sensitivity of multicast forwarding state aggregatability. Our
study shows that the state is aggregatable, but the aggregatability is impacted by the un-
derlying topology. However, for all topologies we investigated, the aggregation ratio is less
than expected. In the second part of the chapter we describe one solution to the problem:
a leaky aggregation mechanism that can be used to improve aggregation at the expense of

small network bandwidth overhead.

2.1 Introduction

Today, an increasingly wide variety of applications are based on IP multicast [25]: audio
and video transmissions [10] data replication [39], Web caching [135], and collaborative
workspaces [36]. These applications owe their success to a key property of today’s multicast
infrastructure: mechanisms for scalable distribution of data flows to multiple receivers that
avoid replicating data traffic on shared links of the distribution paths (see Figure 2.1). The
design of these applications is greatly simplified by a key feature of the IP multicast service
model: the level of indirection provided by logical group naming [77].

Scalable and efficient distribution of multicast data is achieved by multicast routing
protocols. These protocols usually construct a multicast distribution tree. They contain
mechanisms that enable receivers in a given multicast group to rendezvous with senders,
and then establish the corresponding forwarding state in routers that achieves efficient
distribution. Since Steve Deering’s original work on multicast datagram service [25], various
distribution tree building and rendezvous mechanisms have been proposed and deployed [94,
84, 26, 33, 4, 115]. Some of these mechanisms have limited scalability (within a single
domain), while other have been designed to scale to the entire Internet.

Scalable routing mechanisms alone may not ensure the scalability of the Internet multi-
cast architecture. Specifically, we believe there is an architectural argument for considering
multicast forwarding state aggregation. This argument proceeds as follows. The logical
naming feature of IP multicast necessitates per-group forwarding entries in routers. Each
such entry implies a “cost” to the overall architecture. This cost is affected by the traffic

bandwidth associated with the group. Creation of forwarding entries for high bandwidth

10

Sender for
group 2

B &

Receivers for group 1 and 2 Receivers for group 1

Figure 2.1: Example of multicast data distribution.

groups (e.g., for example video and audio sessions) is justified by the bandwidth savings of
using multicast. To justify supporting relatively low-bandwidth groups (e.g., whiteboard-
type applications [36] and event notification services [9]), however, we need mechanisms
that amortize the cost of maintaining forwarding entries over many low-bandwidth groups.
One way to do this is to aggregate multicast forwarding entries for low-bandwidth groups.
To our knowledge, this problem has not been widely considered in the literature.

Even apart from this architectural argument, there is a practical reason for study-
ing multicast forwarding state aggregation. Unicast forwarding state aggregation is well-
understood, but, because multicast receivers are not—in general—topologically related,
it is unclear whether these unicast techniques apply. Moreover, the multicast problem is
potentially much greater compared to unicast, because the possible number of multicast

groups grows combinatorially with the number of network nodes. For example, IPv4 [93]

11

allows up to 228

multicast groups. Network capacity permitting, it is not inconceivable that
some significant fraction (say 50%) of these groups are simultaneously in use. In this case,
some routers may need more than 0.5 GB memory to store the forwarding entries. Under
similar assumptions, an IPv6 [27] router might need several Terabytes for the forwarding
entries!

In this chapter we look into the problem of multicast forwarding state aggregation for
network-layer multicast routing. First we explain why aggregation is important, and we
describe the problem in more details. Then, we investigate the impact of topology on the
state aggregatability in general, without having in mind any particular aggregation scheme.
Finally, we look into practical mechanisms for multicast forwarding state aggregation, and
describe and evaluate one possible solution. Our solution targets the scaling of forwarding
state to the number of high-bandwidth groups. It does this by aggregating, where possible,
low-bandwidth groups. This aggregation allows for leaks'—traffic for a group may follow
paths that do not lead to any receiver for that group. The aggregation strategy limits the
bandwidth allocated for leaks to a fixed fraction of link capacity at each router.

The rest of the chapter is organized as follows. Section 2.2 describes IP multicast
and presents the difficulty of the problem. Section 2.3 looks into the topology impact
on state aggregatability. Section 2.4 describes several aggregation strategies, and works
out the details of one practical solution to the problem, the leaky aggregation strategy.
Section 2.5 shows that, for a wide variety of traffic mixes and receiver distributions, the
leaky aggregation strategy manages to closely track the number of high bandwidth groups,

even with dynamic data traffic and a large number of joins/leaves. Section 2.6 discusses

'To our knowledge, Van Jacobson was the first to suggest this tradeoff [56] for multicast forwarding.

12

the interplay between leaky forwarding state aggregation and existing multicast routing
protocols. Section 2.7 contains a description of how to avoid some problems in case of
multicast routing protocols such as BGMP [66] and CBT [4]. Finally, Section 2.8 contains

the pseudo-code of the leaky aggregation algorithm.

2.2 Motivation

In the previous section, we argued that multicast forwarding state aggregation is necessary
because forwarding state incurs a bandwidth-dependent architectural cost. Before we de-
velop this argument further, we briefly describe multicast forwarding and forwarding state

aggregation.

2.2.1 Multicast Routing and Forwarding

Multicast routing protocols achieve efficient data distribution from senders to receivers.
They do this by setting up distribution trees that span all group members. The subject
of scalable tree construction protocols has received much attention in the literature [94,
84, 26, 33, 4, 115]. A common feature of these protocols is that they all build multicast
distribution trees rooted at some particular node.

The outcome of every tree construction protocol is a collection of forwarding entries
at each router in the network. Together, these forwarding entries effect data distribution
from sources to receivers. At a given router, the forwarding entry determines which neigh-
boring routers receive copies of an incoming multicast packet. For example, Router R1 in
Figure 2.1 has forwarding entries for group 1 and group 2. The forwarding entry for group

1 specifies that links R1-R2 and R1-R3 belong to the distribution tree of group 1. The

13

forwarding entry for group 2 specifies that link R1-R2 belongs to the distribution tree of
group 2.

In its most general form, a multicast forwarding entry contains four pieces of infor-
mation: a source address prefiz (an initial bit-substring of an address—IPv4 prefixes are
usually represented by, for example, by an IP address followed by the length of the initial
bit substring 123.4.56.0/24), a group address prefix, an incoming interface set, and a set
of outgoing interfaces. For a given forwarding entry, its address prefixes represent the range
of sources and groups whose distribution tree is represented by that entry. The incoming
interface represents the router’s “parent” in that distribution tree, and the outgoing inter-
faces represent the router’s children. A forwarding entry matches a multicast data packet
if its source address prefix is the longest initial bit-substring (among all other forwarding
entries) that matches the packet’s source address, its group address prefix is the longest
initial bit-substring that matches the packet’s group address, and the interface on which
the packet was received is included in its incoming interface set. A copy of every such

packet is forwarded on the outgoing interface set (Figure 2.2).

iif
\L 1. Destination lookup
S=0.0.0.0/0

G=224.0.1.2132 2 _|f packet received on iif,
/ i \ forward on all (oifs - iif)
oifs

Figure 2.2: Forwarding a multicast packet for source = “any” and group = 224.0.1.2

Existing multicast routing protocols differ slightly in the types of forwarding entries

they generate:

14

Group specific vs source-group specific: In group-specific entries, the source address
prefix has zero length. That is, any source address matches that prefix. Usually, these
entries are created by protocols that build distribution trees rooted at a group-specific
Rendezvous Point |33, 4] or Root Domain [115]. Source-group specific entries contain
non-zero source and group address prefix lengths. This type of forwarding entry is
usually created for distribution trees rooted at the source [94, 84, 26, 33, 50, 91|, but

[4] is a notable exception.

Uni-directional vs bi-directional A given multicast routing protocol may define for-
warding entries to be either uni-directional or bi-directional. Uni-directional for-
warding entries result in multicast traffic that flows only “down” the distribution tree
(from the root of the tree towards the receivers) [94, 84, 26, 33, 50]. Bi-directional
forwarding entries result in distribution trees that allow traffic from a sender to reach
its nearest router on the tree, then traverse the tree simultaneously towards the root
and towards receivers [4, 115, 91]. To achieve bidirectional forwarding, an entry’s

incoming interface set trivially includes all interfaces of a router.

These semantic differences between forwarding entries is useful for understanding the design

of forwarding state aggregation mechanisms.

2.2.2 Forwarding State Aggregation

But what do we mean by forwarding state aggregation? Consider Figure 2.3. This shows
two forwarding entries with matching incoming interface and outgoing interfaces. The
group address prefixes of these entries are adjacent—i.e., there exists a single address prefix
that includes both those group address prefixes. In such situation, these two multicast

15

forwarding entries can be aggregated (represented by a single entry) as shown. This is
not the only way to aggregate multicast forwarding entries; Section 2.4 describes other

approaches.

liif_o liif_o iiif_o

224.0.1.0/32| + | 224.0.1.1/32| = | 224.0.1.0/31

/NN N

oif 1 oif 2 oif 1 oif 2 oif 1 oif 2

Figure 2.3: Example of aggregating multicast forwarding entries.

Notice that the example in Figure 2.3 omits the source prefix. In this work, we focus
on aggregating group-specific multicast forwarding entries. Recall that such entries match
any source address. Group-specific entries are created by multicast routing protocols that
build shared (rather than per-source) distribution trees. It is generally acknowledged that
scalable inter-domain multicast routing can only be achieved using shared trees [115].

The following subsections consider these questions: Why is it important to solve the
problem of aggregating group-specific forwarding entries? Why is it hard? Is the problem

solvable?

2.2.3 Why is aggregation important?

One way to argue for the importance of multicast forwarding state aggregation is to observe
the following: there is no “natural” limit to the number of concurrently active multicast ses-

sions in an internet. The capacity of the network bounds, in some loose sense, the number

16

of concurrent audio or video sessions. However, the same cannot be said of all multicast ap-
plications. One example is an event notification service [9]: event generators intermittently
multicast events to interested clients. Another example is congestion-adaptive multicast
applications (e.g., file transfer, multicast distribution of software updates) that make use of
whatever bandwidth is available to them. This problem of unbounded multicast forwarding

state growth is particularly crucial in core or backbone routers (Figure 2.4).

RootDomain
(Group 1)

RootDomain
~(Group 2)

Receiver

(Group 3)

RootDomai
(Group 3)

Receiver
(Group 2)

Receiver
(Group 1)

Figure 2.4: Example of multicast forwarding entries concentrations: the router at the center
(R3) has the largest number of entries (three).

In the absence of a natural limit to the number of concurrently active multicast groups,
the size of the multicast groups is limited only by the available address space: 228 for
IPv4 and 2'20 for IPv6. Then, if a router has 32 interfaces, the memory required to
store multicast forwarding entries (assuming a 50% address space utilization and one bit
of information per interface per entry) is at least 512 MB for [Pv4 and 10%* Terabytes of

memory for IPv6! It is conceivable that, within 3-4 years, high-end routers will have enough

17

high-speed forwarding table memory to satisfy the needs of IPv4. However, forwarding state
aggregation may be imperative for scaling IPv6.

Apart from this pragmatic argument based on technological trends, an architectural
argument can be made for multicast forwarding state aggregation. This argument is based
on the utility of multicast forwarding entries. Informally, the utility of a multicast for-
warding entry to the infrastructure increases in proportion to the corresponding group’s
bandwidth. Thus, bursty low-bandwidth applications like event notification [9], or non-
bursty low-bandwidth applications (like periodic Web document invalidations [104, 124])
generate the least utility; their infrequently used forwarding entries occupy expensive router
memory. It is unclear whether such low bandwidth groups will predominate in the future.
However, we believe that the architecture of an internet should not artificially constrain
the numbers of such groups. For this reason, we argue the need for a forwarding table

structure that provides higher overall utility with respect to forwarding table occupancy.

2.2.4 Why is it hard?

Aggregation of unicast forwarding entries is well understood [103]. This aggregation is
achieved by careful unicast address assignment. Topologically contiguous networks are
assigned adjacent address prefixes. In this way, an entire autonomous system (AS) can
sometimes be represented in the forwarding table by a single forwarding entry in a backbone
router.

These techniques do not apply to multicast forwarding. Today, multicast group ad-
dresses are largely assigned in topologically independent way. One proposal for inter-

domain multicast address assignment [115] proposes to dynamically assign blocks of group

18

addresses to individual ASs.2 Even if they were assigned using this method, the receiver
distributions for adjacent groups could differ. That is, there is little likelihood of having
many situations that correspond to Figure 2.3.3

In the next section we look into the state aggregatability in general, from information-
theory perspective, to have some insensitive whether it is solvable. After that we look into

one possible solution of the problem.

2.3 Topology Impact on Multicast Forwarding State
Aggregatability

In this section, we investigate the topology sensitivity of multicast forwarding state aggre-
gatability. Unicast forwarding tables aggregate well because addresses are, to some extent,
assigned topologically [103]. Unfortunately, multicast forwarding information cannot be
aggregated using similar mechanisms, because the outgoing interface set of a single entry
changes dynamically and is determined by the existence of downstream receivers. Without
any aggregation (and assuming a bidirectional shared tree routing protocol) the number
of multicast forwarding entries in a router can be proportional to the number of active
multicast groups.

Interface-centered multicast forwarding state aggregation technique is proposed in [116].
This technique essentially represents the entire multicast forwarding table as a collection

of per-interface bit strings. These bit strings indicate if, for the corresponding groups, a

2See also Appendix A for details and evaluation of this architecture.

3Some have argued that, when multicast addresses are assigned topologically, there is some chance of
receivership congruence. For example, the population interested in any group initiated within AS X is
likely to be the same. This is an interesting, but yet unverified, hypothesis.

19

specific interface belongs to the outgoing interface set. The aggregation technique simply
compresses these bit strings using run-length encoding for example. Such an aggregation
technique is strict. By contrast, later in this chapter we consider leaky aggregation, where,
for some groups, outgoing interface sets are not correctly preserved in the aggregation,
resulting in traffic leakage in directions where there are no receivers.

Our focus in this section is on the topology dependence of strict aggregation. How-
ever, rather than evaluate a particular aggregation technique, we investigate the bounds
of the aggregatability of the multicast forwarding state. To do this, we consider a simple
information-theoretic approach. For a given group, let p be the probability that a partic-
ular interface of a router is an outgoing interface for that group. Then, the number of bits

needed to represent this information is simply the entropy [21]:

H(Inter face, Group) = H(p) = —p * logs(p) — (1 — p) x logy(1 — p) (2.1)

Our metric for aggregatability, interface entropy, is defined as the average entropy of an
interface over all nodes.

To compute our aggregatability metric, we use the following methodology. We first
uniformly select a node in the topology to be the root of the multicast distribution tree for a
given group. Then, we assume that each node in the network has an identical probability of
having an attached receiver (we call this the receiver probability). Tracing the reverse path
from the receiver to the source, we can assign the corresponding probability to interfaces
along the path. Where there exist multiple equal-cost paths, we assume that each of these

paths has an equal probability of being chosen. In this manner, we can compute, for each

20

router, the average interface entropy for the group. For a given topology, we repeat this
procedure for different receiver probabilities and average the results over different choices

for tree root.

‘ Topology H Nodes ‘ Links ‘ Diam. ‘ Ave. dist. ‘ Ave. fanout ‘
Transit-stub 1008 1399 20 8.8 2.8
Tiers 5000 7084 39 15.3 2.8
Waxman 5000 | 18046 8 4.5 7.2
Mbone 4179 8549 26 10.1 4.1
AS 4830 9077 11 3.7 3.8
Internet core 54533 | 146419 23 7.6 5.4
Random 5000 | 24926 7 4.0 9.8
Mesh 10000 | 19800 198 66.7 4.0
Reduced mesh 10000 9999 199 83.2 2.0
K-ary tree (3-ary) 9841 9840 16 14.0 2.0

Table 2.1: Metrics of used topologies.

In this study we look into several topologies. Some of them are generated by topology
generators, other are real-world topologies created by collecting various data. We use some
canonical topologies as well. Below is a brief description of each topology. Some of the
characteristics of those topologies are summarized in Table 2.1.

The generated topologies we use in our study are:

Transit-stub This is a topology generated by the Georgia Tech Internet Topology Modeler
(GT-ITM) [8], a topology generator that has a number of parameters to define the
generated topology. Typically, it is used to generate two-level topology. Initially
it creates a number of top-level transit domains within which edges are assigned

at random. Each transit domain has attached to it several stub domains that are

21

generated similarly. Additional stub-to-transit links are added at random as well,

based on a parameter.

Tiers This is another generated topology, but by a different topology generator [31]. First,
a number of top-level networks are created, and each of them has several intermediate
tier networks attached to it. Similarly, several LANs are attached to each of the
intermediate tier networks. Within each tier (except LANs which always have star
topology), the generator connects all nodes by a minimum spanning tree, based on
the FEuclidean distance between every two nodes. Then, it adds more links in order
of increasing inter-node Euclidean distance. Finally, a number of inter-tier links are

added at random, based on a parameter.

Waxman This is another topology generated by GT-ITM, but is based on a different

topology model [127].

First, the network nodes are randomly distributed over a rectangular coordinate grid
and the links between every two nodes are added at random with probability based

on the Euclidean distance between them:

—d(z,y)

P(.’L‘,y) :166 oL,

where d(z,y) is the distance between node x and node y, L is the maximum possible
distance between any pair of nodes, and « and § are parameters used to modify the

shape of the network (1 > a > 0,8 > 0).

The real-world topologies we use are:

22

Mbone This is a router-level topology of the Mbone [75] multicast network overlay. It is

obtained by recursively querying each multicast router for its neighboring routers [123].

AS This domain-level topology of the inter-autonomous system (AS) connectivity is cre-
ated based on the BGP AS path information carried by the backbone routers [122, 12].

Even though this is not a router-level topology, we include it for completeness.

Internet core The topology information was collected by using a large number of tracer-
oute requests sent over the Internet [38, 123]. The resulting topology had 228263
nodes and 320149 links. Then we recursively removed all nodes that have a fanout
of one to obtain a topology we call Internet core. The reason that we truncate
the original topology is to remove the long, “skinny” branches that do not represent
well the network connectivity at the edges, but are an artifact from the particular

methodology used to obtain the topology information.

Figure 2.5: Example of a reduced mesh topology.

Finally, we consider the following canonical topologies as well:

Random All links in this graph are assigned at random, with uniform probability.

Mesh Also known as grid.

23

Reduced Mesh We start with a mesh, and the remove all vertical links, except the links

of the column in the middle. See Figure 2.5 for an example.

K-ary tree An uniform tree where each node has k children, except the leaf nodes. In

this study we use a 3-ary tree of depth 8.

1 1 1
Internet core—&— Random —&— Tiers —8—
AS Mesh —x<— Transit-stub—<—
0.8 Reduced mesh—e— 1 081 Waxman —e— 7
2 Tree —+—
Q
<)
< 0.6 -
9]
g
8
§ 0.4 1
£ 1]
0.2
0 0102030405060.70809 1 0 010203040506070809 1 0 010203040506070809 1
Receiver Probability Receiver Probability Receiver Probability
(a) Real topologies (b) Canonical topologies (c) Generated topologies

Figure 2.6: Average interface entropy.

Interface Entropy Results

Figure 2.6 shows the average interface entropy, as a function of receiver probabilities, for
all topologies described above (smaller entropy corresponds to better aggregatability).
The first observation we can make is that each of the canonical topologies shows very
different behavior (Figure 2.6(b)). The entropy for both the mesh and the random graph
increases monotonically with receiver probability, but for the mesh, unlike the random
graph, the entropy approaches 1 in the limit of complete occupancy. This is because of the

prevalence of equal-cost shortest paths in the mesh. On the other hand, the tree and the

24

reduced mesh have single-peaked, although completely distinguishable behavior, with zero
entropy in the limit.

All real topologies (Figure 2.6(a)) are single-peaked with non-zero entropy in the limit.
In this sense, their behavior represents some combination of a tree and a random graph.
Of the three real topologies, the Mbone topology resembles a tree most. On the other
hand, the Internet topology is closest to a random graph. Among the generated topologies
(Figure 2.6(c)), the Waxman closely approximates a random graph. Tiers and Transit-stub
qualitatively resemble the single-peaked, non-zero limiting behavior of real topologies.

We also investigated the worst-case interface entropy, defined as the maximum interface
entropy averaged among a number of groups rooted at different nodes. With this metric,
the distinctions between topologies disappear because in almost all cases the worst-case
entropy is close to 1 (i.e., the state is not aggregatable),

These results reveal that, for very low occupancies (about 3%), routing state for a single
group can be compressed by up to a factor of 10. For receiver probabilities on the order
of 10%, the aggregatability decreases to 3. This result is true for all real-world topologies.
On the other hand, the aggregatability of random graph is notably better, than real-world
topologies, and can be on the order of up to 20 times for very low occupancy. Those
results qualitatively match the findings in [116] where the interface-centered technique
achieves some, but not dramatic, aggregation. Finally, recall that we chose uniform receiver
placement. For this reason, our results may not reflect reality, but lacking probabilistic

models for receiver clustering, uniform placement is our only available choice.

4The client placement models described in Section: 3.2.3 can be used to assign specific client placement,
and cannot be used as client placement probabilistic models.

25

2.4 Leaky Aggregation of Multicast Forwarding State

2.4.1 1Is there hope?

Before we answer this question, we describe a desirable goal for multicast forwarding state
aggregation. This goal is motivated by an observation in Section 2.2.3, that the utility of a
multicast forwarding entry is proportional to the bandwidth of the corresponding group(s).
A desirable goal for forwarding state aggregation, then, is to scale the worst-case forwarding
table size approzimately proportional to the number of high-bandwidth groups. This goal is
desirable because the number of high bandwidth groups is naturally limited by the available
network capacity.

Our statement of the scaling goal is deliberately imprecise. A more precise statement
is not essential to our argument. Furthermore, it is hard to quantify what exactly high
bandwidth means. Intuitively, by this we mean audio and video applications that have
fixed bandwidth requirements, or are rate-adaptive within some relatively small bandwidth
range. By contrast, we use the term low bandwidth to refer to applications such as event
notification [9] or multicast Web document invalidation [104, 124]. We also do not attempt
to quantify our scaling goal. Rather than trying to achieve a fixed aggregation target (e.g.,
a table size that is no more than 5% of the number of groups), we ask what aggregation is
achievable with bounded resource utilization.

We would like to achieve this goal, as we’ve said before, for aggregating group-specific
entries. Furthermore, our approach leverages the topological assignment of group addresses;
the root of the shared tree for a group is, with high likelihood, topologically close to that of

a group with an adjacent address. Several recent proposals for an inter-domain multicast

26

architecture share this property [115, 91, 50]. For consistency, we use the terminology
introduced in [115]: all shared trees are rooted at a root domain and multicast group
prefizes are assigned to individual domains. We believe that, with these assumptions,
there exists a plausible hypothesis that the scaling goal described above can be achieved.

That hypothesis proceeds from a three step argument.

e With our assumptions listed in the previous paragraph, we can expect that forwarding

entries for adjacent groups share the same incoming interface.

e Second, especially in core routers (Figure 2.4), we can expect that these forwarding
entries’ outgoing interface sets overlap significantly. This observation is based on the
bounded fanout of routers vis-a-vis the receiver distribution. For example, if a group
has more than a hundred receivers, a forwarding entry for that group in a core router

can be expected to have, in its outgoing interface set, many of that router’s interfaces.

o Finally, we can aggregate adjacent low-bandwidth groups by “leaking” one group’s

traffic down some of the other group’s outgoing interfaces (see Section 2.4.4).

To complete our argument, we note that recent technological advances, particularly
the deployment of dense Wavelength Division Multiplexing [64] technologies, can result in
dramatically cheaper bandwidth. This trend will increase the disparity between switching
and bandwidth costs, especially for backbone or core routers. For this reason, we believe
that a “bandwidth-state” tradeoff will be more justifiable in the future than it has been
until today. Our hypothesis, then, is that such leaky aggregation can achieve our scaling

goal.

27

2.4.2 Design Space

Before we describe strategies for forwarding entry aggregation, we list the requirements

that constrain the design space:

o Aggregation must conserve joins. Thus receivers who have joined a group must con-

tinue to receive traffic even if the corresponding forwarding entry has been aggregated.

e The aggregation strategy must be largely independent of the multicast routing pro-
tocol. In particular, it should not require additional routing protocol modification or
control traffic to work. If a particular multicast routing protocol has to be modified,
the modifications must be very simple, and the additional control traffic, if any, must

not result in another scalability issue.

e Routers that aggregate forwarding entries must be able to interoperate with those
that do not. Furthermore, the aggregation strategy must not require a particular

deployment order (e.g., core routers before leaf routers or vice versa).

In Section 2.4.1, we hypothesized that leaky aggregation can help us scale the size of the
multicast forwarding table approximately proportional to the number of high-bandwidth
groups. In this section, we present a leaky aggregation strategy. First, however, we present
some non-leaky aggregation strategies. These strategies do not tradeoff bandwidth for
reduced table size, and form a baseline for understanding the performance of leaky aggre-

gation.

28

(noentryfor [~ 1 ...,
224.0.1.0/32| | 224.0.1.1/32 224.0.1.2/32) 224.0.1.3/32 (no entries) 224.0.1.7/32 224.0.1.0/31 224.0.1.3/32 224.0.1.7/32
oif_1 oif_2 oif_1 oif_2 oif_1 oif_2 oif_1 oif 1 oif_2 oif_1 oif_2 oif_1
(a) Forwarding entries before aggregation (b) Strict aggregation
224.0.1.0/30 224.0.1.7/32 224.0.1.0/29
oif_1 oif_2 oif_1 oif_1 oif_2
(c) Pseudo-strict aggregation (d) Leaky aggregation

Figure 2.7: Example of prefix-based strict, pseudo-strict and leaky aggregation.

2.4.3 Non-Leaky Aggregation

The simplest non-leaky aggregation strategy is what we call strict aggregation (Figure 2.3
and Figure 2.7(b)). In this strategy, two adjacent group-specific forwarding entries are

aggregated if and only if:

e Their incoming interfaces match.

e Their outgoing interface sets match.

Even if the root domains of adjacent groups are topologically aligned, we expect little
likelihood of there being many group prefixes that satisfy these conditions.

A variant of strict aggregation is what we call pseudo-strict aggregation (Figure 2.7(c)).
In this form of aggregation, two group prefixes are replaced by the longest covering prefix

if and only if:

e Their incoming interfaces match.

e Their outgoing interface sets match.

e There is no intervening forwarding table entry whose group prefix matches the longest

covering prefix.

29

Thus, in Figure 2.7(c), we can aggregate the entries for 224.0.1.0/31 and 224.0.1.3/32
even though these are not adjacent prefixes (prefix 224.0.1.2/32 lies between them). This
is because that router has not received a join for group 224.0.1.2/32. Note that this
strategy does not “leak” traffic destined for 224.0.1.2/32! If the router did not get a join
for 224.0.1.2/32, it could not have propagated a join upstream, and should not receive any
traffic for that group.® Intuitively, we expect that in many cases pseudo-strict aggregation

can compress better the routing table than strict aggregation.

2.4.4 Leaky Forwarding Entry Aggregation

The basic idea behind leaky forwarding state aggregation is simple. Leaky aggregation
relaxes the requirement in pseudo-strict aggregation that the outgoing interface sets of the
entries must match. A data packet that matches the resulting forwarding entry will be
forwarded on all interfaces on which joins have been received, but it may be forwarded
on some other interfaces as well (i.e., those for which no Join message was received).
Figure 2.7(d) shows an example of prefix-based leaky aggregation. Group 224.0.1.7/32
does not include oif_2, but oif_2 is included in the aggregated entry 224.0.1.0/30.
Obviously, leaky aggregation wastes some bandwidth. For this reason, such aggrega-
tion must be performed carefully, trading off as little increased bandwidth as possible for
maximal reduction in forwarding table size. To do this, we first identify low-bandwidth
groups, and only attempt to aggregate such entries. Such controlled leaking is not entirely

free of problems. Section 2.6 describes some of the limitations of this approach.

®0n shared LAN, however, a join message sent by one router to its upstream neighbor can cause traffic
to “leak” through other downstream routers.

30

The design of a leaky aggregation strategy poses several challenges:

e To carefully tradeoff bandwidth and forwarding table size, we need to estimate the
current bandwidth of a multicast group. Although techniques are known for esti-
mating the rate of unicast traffic flows [35], such techniques react at congestion time
scales. For leaky aggregation, it probably suffices to detect application-level phase

changes (e.g., a break in a video lecture).

e In our simplified description above, we have suggested only aggregating the “low-
bandwidth” groups and not aggregating the “high-bandwidth” groups. In practice,
our algorithm cannot assume the existence of a bi-modal bandwidth distribution, nor

can it assume that there is any a priori bandwidth threshold for groups.

e As a corollary to the previous point, our strategy must limit the bandwidth at-
tributable to leaks to some relatively small fraction of link capacities (i.e., router
administrators should be able to locally limit the bandwidth attributable to leaks,
to, say 5% of link capacity). This is a key design challenge: achieving maximal re-
duction in table size while still limiting the amount of wasted bandwidth. In what

follows, we use the term leak budget to refer to this limit.

e Finally, the scheme must take into account receiver joins and leaves. These may cause

the outgoing interface set of forwarding entries to change.

Our leaky aggregation scheme involves two related components. First, a simple tech-
nique for estimating the rate of individual groups. Second, a heuristic that, given the rates
of individual groups, and the link capacities, computes aggregated forwarding state in a
manner that does not violate the leak budget. We now describe these two components.

31

2.4.5 Estimating the bandwidth of individual groups

Our basic approach to estimating the bandwidth of an individual group is to count the
number of data packets that are forwarded using that group’s forwarding entry over some
time interval T. This coarse estimation suffices for us, and does not require a change to
router forwarding engines—some major router vendors already support such counters. In
this work, we do not suggest a value for T'; further experimentation is needed to determine
this value.

Clearly, we cannot estimate the bandwidth of all groups simultaneously. To do this,
the router would need to install group-specific (unaggregated) forwarding table entries for
every group for which it has received joins. This defeats the purposes of aggregation. There
is an alternative solution, however. Recall that we have assumed topological assignment
of group addresses. In BGMP for example, a block of group addresses is assigned to
each root domain. Our solution, then, is to only concurrently estimate rates for (i.e.,
install group-specific forwarding entries for) groups rooted at the same root domain. In
this way, we “stagger” the bandwidth estimation across root domains, ensuring that the
instantaneous forwarding table is never proportional to the total number of groups for
which we have received joins. This approach, however, exhibits poor responsiveness to
traffic pattern changes. This may not be a significant drawback, since our goal is only
to detect application-level phase changes, and not to try and respond at congestion time
scales.

In order for our aggregation scheme to work, we cannot only estimate the bandwidth
of individual groups. We also need to estimate the incoming traffic for groups that neigh-

boring routers are leaking. This estimation figures into each router’s aggregation strategy

32

(Section 2.4.6). If a router’s leak budget permits, it can choose to further propagate these
incoming leaks. Otherwise, it can install forwarding entries with an empty outgoing in-
terface set to prevent these leaks. To estimate the incoming leaks, we install prefixes
corresponding to “holes” in the prefix associated with the root domain. For example, in
Figure 2.8 the router would need to estimate the bandwidth not just on 224.0.1.0/32
and 224.0.1.7/32, but also the leaks on the intervening four prefixes. For a given root
domain, the number of prefixes needed to fill the holes is, in the worst case, proportional
to N log, b where N is the number of groups rooted at that domain and b is the size of the
prefix associated with the root domain. We believe this is still within acceptable bounds

for the transient increase in forwarding table size.

224.0.1.0/32, Gt L 224.0.1.7/32
(no entries)

/ 0\ /

oif 1 oif 2 oif 1
(a) Forwarding entries before aggregation

224.0.1.0/29
oif_1 oif_2

(b) Forwarding entries after leaky aggregation

224.0.1.0/32|| 224.0.1.1/32 224.0.1.2/31 224.0.1.4/31 224.0.1.6/32|| 224.0.1.7/32

/\ /

oif_1 oif 2 oif 1

(c) Entries installed to measure bandwidth

Figure 2.8: De-aggregation for bandwidth estimation.

In summary, a router periodically de-aggregates all prefixes allocated to a single root
domain, and installs the group-specific forwarding table entries. After time T, it reads

33

the counters associated with each forwarding table entry and uses these as input to the
algorithm described in Section 2.4.6. After computing the aggregates, it installs the cor-
responding forwarding entries, and deletes the group-specific entries. Because only one or
few prefixes are de-aggregated at a time, and those prefixes would cover a fraction of all
joined groups, the remaining entries (a larger fraction of all groups) can be aggregated,
and therefore the aggregatability of those entries will contribute to the overall savings. A
pseudo-code description of the algorithm is presented in Section 2.8.1. This algorithm need
not be implemented in the forwarding fast path and should not affect router forwarding

performance.

2.4.6 Aggregation Heuristic

Given the coarse grain bandwidth estimates for each forwarding entry (Figure 2.9(a)), the
problem is to compute the smallest possible forwarding table size that fits within the leak
budget of every link. This section describes how we compute the aggregated forwarding
table.

First observe that, given bandwidth estimates for two adjacent groups, we can easily
compute the leaks resulting from their aggregation. For example, consider the groups
224.0.1.0/32 and 224.0.1.1/32 in Figure 2.9(a). Knowing the rates of these two groups,
we can easily see that the resulting aggregate 224.0.1.0/31 will have bandwidth of 1005
bps. Furthermore, that aggregate will leak 1000 bps on 0oif_2 and 5 bps on oif_1. Having
computed this, we can easily determine whether 224.0.1.0/31 fits within the leak budget

on interfaces oif _1 and oif_2. More generally, given n forwarding entries and an aggregate

34

A that covers those entries, we can determine whether A fits within the leak budget of all
of its outgoing interfaces.
This basic building block suggests the following idealized algorithm for computing ag-

gregates:

1. Given N forwarding entries, compute all possible aggregates of these N entries. There
are at most N — 1 of these (the internal nodes of the radix trie [20] built on top of

the N forwarding entries).

2. Take these N forwarding entries, and the N — 1 aggregates. Compute all possible
subsets of these 2N — 1 entries. Among those subsets that a) cover the N forwarding
entries and b) fit within the leak budgets of all interfaces, choose the subset with the
smallest cardinality. Step b) is computed using the technique outlined in the previous

paragraph.

Clearly, this algorithm will compute the optimal aggregation. However, considering all
possible subsets of 2N — 1 forwarding entries might be compute-intensive simply because
the number of subsets is O(N!). Therefore, we choose instead a greedy heuristic that
tradesoff optimality for computation time. We now briefly describe this heuristic: detailed

pseudo-code for the heuristic can be found in Section 2.8.2.

1. Given the N forwarding entries for which we have estimated the rate, construct the
corresponding radix trie. (Recall that these N entries include not just groups rooted
at a given root domain, but also the corresponding “holes,” Section 2.4.5). The leaves
of this radix trie correspond to the N forwarding entries. Mark each leaf of the
radix trie. Intuitively, a marked entry corresponds to one that will be inserted in

35

| 224.0.1.0/31, | 224.0.1.2/31,
Lo | Lo |
Allowed leaks per interface = 10
224.0.1.0/32| | 224.0.1.1/32|| 224.0.1.2/32|| 224.0.1.3/32 224.0.1.0/32| | 224.0.1.1/32|| 224.0.1.2/32|| 224.0.1.3/32
bw = 1000 bw=5 bw = 1000 bw =6 bw = 1000 bw =5 bw = 1000 bw =6
oif_1 oif_2 oif_2 oif_1
(a) Input to the algorithm: bw and oifs per group; allowed leaks (b) Step 1
224.0.1.0/30 224.0.1.0/30
bw =5 bw =11
leaks = 6
oo

224.0.1.2/32| | 224.0.1.3/32,
bw = 1000 | ' !

(c) Step 2

224.0.1.2/32| | 224.0.1.3/32,
bw = 1000 | ' !

(d) Step 3

Figure 2.9: An example of the steps of the leaky aggregation algorithm.

36

the forwarding table. Subsequent steps will attempt to reduce the number of marked

entries. Figure 2.9(b) shows the result of this step.

2. Starting from the lowest internal nodes, for each internal node

(a) Mark the node, and remove the mark on the child of the node with the lower

bandwidth.

(b) Compute the bandwidth attributable to that internal node, and appropriately

adjust its outgoing interface set to match the uncovered child.

This step results in NV marked nodes, but some of these nodes represent aggregates
of the original N entries. Intuitively, step 2.1 “moves” up the marks on the low
bandwidth entries. In Figure 2.9(c), for example, the mark on the lowest bandwidth
entry, 224.0.1.1/32, is replaced with a mark on the aggregate 224.0.1.0/30. An
important observation is that this step does not introduce any leaks, it simply changes

the matching entry corresponding to a group.

3. For each marked entry A, in order of increasing bandwidth:

(a) Consider the impact of unmarking A. Unmarking A will cause its nearest marked
ancestor to leak more traffic. If this leakage does not violate the leak budget on

any interface, we unmark A.

This key step tries to greedily eliminate entries. For example, in Figure 2.9(d),
we were able to remove the mark on 224.0.1.2/31. This causes traffic to leak

on 224.0.1.0/30, but these leaks are within the budget. At the end of this step,

37

the remaining marked entries correspond to the aggregated forwarding table entries

rooted at the domain under consideration.

The complexity of this heuristic is O(N lg N). Up to half of the nodes of the radix trie
are considered exactly once, and for each node, we may need to traverse the path from
that node to the root. Figure 2.9(d) shows the result of running this heuristic on the input
shown in Figure 2.9(a). Notice how the heuristic aggregates the low bandwidth groups (of
bandwidth 5 and 6 bps) but installs group-specific entries for the “high-bandwidth” entries.

Finally, running the heuristic for 64K entries for a 32-interface router takes about 200
milliseconds on a Pentium IT 266 MHz PC. This represents an extremely unlikely worst-case
scenario for our heuristic, where the leak budget and entry bandwidths were set so that
all 64K entries could be aggregated to a single entry. Finally, because the de-aggregated
entries need to be kept for some amount of time (e.g. one second) in the forwarding table
to estimate the groups bandwidth, the speed of the algorithm will not be the bottleneck if

the de-aggregation and the aggregation are performed on two blocks in parallel.

2.4.7 Dynamics of Groups Join/Leave and Multicast Data Bandwidth

In Section 2.4.4, we did not discuss the impact of receiver dynamics on the leak budget.
Consider the following scenario. Suppose group entry G is represented in the forwarding
table by its aggregate A. Clearly, A’s outgoing interface set includes G’s outgoing interface
set. Now, if a receiver join results in a new interface added to G’s outgoing interface set,
then A’s outgoing interface set must be updated to include this new interface. But doing
so can overrun that some interface’s leak budget, because other groups that match A might

now start leaking traffic on this new interface. Notice that we can estimate how much this

38

overrun is, given the most recent bandwidth estimate for G and the estimates for all groups
that are covered by A.

Hence, the router needs to make the binary decision: add another oif to A, or install
a group-specific entry in the forwarding table. This decision can be based on whether at
that moment the amount of leaks or the number are the dominant concern. If it was the
first join for the group, the safer solution is to install first a a group-specific entry in the
forwarding table, and later the leaky aggregation machinery will consider it for aggregation.
Thus, short-living groups might never need be considered for aggregation. Similarly, when
a receiver leave results in an interface being removed from G’s outgoing interface set, this
may reduce the leaks perpetrated by A. This is an opportunity for better aggregation. The
join/leave dynamics will result in either adding/removing outgoing interfaces of existing
forwarding entries, or installing short-living group-specific forwarding entries that will be
eventually aggregated later, and therefore will not trigger immediate re-aggregation of the

forwarding table.

Low bandwidth High bandwidth
Bursty Events notification er_ror update
of files
Non-b Heart-beating Audio and video
on-bursty syncronization streams
or updates

Figure 2.10: Examples of different classes of multicast applications: high, low bandwidth,
bursty, and non-bursty.

Clearly, leaky aggregation is targeted towards long-lifetime groups; the architectural
cost of carefully aggregating short-lifetime groups may not be worth the effort. Figure 2.10

39

illustrates another source of dynamics that can affect leaky aggregation. Bursty multicast
applications (event notification, mirroring software updates) may skew the bandwidth at-
tributable to their aggregates, and hence may affect the leak budget. We are not concerned
with short-term increases and do not want to control the leaks with granularity similar to
the congestion control. Instead, we need to control the leaks with granularity similar to the
activity of the multicast groups. If a high bandwidth group becomes idle, this is an oppor-
tunity for better aggregation. On contrary, if an idle group that was eventually aggregated
becomes suddenly a high bandwidth group, a group-specific entry should be installed to
reduce the potential leaks. By reading periodically the forwarded bandwidth of each entry
in the forwarding table, the idle groups that have group specific entry can be easily iden-
tified; an aggregated entry that has suddenly increased its aggregated bandwidth should
be considered as a source of increased leaks. The block of addresses that has the largest
increase of the total forwarded bandwidth should be re-aggregated (i.e. de-aggregated and
then aggregated) next to control the amount of leaks. Re-aggregating the block of ad-
dresses with the largest decrease of the total forwarded bandwidth has the potentials for

better aggregation.

2.5 Simulation Results

We have studied, through simulation, the performance of leaky aggregation and have com-
pared it to the non-leaky methods described in Section 2.4.3. First, we evaluate how the
leaky aggregation works among all routers in the network. Then, we evaluate the dynamics
of the leaky aggregation by considering a single router only. In this section, we present the
results of this study.

40

2.5.1 Network-wide Simulations

Our first analysis of leaky aggregation was driven by two questions: Compared to the
non-leaky schemes, how much additional aggregation does the leaky scheme offer? How
sensitive is the leaky scheme to choices of various parameters (the leak budget, the traffic
bandwidth mix, and so on)?

The first set of simulations do not consider the impact of dynamic group formation and

removal or receiver joins and leaves; this is left to the second set of simulations.

2.5.1.1 Methodology

Our simulations are based on the Mbone topology described in Section 2.3. We also verified
that our simulation results were not skewed by our particular choice of topology. To do
this, we used automatically generated transit-stub topologies [8], but do not present the
results here.

On the input graph, we labeled as stub nodes those that were connected to the rest of
the network by only one interface. The remaining nodes were labeled as transit nodes. In
our Mbone topology, there were 2300 stub nodes. This distinction separates leaf routers
from interior routers. A subset (32) of the stub routers were randomly chosen to be the root
domains for multicast group prefixes. This models our expectation that group origination
will primarily be confined to “leaf” networks.

In our simulation, we restricted the multicast address space to 2!2 (4096 addresses).
Because our evaluations are comparative, the size of the address space does not affect our
simulations. In the absence of data indicating otherwise, we divided these addresses into

32 equal sized blocks and assigned each block to one root domain.

41

In each block, we assumed a 75% utilization of the address space. Lower utilizations
would have resulted in fewer overall forwarding table entries, a regime where aggregation
itself is less important and easier. A higher utilization may be somewhat unrealistic,
even when multicast addresses are dynamically allocated [115]. Of the allocated multicast
groups, we randomly marked some groups to be low bandwidth and some others to be high
bandwidth. The ratio of the numbers of low and high bandwidth groups, as well as the
bandwidth ratios are parameters to our simulations. Clearly, they significantly affect how
much bandwidth we can trade off for reduced space.

Lacking data for group size distributions, we chose the receivers for each group ran-
domly among the stub nodes. This random placement of receivers stresses forwarding state
aggregation, reducing the likelihood that adjacent groups have identical outgoing interface
sets. The number of receivers per group was a parameter to our simulation: this num-
ber affects the outgoing interface set of the forwarding entries, and hence the leaks. In
our simulations, we varied the number of receivers between 1 and 1500. For a given run
of the simulation, every group was allocated the same number of receivers. Finally, we
simulated bi-directional distribution trees (a choice of many proposed multicast routing
protocols [115, 91, 45]), but the results should hold for uni-directional trees as well. All
multicast data was originated either by the root domain for the group, or by some of
the receivers. Since few of today’s existing applications have them, we did not simulate
non-member senders.

How did we select the capacities of links in the network? We could have assigned
every link the same capacity, but that would not have stressed the leaky aggregation

scheme enough. That is because we define the leak budget to be some fraction of the link

42

capacity (this fraction is yet another parameter to our simulation). So, if all links are the
same capacity, then, even if a link carries little multicast traffic, it may be used to leak a
disproportionate amount of multicast traffic. This allows greater aggregation.

To obtain more realistic capacity distribution, we ran our simulation with one set of
parameters from the space we intended to explore (in our case, this was 512 high bandwidth
groups with bandwidth of 200 units, 2560 low bandwidth groups with bandwidth of 1 unit,
and each group had 400 receivers). We performed 100 iterations, and for each iteration
we placed at random the root domains and the receivers, and computed the amount of
multicast traffic over each link. The capacity of each link was defined as twice the amount
of maximum observed multicast traffic on that link during any of our simulation runs
(the factor “twice” assumes that the 50% of the network is provisioned for unicast). This
heuristic ensured a heterogeneous distribution of link capacities. However, because of the
way we generated the link capacities, it sometimes resulted in situations where some routers
had attached links that varied by more than an order of magnitude in capacity. To limit
this skew and model reality more closely, we adjusted the link capacities so that no router

had interfaces whose link capacities varied by more than a factor of 10.

2.5.1.2 Results

Our first set of simulations compared leaky against non-leaky aggregation schemes. In all
runs of the simulation, the number of groups was fixed at 3072. Of these, we assumed
that 512 were high-bandwidth groups, and 2560 low-bandwidth groups. In the absence of
data indicating otherwise, this choice assumes close to an 80-20 split between low and high

bandwidth groups. Why this choice? If far less than 80% of the groups were low bandwidth,

43

512 high bandwidth groups; 2560 low bandwidth groups

.g 3500

5 3000 (4

o F' Before aggregation

£ After: strict -
S 2500 After: pseudo-strict -

= After: leaky 2% =

kS After: leaky 5% ----s----
5 2000 oo After: leaky 10% -
2 1500 |« e

IS

2 a

£ 100

0 - .
8 ¥ ""“"-»-----»-..____,________‘___‘___“__)
S 500 oo s
2

o E

= 0 :

0 200 400 600 800 1000 1200 1400 1600
Number of receivers

Figure 2.11: Prefix-based strict, pseudo-strict and leaky aggregation.

512 high bandwidth groups; 2560 low bandwidth groups

3000 |

2500 |

2000 || high:low bw = 200:1 ——

} high:low bw = 1000:1 -~
1500 |

1000 | |

500 |

Worst case number of forwarding entries

0 5 10 15 20
Allowed leaks (% of available link bandwidth)

Figure 2.12: Effect of bandwidth ratio on leaky aggregation.

Address space = 4096; high+low bandwidth groups = 3072

~ 18 \ \ \

§ 400 receivers/group, 5% leaks

2 16 400 receivers/group, 10% leaks -

é 14 t

3 12}

IS T

S 10

(7] 8 r T

Q x

c 6 ol

S -

S 4t T

3, -

E 27

>

P 0
0 4 6 8 10 12

2
High bandwidth groups (% of address space)

Figure 2.13: Leaky aggregation for different percentage number of high bandwidth groups.

we might be in a regime where aggregation is not an important problem. For example,
a split of 50-50 instead of 80-20 will be primarily not because of a larger number of high
bandwidth groups (a number naturally limited by available network capacity), but because
of the much smaller number of low bandwidth groups. If the fraction of low bandwidth
groups was much larger, it might not realistically represent a future internet. We also fixed
the high to low bandwidth ratio at 200:1. We believe this to be a very conservative choice:
realistically, a high bandwidth video stream may have a bandwidth of hundreds of kilobits
per second, while an event notification group may only have a few packets per hour. Below
we explore the sensitivity of our results to variations in these ratios.

For these choice of parameters, Figure 2.11 plots the variation of the worst-case number
of forwarding entries with increasing number of receivers. Clearly, non-leaky techniques do
not reduce the worst case forwarding table size. Even with a large number of receivers,

there appear to be few instances where adjacent groups’ outgoing interface sets overlap.

45

This can be attributed to our random placement of receivers. If there is indeed a correlation
between receivers and the originating root domain (Section 2.2.4), we might expect non-
leaky methods to perform well. We might also expect that non-leaky methods perform
well with lower router fanouts. In some of our simulations, non-leaky methods reduced the
forwarding table by a factor of 2 in routers with 2-4 interfaces.

Figure 2.11 also plots, for three different values of the leak budget, the variation in
worst case forwarding table size with number of receivers. Ideally, we expect the worst-
case forwarding table size to match the number of high bandwidth groups, 512 in our
simulations. Consider the curve for a leak budget of 2%—i.e., where the leaks on every
link are limited to 2% of the link’s capacity. With our choice of simulation parameters, the
low-bandwidth groups account for about 2.5% of the overall bandwidth requirement. So, it
comes as no surprise that a 2% leak budget does not match our expected forwarding table
size. Despite this, leaky aggregation performs impressively, reducing the worst case table
size to less than 60% of the unaggregated size. Furthermore, with increasing the number of
receivers, leaky aggregation approaches our scaling goal. With a large number of receivers,
the likelihood of outgoing interface set overlap increases. In that event, aggregating two
entries introduces fewer leaks, so that more aggregates fit into the leak budget.

With a large leak budget, 10%, our heuristic closely matches our expected table size.
However, the curve for a 5% leak budget reveals an interesting “hump” for relatively small
numbers of receivers. With our choice of parameters, a 5% leak budget should be sufficient
to leak all low-bandwidth groups. However, the leak budget is defined as a fraction of link

capacity. So, if a router has a low capacity link, 5% of its capacity may not suffice to leak

46

all low bandwidth groups incident on that router. Such routers account for the hump in
the 5% curve.

Figure 2.11 validates our design of the leaky aggregation mechanism, demonstrates
its ability to achieve our scaling goal, and highlights its graceful behavior even with a
limited leak budget. How would our results differ with different choices for simulation
parameters? In particular, our results seem to depend on the total bandwidth requirement
of low bandwidth groups, and its relationship to the leak budget.

One way to study this relationship is to vary the bandwidth ratio. We mentioned earlier
that our choice of this ratio is conservative. With a more liberal choice (Figure 2.12), we see
that our scaling goal is reached for a much smaller leak budget. This is as expected, since
the low-bandwidth groups now account for a much smaller fraction of overall multicast
bandwidth.6

Another way to study this relationship is to vary the number of high-bandwidth groups,
keeping the total number of groups fixed (Figure 2.13). This figure shows a largely linear
growth in the table size as a function of the number of high-bandwidth groups. This rather
dramatically illustrates the ability of our heuristic to achieve the scaling goal described in
Section 2.4.1. However, with lower numbers of high-bandwidth groups, notice that there
is a deviation from the linear. In this region, the leak budget is insufficient to achieve

expected aggregation.

5For the 1000:1 curve, we recomputed the link capacities, using the technique described in Section 2.5.1.1.

47

2.5.2 Join/Leave and Multicast Data Traffic Dynamics Simulations

In our second set of simulations we evaluated how well our re-aggregation strategy contains
the size of the forwarding table, as well as the volume of traffic leakage, in the face of varying

traffic and receiver dynamics.

2.5.2.1 Methodology

We focused on a single router with 32 interfaces. Our simulation methodology was designed
to stress the re-aggregation heuristic by employing more than realistic receiver dynamics
and widely varying traffic patterns. The multicast address space had total of 128K groups.
We defined three types of groups: low, medium, and high bandwidth, with bandwidth
ratio of 1:33:1000. Of all groups, 50% were low, 30% were medium, and 10% were high
bandwidth; the remaining 10% were considered idle all the time. To define the amount of
bandwidth on each interface that is available for multicast, we assumed that the router and
its links had the capacity to carry the traffic of 32K groups (i.e. 25% of the address space),
when each group had, on average, 8 randomly chosen outgoing interfaces. The leak budget
on each interface was fixed at 5% of the maximum multicast traffic on that interface. If
the router had the capacity to carry the traffic of more groups, or if the average number
of oifs per group was higher, then the absolute amount of allowed leaks on each interface
would be higher, and therefore the aggregation results shown below would be better (i.e.
the number of entries after the aggregation will be smaller and/or the percentage of leaks
will be smaller).

The address space was divided into 32 blocks of addresses of size 4096 addresses each.

Each second a block was chosen to be de-aggregated, and the corresponding group specific

48

entries were installed in the forwarding table (including the prefixes that cover the holes
between the groups). The forwarded bandwidth was measured after one second, the entries
were aggregated using the algorithm described in Section 2.4.6, and the result aggregated
entries were installed in the forwarding table. Then the same process was repeated for an-
other block of addresses, chosen among all blocks that had the largest momentary increase
of the forwarded traffic by the corresponding aggregated entries.

We considered three types of bandwidth distribution of a group, which we call Uniform,
Exp, and Pareto. For a given interval of time, the bandwidth of a Uniform group had
a random value between zero and twice its average bandwidth. Exp and Pareto were
ON/OFF type of traffic. The average length of the ON periods was equal to the average
length of the OFF periods, and the length of each period had exponential and Pareto
distribution respectively. During each ON period, the bandwidth was fixed, and its value
also had exponential or Pareto distribution. Similar to [59], the shape parameter of the
Pareto distribution was 1.1 for the ON/OFF period and 1.5 for the bandwidth. During a
simulation, all traffic had the same distribution type.

In the simulations we chose to install a group-specific entry right after a new group
was joined, and later eventually aggregate it; the alternative option was to just add a new
interface to the appropriate aggregated entry. The former solution reduces the amount
of leaks, but increases the number of entries; the latter is just the opposite. Finally, we
should note that we kept track of each group measured bandwidth, and used the following

formula to estimate a group bandwidth from the de-aggregated block:

49

EstimBW = M AX(MeasuredBW,0.7 « EstimBW + 0.3 * MeasuredBW)

This formula allows us to capture the bursty bandwidth groups, and at the same time
does not underestimate long-term high bandwidth groups if they are idle for a short interval.

In each simulation, we initially populated the router with a number of initial groups
(10% of all multicast groups), and on average each group had 2 oifs. After 1000 seconds we
caused a number of receivers to join or leave groups every second. The number of receivers
joining or leaving was uniformly distributed between 0 and 200; the receivers themselves
were randomly selected.

Finally, we also assumed that the router is receiving leaky traffic from its neighbors.
The number of low bandwidth leaky groups was 70% of the number of low bandwidth
joined groups; the percentage for the middle and high bandwidth leaky groups was 30%
and 10% respectively. It is realistic to assume that the higher the bandwidth of a group,

lower the probability a neighbor will be leaking it.

2.5.2.2 Results

Given the particular number of groups, their bandwidth and the allowed leaks, we com-
puted that the leaks are enough to aggregate all low bandwidth groups (joined and leaking
from the neighbors), and approximately 1000 of the middle bandwidth groups. In the
beginning of the simulation there were approximately 6600 low bandwidth groups, 4000

middle bandwidth groups, and 1300 high bandwidth groups, therefore we would expect

50

Number of entries before and after aggregation

25000

20000

15000

10000

Number of entries

5000

Before aggregation
After aggregation (5% leaks) ————

0 L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000
Time(s)

Figure 2.14: Number of entries (Uniform traffic).

Number of entries before and after aggregation

25000

20000 r
%]
2
S 15000 r
k]
5
£ 10000
>
z i

5000

Before aggregation
After aggregation (5% leaks) -~

0
0 1000 2000 3000 4000 5000 6000 7000
Time(s)

Figure 2.15: Number of entries (Exp ON/OFF traffic).

Number of entries before and after aggregation
25000

20000

15000

10000 ¢

Number of entries

5000 7

Before aggregation
After aggregation (5% leaks) -~

0
0 1000 2000 3000 4000 5000 6000 7000
Time(s)

Figure 2.16: Number of entries (Pareto ON/OFF traffic).

Amount of leaks on a singe interface

30

25

20 -

15

10 +

Amount of leaks (% of max. multicast traffic)

O L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000
Time(s)

Figure 2.17: Amount of leaks (Uniform traffic).

Amount of leaks on a singe interface
30

25

20

15

10

Amount of leaks (% of max. multicast traffic)

0
0 1000 2000 3000 4000 5000 6000 7000
Time(s)

Figure 2.18: Amount of leaks (Exp ON/OFF traffic).

Amount of leaks on a singe interface
30

25

20

15

10

Amount of leaks (% of max. multicast traffic)

0
0 1000 2000 3000 4000 5000 6000 7000
Time(s)

Figure 2.19: Amount of leaks (Pareto ON/OFF traffic).

52

that the leaky aggregation would save approximately 7600 groups. Similarly, when the
total number of groups grows to 22000, we would expect that the leaky aggregation would
save approximately 12000 entries.

Figure 2.14, Figure 2.15, and Figure 2.16 show the number of entries in the forwarding
table with and without aggregation for Uniform, Exp, and Pareto traffic respectively. The
average length of the ON and OFF periods for Exp was 1 minute. After the initial joins at
time 0, there were no other joins or leaves during the first 1000 seconds, hence the number
of total groups did not change. The reason that the number of total groups increase after
time 1000 is because we did not try to keep the average oifs per group to its initial value
of 2: over time the average number of oifs became smaller than 2, and the number of
joined groups increased. After taking into account that the de-aggregation of a prefix adds
up to 2048 more entries (to measure the incoming leaks), we can see that, despite the
high variability in traffic, and the significant traffic dynamics, leaky aggregation performs
as expected. In particular, the size of the forwarding table does not vary widely. This
validates our re-aggregation heuristic 2.4.5.

The reason that the Uniform aggregation was slightly worse than Exp and Pareto was
that the formula we used to estimate a group bandwidth was more likely to overestimate the
bandwidth of a Uniform group. The observed leaks confirm that. Figure 2.17, Figure 2.18,
and Figure 2.19 show the amount of leaks on a single interface (the results for all inter-
faces were similar). Despite the fact that the leak budget was 5%, because of the group
bandwidth overestimation Uniform did not use all leaky budget. Exp and Pareto leaks
however were beyond the target leak budget, simply because their momentary bandwidth

is less predictable. This is especially true for Pareto which has a much larger variance. We

93

‘ Modified Parameters

H Aggreg (Uni) ‘ Aggreg (Exp) ‘ Aggreg (Par) ‘

32 blocks, 2 oifs, 1 min. | 14200/22500 | 12000/22500 | 12200/22500
10 min. ON/OFF — 8800,/22500 | 11000/22500
5 sec. ON/OFF — | 13800/22500 | 13300/22500
128 blocks 20000/22500 | 18000/22500 | 18000/22500
8 blocks 16800/22500 | 13700/22500 | 14600/22500
8 oifs 30500/57000 | 29500/57000 | 26400/57000

Table 2.2: Simulation results summary: aggregation.

| Modified Parameters | Leaks (Uni) | Leaks (Exp) | Leaks (Par) |

32 blocks, 2 oifs, 1 min. 1.6-2.0% 7-13% 5-11%
10 min. ON/OFF — 4-8% 5-11%
5 sec. ON/OFF — 4-9% 4-10%
128 blocks 1.1-2.0% 7-13% 4-7%
8 blocks 3.0-3.5% 5-11% 4-10%
8 oifs 3-4 % 8-12% 7-15%

Table 2.3: Simulation results summary: leaks.

believe that those middle bandwidth groups that were aggregated account for most of the
leaks beyond the leak budget. As future work, we propose to investigate whether a better
aggregation heuristic and a better group bandwidth estimation mechanism can reduce this
excessive leakage.

We ran the same simulations, but with different ON/OFF mean interval (10 minutes, 5
seconds), different number of blocks used to split the address space (128 blocks, 8 blocks),
and with larger initial fanout (8 oifs on average). In Table 2.2 and Table 2.3 we summarize

the results. From those results we can make the following observations.

54

e Increasing the average ON/OFF interval from 1 to 10 minutes improves the aggrega-
tion. The reason is that a group with long OFF interval is practically idle, and can

be aggregated.

e Decreasing the average ON/OFF interval from 1 minute to 5 seconds did not change

significantly the results.

e A much larger number of blocks (128) did not work well. The reason is that, because
of the join/leave dynamics, it would take much longer to process all blocks once,
and aggregate the low bandwidth groups; similarly, it would take longer time to

re-aggregate all blocks and reduce promptly the eventually increased leaks.

e A small number of blocks (8) has a shorter processing cycle, but because each block
size now is larger, the number of holes to install to measure the neighbors leaks is

larger too, and therefore the total number of forwarding entries is larger.

e Increasing the initial average number of interfaces per group from 2 to 8 increased
the number of total groups in the long run, because we did not try to keep the same
average number of oifs per group. Despite the larger number of groups, the number

of entries after aggregation was as expected.

2.6 Discussion of Leaky Aggregation

We have, so far, postponed the discussion of several interesting questions: What are the
limitations of leaky aggregation? Does leaky aggregation have undesirable traffic effects,

e.g., loops? Are there other aggregation strategies? Does leaky aggregation address all

L))

multicast routing related scaling issues? The following paragraphs address some of these
questions.

Clearly, leaky aggregation cannot achieve the same levels of table compression when
low-bandwidth groups dominate overall multicast bandwidth (Figure 2.11). While we have
no data to refute this, we believe that, by analogy with TCP traffic [23] on the Internet, a
few high-bandwidth multicast applications will dominate the overall multicast bandwidth.
Leaky aggregation uses some approximated estimation of the bandwidth of each group,
and tries to keep the leaks on each interface within some reasonable limit. However, an
extremely bursty traffic might result in larger than expected leaks, and, worse, it might
not be always possible to quickly identify the bursty group.

Leaky aggregation can create traffic loops in multicast routing protocols whose for-
warding entries are bi-directional. Intuitively, this happens because traffic leaking causes a
router to receive traffic for which it never sent a join. Fortunately, this might happen only
in some rare cases, which are easy to identify in advance. The solution is simple and needs
to be applied only after those cases are identified. Section 2.7 describes the problem and
the solution in details with reference to a particular multicast protocol [115].

An alternative approach for multicast group lookup and non-leaky aggregation has
been suggested in [116]. This approach reorganizes the forwarding table structure so that
for every packet, a per-interface decision is made whether to forward the packet out that
interface or not. This alternative organization promises greater non-leaky aggregation.
There is more likelihood of adjacent groups sharing one interface on their outgoing interface
sets than there is the likelihood of having identical sets. We expect that this alternative

structure will equally benefit from leaky aggregation.

56

Even with leaky aggregation, routers will need to maintain group-specific state in their
routing tables. Unlike forwarding state, scaling the routing table may be less critical.
First, a router needs to have only a single copy of this table.” Second, because routing
state is not accessed in the forwarding path, routing tables can be stored in cheaper and
slower memory thereby alleviating the problem somewhat. If the amount of routing state
becomes an issue, the leaky approach can be applied at the routing table level in a network
architecture where the edge routers carefully aggregate the join/prune messages (i.e. the
edge routers have the control over the overall network leaks and aggregation). The future
will show whether the multicast-capable networks will need this kind of engineering.

In soft-state multicast protocols such as PIM-SM [33], control traffic can increase lin-
early with the number of concurrent groups. Leaky aggregation does not solve this problem.
Approaches that adapt the refresh rate of explicit joins [106] have been proposed to deal
with this.

In theory, leaky aggregation is applicable to source-group-specific forwarding entries
as well. Because source unicast addresses are already topology assigned, our leaky ag-
gregation strategy will work on prefixes which consider the source and the group address
together. It is less clear if there is a problem to solve here: increasingly, inter-domain
multicast protocols [115, 91| instantiate mostly group-specific state. Source-based leaky
aggregation can, however, be applied to broadcast-and-prune multicast routing protocols
such as DVMRP [94] and PIM-DM [26], when the number of low-bandwidth entries is too

large.?

"High-end routers, such as [80] and [89], use a number of routing engines with a copy of the forwarding
table at each engine.

8We should note that if a PIM-DM or DVMRP router receives leaky (i.e. unwanted) traffic, typically
it would send a Prune message to the upstream router. Usually “forwarding table cache miss” is used to

57

Finally, the meta-question that someone might ask is: do we need aggregation at all,
and if we do, would not be possible to achieve the desired result with strict aggregation
only? If most of the time the forwarding table size was within the capacity of the forwarding
table memory, but occasionally the forwarding table would overflow, it is quite likely that
the router performance will be affected during the overflow. Taking the router off-line for
hardware upgrade might not be the most appropriate or flexible solution. Automatically
triggering leaky aggregation before the overflow of the forwarding table will eliminate the
need for unnecessary hardware upgrade, and will reduce the management cost. Indeed,
it is possible that using pseudo-strict or strict aggregation might be good enough, and
we might not need leaky aggregation at all. In fact, the leaky aggregation algorithm we
described in Section 2.4.6 (see Section 2.8.2 for the pseudo-code) could actually be used for
pseudo-strict aggregation when the allowed leaks per interface are zero, or even for strict
aggregation (after a simple modification of the aggregation rule), simply because strict
and pseudo-strict aggregations are more restricted versions of leaky aggregation. If the
non-leaky aggregation was not good enough, then the leaky aggregation might be used as

a last resource.

2.7 BGMP-specific Loop Problem and its Prevention

For protocols that use bi-directional trees traffic leaks can result in loops. Figure 2.20 shows

such a loop in BGMP [115]. Router A installs an aggregate forwarding entry for 224.1/16.

identify the unwanted group traffic and trigger the Prune. If there was a leaky entry in the downstream
router too, then it will not send a Prune message. If the downstream router did not have any entry for
that unwanted group (including an entry with oifs=NULL), the rate of the Prune messages it sends might
be used by the upstream router for quick identification of the high bandwidth groups that should not leak
anymore on that interface.

o8

Root Domain for 224.1/16

Root Domain for
224.1.1/24

A

(*224.1.2.0)

——— :224.1.1.1 dataflow

- = => :224.1.1.1 dataflow because
of the leaky aggregation

————————— > :(*224.1.2.0) Join message

Figure 2.20: BGMP-specific loop potential problem because of the leaky entries aggrega-
tion.

This entry is leaky—that is, the A—B interface is included in the entry’s outgoing interface
list even though B has only sent an explicit join for one group 224.1.2.0 in that prefiv. B
installs a forwarding entry for 224.1.1/24. Traffic for any group in this prefix can reach B
from two directions: RDs—B and RD,—RD;—A-B. The BGMP forwarding rules in B will
accept the data over link A-B and will forward it toward RD;,. The data will be forwarded
by RD; to RD;, then A down to B again, i.e., the data will start looping.

The reason for the loop problem is that B has Group Routing Information Base (G-RIB)
for two overlapping prefixes (224.1/16 and 224.1.1/24) with different next-hop routers
toward the corresponding Root Domains. Furthermore, both A and B implement leaky
aggregation. Based on the G-RIB information B has, and the join messages that were sent
to the neighbor routers, B can detect potential loops for some group prefixes (224.1.1/24
in our example). One possible solution is B to instruct A, via BGMP’s optional attribute

negotiation mechanism, not to send any leaky traffic for 224.1.1/24 over link A-B. A

99

can prevent the leaks by simply installing a single entry for 224.1.1/24, and this entry
would never be passed to the leaky aggregation machinery. We do expect that mostly the
routers that are close to the edges (i.e. routers with less entries to aggregate) will have
such overlapping and pointing in different directions G-RIB entries, but even if it is quite
common among backbone routers, in the worst case a router will need to install a number
of entries (each entry will represent a prefix size of at least 256 groups), and those entries
would never be deleted. This solution retains the incremental deployability of BGMP. A

similar solution may be applied for CBT [4].

2.8 Pseudo Code for Leaky Aggregation

2.8.1 Leaky Aggregation Main Procedure

The main procedure used to perform leaky aggregation can be implemented in software,

and does not require any explicit hardware support.

while (TRUE) {

/* Select next block to de-aggregate,
* measure its groups bandwidth, and aggregate.
%/

/* Check first if some prefix is a better candidate:
* it may be creating too much bandwidth overhead, or
* may have better aggregatability.
*/

curr_block = HEAD(priority_queue);

if (curr_block == NULL)

60

curr_block = HEAD(round_robin_queue) ;

/* De-aggregate. Install in the forwarding table entries

* for all groups and for the holes between them.
*/

de_aggregate(curr_block) ;

/* Continue below after some amount of time */

goto_label_later (READ_BW, T);

READ_BW:

read_entries_bw(curr_block); /* Read estimated bandwidth */

/* Compute the entries. See the pseudo code below */

compute_leaky_entries(curr_block);

/* Install in the forwarding table the computed
* aggregated entries
*/

install_leaky_entries(curr_block);

The management of the priority queue can be performed by the same process before the

execution continues from label “READ BW.”

61

2.8.2 Greedy Heuristic Aggregation Algorithm

Below is the pseudo-code of the greedy approximation algorithm we used to compute the
leaky aggregated entries in our simulations. The algorithm time complexity is O(N lg N);

the space complexity is O(N).

compute_leaky_entries(prefix_address_block)

{
/* Assign the allowed leaks per interface for this address block */
for (all_ifs)

allowed_leaks[if_id] = leaks_budget(if_id, prefix_address_block);

/* For each group, mark a node in the Radix trie as INSTALL x/
/* Lower the bandwidth, the corresponding node will
* be higher in the trie.
x/
for (parent = addr_block_size-1; parent >= 1; parent--) {
left = LEFT_CHILD(parent); right = RIGHT_CHILD(parent);

if (ENTRY(left).bw <= ENTRY(right) .bw)

low = left; high = right;
else
low = right; high = left;
ENTRY (high) .flag |= INSTALL;
ENTRY (parent) .bw = ENTRY(low) .bw;

for (all_ifs)

ENTRY (parent) .join[if_id] = ENTRY(low).join[if_id];

62

/* Sort all entries except ROOT */
#define ROOT 1
ENTRY (ROOT) .flag &= ~INSTALL;
/* Can use approximated hash buckets to sort in O(N),
* or any standard 0(Nx1g(N)) sorting algorithm.
*/
SORT_ALL_INSTALLED_ENTRIES_BY_THEIR_BW();

remaining_nodes = total_installed_entries;

/* Always install the root of the prefix (the default
* entry toward the Root Domain for that prefix).
*/

ENTRY(ROOT) .flag |= INSTALL;

while(remaining nodes--) {

node = POP_SMALLEST_BW_ENTRY();
/* Find first installed parent node up in the Radix trie */
parent = FIND_INSTALLED_PARENT(node) ; /% 0(1g(N)) */
for (all_ifs) {

bw_overhead[if_id] =

compute_leak_after_aggreg(parent, node, if_id);
if (bw_overhead[if_id] > allowed_leaks[if_id]) {
keep_entry = TRUE;

break;

63

}
if (keep_entry == TRUE)
continue;
ENTRY (node) .flag &= ~INSTALL;
for (all_ifs) {
allowed_leaks[if_id] -=
compute_leak_after_aggreg(parent, node, if_id);
ENTRY (parent) . join[if_id] |= ENTRY(node).join[if_id];
}
ENTRY (parent) .bw += ENTRY(node) .bw;
REINSERT_INTO_SORT_LIST(parent); /* 0(1g(N)) or x/

} /* 0(1) for hash buckets */

2.9 Conclusions

In this chapter we have studied the topology impact on multicast forwarding state aggre-
gatability. In our study we use a variety of topologies (real-world, generated and canonical).
The results show that the underlying topology can have notable impact on performance.
For example, for low receiver occupancy, the aggregation ratio for the Internet core topol-
ogy can be on the order of 10 times, for random graphs the aggregation can be on the order
of 20 times, but for tree, mesh and some generated topologies it is on the order of 2 times.

Aggregation ratio on the order of 10 or 20 times may seems high, but for this particular
problem it may not be sufficient if multicast services become widely popular and there are

tens or hundreds of million active groups at a time; further, designing practical algorithms

64

to achieve this level of aggregation may be challenging. In the second part of the chapter
we describe a leaky aggregation that can be used to reduce further the amount of state.
This is achieved by allowing some imperfection of the state aggregation: we allow a small,
controllable amount of data traffic to “leak” on interfaces without downstream members.
By carefully aggregating the entries, we can reduce the amount of forwarding state in the
routers to the order of the number of high bandwidth groups whose data traffic is forwarded
by that router. Therefore, by trading-off small network bandwidth overhead for memory
in the forwarding engines, we can achieve higher level of aggregation.

In the next chapter we study another problem: efficient replica placement for Content
Distribution Networks. However, instead of using a very radical solution such as the leaky
aggregation, we consider using partial knowledge about the network topology to improve

protocol performance.

65

Chapter 3

Case Study: Replica Placement for Content Distribution

Networks

In this chapter we study efficient replica placement for Content Distribution Networks. In
general, this is an NP-complete problem, and existing approximation algorithms are either
computationally expensive, or require detailed knowledge about the underlying network
topology and expected client location. We consider a very simple solution to the problem
that uses limited amount of information about the underlying topology. Our solution
places replicas among nodes with the largest fanout. Surprisingly, the performance of
this solution is within a factor of 1.1-1.2 of more complicated solutions that have been
shown to perform within a factor of 1.1-1.5 of the optimal solution. We study the problem
for a variety of topologies and client placement, and we discover that in most cases the
results are qualitatively similar. These results demonstrate that sometimes a small amount
of information about the underlying topology can be useful to improve significantly the

protocol performance.

66

3.1 Introduction

Content Distribution Networks (CDNs) [2, 53, 29] replicate Web content in an effort to
reduce client access latency. This kind of replication can also reduce network overhead.
However, the efficacy of content distribution can crucially depend on the placement of these
replicas, and on the relative location of the client population.

In the past, there have been several studies that have addressed the problem of replica
placement on the network and its impact on network performance [65, 95, 60, 70]. A num-
ber of replica placement methods have been proposed and studied. Two of the studies
[95, 60] have considered a greedy placement strategy' which, compared to the computa-
tionally expensive optimal solution, performs remarkably well in practice (within a factor
of 1.1-1.5), and is relatively insensitive to imperfect input data. Unfortunately, this greedy
placement requires knowledge about the client locations in the network, and all pairwise
inter-node distances, which information in many cases may not be available.

One of the previous studies [60] considers also topology-informed replica placement,
where nodes are selected as replicas in decreasing order of their node degree.? Their results
suggest that this method can perform almost as good as the greedy placement. However,
due to lack of more detailed network topology, this particular study uses only Autonomous
Systems (AS) topologies (real-world and generated) where each node represents a single

AS, and a node link corresponds to AS-level BGP peering.

!The particular greedy placement is also very similar to the one in [65].

2From now on we will use interchangeably the terms node degree and node fanout to represent the
number of links connecting a node with its neighbors. Also, we will use the term well-connected node to
indicate a node that has a large fanout.

67

In this work we extend their evaluation of fanout-based replica placement in several
ways. First, instead of using a coarse-grained AS topology derived from BGP AS paths
information [122], we have in our possession an approximate router-level Internet topol-
ogy [38] which we use to obtain more detailed and accurate results. Second, instead of
shortest-path routing, we generate router-level paths using approximate models of inter-
AS routing policy [113]. With their technique, each router from the router-level topology
is mapped to the AS it belongs to (based on that router IP address), and then AS-level
shortest-path routing is combined with router-level shortest-path towards the next-hop AS.
Finally, we look into results sensitivity by considering various client placement models, and
some other topologies.

Our main findings are:

e In most cases the router-level fanout placement is almost as good as the greedy

placement (within a factor of 1.1-1.2).

e A fanout-based replica placement method needs to be carefully designed to be effi-
cient. For example, if we select first a well-connected AS and then we select a router

within that AS, we must be very careful which particular router is selected.

Our conclusions do not depend on client locations. Only if the number of clients is
very small, then there is a significant performance difference between the fanout-based
replica placement and the greedy placement. The results are true also for random graphs,
generated and real-world AS topologies, but do not apply for overlay topologies such as

Mbone [75].

68

The rest of the chapter is organized as follows. In Section 3.2 we describe the particular
replica and client placement models we consider in this work. Section 3.3 contains the
performance evaluation results. Section 3.4 presents a possible explanation when and why

those results may hold. Conclusions are in Section 3.5.

3.2 Replica and Client Placement Models

In this section we describe the replica placement models we are interested at, and are
evaluated later in Section 3.3. We use each of those models to place a number of replicas on
the topology, so we could eventually reduce the client access latency and the overall network
overhead (compared to a single-server solution). We also describe the client placement
models that we use to select a number of nodes as clients. Those models are used in
Section 3.3.3.2 to perform the client-impact sensitivity evaluation. Before presenting the

replica and client placement models, we describe the client-replica assignment we assume.

3.2.1 Client-Replica Assignment

In this work we assume that each client selects the closest (in number of hops) replica.
Indeed, it is possible to consider a more sophisticated scheme where a client selects in real-
time the replica that offers the lowest latency, but for simplicity we ignore such schemes.
The second assumption we make is that we do not limit the number of a clients that can
be assigned to a replica. Both assumptions are similar to those in some of the previous
work [95, 65, 60]. One of the arguments to support the latter assumption is that typically it
is much easier to increase the capacity of a particular replica (e.g., by creating a cluster of

replicas at the same location), than deploying a new replica at different location for the sake

69

of reducing other replicas’ load. The latter assumption does not impact our conclusions
even in the presence of flash crowds, because, as we demonstrate later in the chapter, our

results are robust to variations in client locations and client population size.

3.2.2 Replica Placement Models

In this work we consider the following replica placement methods. The first method has
been proposed in some of the previous work [65, 95, 60, 70]. In our study we use it as a

base for comparison.

o (Greedy placement. The greedy placement we choose is same as the greedy algorithm
described in [95] and [60]. The basic idea is to choose the replicas one-by-one, a
subject to a greedy selection: at each step we evaluate all nodes in the topology and
choose the one that, if we place a replica there, the resulting network overhead will be
minimized. The process is repeated until all replicas have been chosen. The input to

this method is all pairwise inter-node distances, and the client placement locations.

o Mazx-router fanout placement. Given a network topology and the fanout of each node,
we choose the replicas one-by-one in decreasing order of their node degree until all
replicas have been chosen. The intuition behind this method is that the nodes with
large fanout are eventually the closest (on average) to all other nodes, and therefore

they are a better choice for replica location.

o Maz-AS/maz-router fanout placement. This method assumes that each node/router
has been assigned to some AS, and that all ASs have been connected into an AS-level

topology. If R is the number of replicas to select, first we select the R ASs that have

70

the largest fanout (on the AS-level topology). Then, within each selected AS, we
choose the router that has the largest router-level fanout. Similar to the maz-router
fanout placement, the intuition is that the selected nodes will be closer to the rest of

the nodes.

Maz-AS/min-router fanout placement. This method is similar to the maz-AS/maz-
router fanout placement, except that instead of selecting the router with largest
fanout within each of the chosen ASs, we select the router with the smallest fanout.
This placement may not make sense for practical purposes, but we need to consider it
to evaluate the sensitivity of network performance to replica placement within an AS.
Note that for the rest of this chapter, when we use the term fanout-based placement,

we do not include the maz-AS/min-router fanout placement, unless stated otherwise.

Random placement. In this method the replicas are chosen at random with uniform
probability among all nodes in the topology. We consider it as an “upper-bound”
placement method in a sense that an efficient replica placement method should always

be better than the random placement.

Unlike previous work [95, 65, 60], we do not consider some of the existing optimal

solutions that have been proven to be always within a small factor of the most optimal

solution.

Indeed, Qiu et al. [95] have found that the particular greedy algorithm described above

performs very well in practice (typically within a factor of 1.1-1.5 of the computationally

intensive optimal solutions). Further, its performance is relatively insensitive to imperfect

71

input data such as client locations and network topology information. Therefore it is a

reasonable choice for our needs and we can use it as a base of comparison.

3.2.3 Client Placement Models

To investigate the sensitivity of replica placement performance to client locations, we look
into several client placement models. Our goal is not to explore all possible client place-
ments, but to consider the extreme cases, along with the random case, because the extreme
cases can give us the boundary of expected performance.

The first model we look into is the random client placement, where the client nodes are
selected at random with uniform probability.

We also look into the extreme client placement as defined in [92], namely eztreme affinity
and eztreme disaffinity. The extreme affinity model places the clients as close as possible
to each other; the extreme disaffinity model places the clients as far as possible from each
other. The particular algorithm we use to place a number of clients on a graph according
to the affinity/disaffinity model is described in [130]. Below is a brief summary of that
algorithm. The first client is selected at random among all nodes. Then, we assign to each
node n; that is not selected yet the probability p; = ﬁ, where w; is the closest distance
between node n; and a node that is already selected as a client, « is calculated such that
Zni p; = 1, and S is the parameter that defines the degree of affinity or disaffinity. After a
node is chosen to be a client, the probabilities of the remaining nodes are recomputed and
the process is repeated until the desired number of clients is selected. Similar to [130], in our

experiments we use § = 15 and [= —15 for extreme affinity and disaffinity respectively.

72

We look into yet another extreme client placement: extreme clustering. This placement
can be considered as a hybrid between extreme affinity and extreme disaffinity. With this
placement, clients are “grouped” into a number of clusters, such that the clients that belong
to the same cluster are as close as possible to each other (i.e., extreme affinity placement).
Then, all clusters are placed as far as possible from each other (i.e., extreme disaffinity
placement). A two-step version of the extreme affinity /extreme disaffinity algorithm de-
scribed above can be used to create the extreme clustering as well. In the first step we
place VC clients with extreme disaffinity with parameter —3, where C is the total number
of clients. Each of those clients are considered as a center of a cluster of size v/C clients. In
the second step, we add C'—1 clients to each cluster by using the extreme affinity algorithm
with parameter 3.

To verify our results with real-world data, we use Web server access logs to create the
population of clients. In particular, we collect the unique IP addresses of all clients that
have accessed the same Web server within some period of time. Then, we run the traceroute
tool [55] to each of the client addresses. Finally, we intersect each of the traceroute paths
with the Internet map to find the last-hop router toward a Web client that is on that map.
The set of all last-hop routers is our web clients set that can be used to represent the

population of the real-world Web clients.

3.3 Performance Evaluation

In this section we present the main results from our evaluation. In particular, we use nu-
merical simulations to compute the relative network performance. As part of our evaluation
we look into the impact of various factors on performance: replica and client placement,

73

client number, network topology. First we describe the metric space, and then we present

the results when we vary each of the input factors we consider.

3.3.1 Metric Space

The two particular metrics we are interested at are average client latency and overall
network overhead. For simplicity, we assume that the latency between two nodes is propor-
tional to the number of link-hops between them. A similar assumption has been used in a
previous work [95]. Indeed, [41] shows that router-level hops correlate well with observed
latency. On the other hand, that work points out that the number of ASs in the path
to a destination has a higher correlation to latency than the number of router-level hops.
However, that study is several years old and Internet has evolved since then. Further, a
more recent study has measured 50-70% correlation between network hop and round-trip
time [86], and its authors claim that the router-level number of hops is more meaningful
as a latency metric.® Finally, due to lack of information, we assume that the bandwidth
capacity of all links is same. Obviously, those assumptions are not perfect, but without
detailed network measurements this is the best we can do. Hence, the average client latency

across all clients ¢ can be computed as:

Eclients(c) Dist(c, Replica(c))
NumberOfClients

AveClientLatency =

where Replica(c) is the replica node for client ¢, and Dist(c, Replica(c)) is the distance

between them in number of hops.

3We also show, in Section 3.3.3.4, that if we consider latency defined in terms of AS-level hops, our
findings hold even stronger.

74

For similar reasons as above, we also assume that the overall network overhead is
proportional to the number of link-hops used to disseminate the data from the replicas to
all clients. At the same time, we ignore the network overhead to distribute the data from
its original location to each of the replicas, because this overhead may be a small fraction of
the network overhead to distribute the data from the replicas to a large number of clients.
Hence, the overall network overhead for all clients can be computed using the following

formula:

NetworkOuverhead = Z Dist(c, Replica(c))

clients(c)
In our evaluation, we are not interested in the absolute client latency or absolute net-
work overhead metrics. Instead, we are interested in the relative client latency or relative

network overhead of each replica placement method versus the greedy placement. Based on

NetworkQuerhead

our assumptions, we have AveClientLatency = o 705 FClients

therefore it is easy to see
that when we perform relative comparison between two replica placement methods using
the same set of clients, then the relative average client latency will be same as the relative
network overhead. Therefore, for the rest of this chapter we use a single metric we call effi-
ciency ratio to compute the relative performance between two replica placement methods.

We always use the greedy placement as a base for comparison, hence the efficiency ratio of

method M; can be computed as:

_ NetworkOverhead(M;)
"~ NetworkOverhead(Greedy)

Ef f Ratio(M;)

75

3.3.2 Simulation Setup

For most of our simulations (except for those described in Section 3.3.3.4 where we look
at the topology impact factor), we use a real-world router-level topology. The topology
information was collected by using a large number of traceroute requests sent over the
Internet [38, 123]. The resulting topology had 102639 nodes and 142303 links. Then we
recursively removed all nodes that have a fanout of one to obtain a topology we call Internet
core. The reason that we truncate the original topology is to remove the long, “skinny”
branches that do not represent well the network connectivity at the edges, but are an
artifact from the particular methodology used to obtain the topology information.

To obtain more realistic results, instead of using shortest-path routing, we use AS-level
hierarchical routing as described in [113]. With their technique, first each router from the
router-level topology is mapped to the AS it belongs to, based on that router IP address and
the AS-level topology [12] at the time the router-level topology data was collected. After
that, the AS-level shortest-path routing is computed. Finally, to compute the router-level
path between two nodes, the AS-level path is followed, and within each AS the router-level

shortest path is used to reach the closest node that belongs to the next-hop AS.

‘ Topology H Nodes ‘ Links ‘ Diam. ‘ Ave. dist. | Ave. fanout ‘
Internet core 27646 | 67310 26 8.3 4.9
Random graph 19596 | 40094 16 7.2 4.1
Power-law graph || 10091 | 23253 9 3.2 4.6
AS 4830 | 9077 11 3.7 3.8
Mbone 4179 | 8549 26 10.1 4.1

Table 3.1: Metrics of used topologies.

76

Within each set of simulations we fix the number of clients and vary the number of
replicas, or vice-versa. The number of replicas varies between 1 and 50; the client popula-
tion size varies as a fraction of the number of all nodes between 0.005 and 0.2. The replica
and the client placement methods, as described in Section 3.2, are the other input to the
simulations. In all simulations we use 100 different sets of algorithmically chosen clients
(except for the Web-derived clients when we have 3 sets), and we average the results among
all trials. The results we show are for the 95% confidence interval (note that in most cases
this interval is very small and can be seen as a single dot).* To create the set of Web-
derived clients, we use the access logs of a busy Web server for three consecutive days, and
we apply the technique described in Section 3.2.3 to compute the nodes on the router-level
topology that represent the Web clients. The number of unique client addresses for each
of the three days is 37401, 40833, 43558 respectively. Those clients, after the intersection
of the traceroute paths with the router-level topology, are represented by 4015, 4158 and
4264 unique nodes on the Internet-core map (approximately 15% of all nodes).

We tried also some generated topologies, and some other real-world maps (see Sec-

tion 3.3.3.4). Table 3.1 summarizes some of the metrics of all topologies.

3.3.3 Network Efficiency Results

First, we present the results for different replica placement methods, which are of most
interest to us. Then we look at how the client placement may have impact on performance.

Finally, we look into other factors such as client number and network topology.

4We looked also into the min-max interval, and it was almost unnoticeable for the maz-router fanout
and maz-AS/maz-router placement methods.

7

3.3.3.1 Replica Placement Impact

Replica placement impact (random clients, clients fraction = 0.2)

(&)

- 1.9 :

I 2

o 18

o

5 17

2

- 1.6 X]

3 A .

§ 15+ R
© 14t max-router fanout—<— -
2 max-AS/max-router fanout—=—

s 13¢p max-AS/min-router fanout—e—
> random routers—&—

o 1.2 +

Q

Q

=

i

Wﬁ
1.1 R 1
l 1 1 1 1 1 1 1 1 1

Number of replicas

Figure 3.1: Internet core: replica placement impact (random clients).

To evaluate the replica placement impact, we assume a fixed number of randomly
placed clients (20% of all nodes), and the number of replicas varies between 1 and 50.
Then we compute the relative network efficiency for different replica placement methods
(as described in Section 3.2.2), by using the greedy algorithm results as base for comparison
(1.0).

The results from this simulation are in Figure 3.1. The first observation we can make is
that both maz-router fanout and maz-AS/maz-router fanout placement methods perform
very well, within a factor of 1.1-1.2 of the greedy placement, regardless of the number of
replicas. This result is our first confirmation that the fanout-based placement methods
perform well even on Internet router-level topology. On the other hand, the maz-AS/min-
router fanout placement performs even worse than random replica placement. This, to
some extent, is a surprising result, because we expected that the AS fanout is the major

78

Replica placement impact (affinity clients, clients fraction = 0.2)
2.2

1.8

1.6 | max-router fanout—<— -
max-AS/max-router fanout—=—
max-AS/min-router fanout—e—

random routers—a—

12} W:

0 5 10 15 20 25 30 35 40 45 50
Number of replicas

14+

Efficiency ratio (Geeedy heuristic = 1.0)

Figure 3.2: Internet core: replica placement impact (extreme affinity clients).

Replica placement impact (disaffinity clients, clients fraction = 0.2)
1.8

1.7
1.6
15

14+ max-router fanout—<— -
max-AS/max-router fanout—=—
1.3+ max-AS/min-router fanout—e—
random routers—a—
1.2 1

1.1 ! 2

Efficiency ratio (Geeedy heuristic = 1.0)

l ‘_'\ Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50

Number of replicas

Figure 3.3: Internet core: replica placement impact (extreme disaffinity clients).

79

Replica placement impact (disaff/aff clustering clients, clients fraction = 0.2)
2.2

max-router fanout—<—
max-AS/max-router fanout—=—
2 + max-AS/min-router fanout—e—

&
A

1.8

1.6

Efficiency ratio (Geeedy heuristic = 1.0)

0 5 10 15 20 25 30 35 40 45 50
Number of replicas

Figure 3.4: Internet core: replica placement impact (extreme clustering clients).

Replica placement impact (web clients, clients fraction = 0.15)

2.4

max-router fanout—x<x—
20 |1 max-AS/max-router fanout—=—
) max-AS/min-router fanout—e—
random routers—&—

1.2 ¢ g

Efficiency ratio (Geeedy heuristic = 1.0)

0 5 10 15 20 25 30 35 40 45 50
Number of replicas

Figure 3.5: Internet core: replica placement impact (web clients).

factor that has impact on performance. Clearly, placement is very sensitive to the actual
selection of routers within ASs-selecting the highest fanout AS alone for placing a replica

is not sufficient.

3.3.3.2 Client Placement Impact

To evaluate the client placement impact on the results, first we consider the extreme cases
of affinity, disaffinity and clustering. The particular model we use was described already
in Section 3.2.3. Figure 3.2, Figure 3.3 and Figure 3.4 show the results for extreme affinity,
extreme disaffinity and extreme clustering respectively (the rest of the setup is same as
in the case of random client placement in Section 3.3.3.1). Here again we can see that in
case of extreme affinity and extreme disaffinity client placement, the maz-router and maz-
AS/maz-router fanout-based placement methods perform remarkably well within a factor
of 1.1-1.2 of the greedy placement. However, the results for extreme clustering reveal
notable difference in performance: the fanout-based replica placement method can be on
the order of 1.4 worse compared to the greedy placement. Even though, quantitively, the
difference is not significant, we consider this finding an important evidence of the impact
of client placement may have on performance.

The results with the web-clients are in Figure 3.5. Similar to the extreme affinity and
extreme disaffinity client placement, with web-clients the fanout-based placement methods
perform equally well.

It is interesting to note that, unlike the greedy placement, the fanout-based replica
placement methods do not take client locations into account, yet they can perform very

well over a wide range of client placements (including realistic placements).

81

3.3.3.3 Client Number Impact

Clients number impact (random clients, replicas number = 50)

2.8 :
max-router fanout—x<x—
2.6 max-AS/max-router fanout—=— -
max-AS/min-router fanout—e—
24 ¢ random routers—a— |

221

18+
16+ :
14r]
12 ¢ :

l Il Il
0.01 0.1
Clients fraction (1.0 = all nodes)

Efficiency ratio (Geeedy heuristic = 1.0)

Figure 3.6: Internet core: client number impact (random clients).

The next question we want to answer is how the client population size impacts the
performance. In this set of simulations we fix the number of replicas to 50, and then we
vary the fraction of nodes that are clients in the range 0.005-0.2. Figure 3.6, Figure 3.7,
Figure 3.8, and Figure 3.9 show the results for various client placement: random, extreme
affinity, extreme disaffinity, and extreme clustering respectively.

We observe that when the number of clients is small, the fanout-based placement meth-
ods do not perform very well. This is especially true for extreme affinity and extreme
clustering client placement. For moderate and large client number, the fanout-based place-

ments perform much better, as expected.> Another observation we can make is that the

5The random and maz-AS/min-routers placement performance for extreme disaffinity of the clients as
a function of the client population size may seems a little bit unusual because it is not monotonically
increasing or decreasing. This behavior can be explained by the fact that the results can be influenced
significantly by various factors if the number of clients is very small (on the order of the number of replicas).

82

Clients number impact (affinity clients, replicas number = 50)

g 8

— T

I max-router fanout—x<—

e 71 max-AS/max-router fanout—=— |
o max-AS/min-router fanout—e—

5 random routers—a—

o 6 i
<

=3

© 5¢t 1
&

= 4 - J
R

S 31 i
>

Q

c

Qo 2 r .
L

=

L 1 1 N

0.01 0.1
Clients fraction (1.0 = all nodes)

Figure 3.7: Internet core: client number impact (extreme affinity clients).

Clients number impact (disaffinity clients, replicas number = 50)

(&)

) 2 |
:' max-router fanout—x<x—
o 19r max-AS/max-router fanout—=— 1
k%) 181} max-AS/min-router fanout—e— |
5 ’ random routers—a—
QL 17t l
>
g 1.6 1
3 15+ 7
o l4t]
13} ,
)

2 1.2¢t i
o %
S 11t = & i
=
L 1 |

0.01 0.1
Clients fraction (1.0 = all nodes)

Figure 3.8: Internet core: client number impact (extreme disaffinity clients).

83

Clients number impact (disaff/aff clustering clients, replicas number = 50)

)

- 16 ‘

" max-router fanout—x<—

O 14l max-AS/max-router fanout—5— |
o max-AS/min-router fanout—e—

5 | & random routers—a— |
o 12

=

2 10 | .
g

o 8r i
§e)

T 6 i
3

2 4 1
Q

£ 2f]
L

0.01 0.1
Clients fraction (1.0 = all nodes)

Figure 3.9: Internet core: client number impact (extreme clustering clients).

performance difference is larger with extreme affinity or extreme clustering of the clients.
This result is not unexpected, and here is a possible explanation. When all clients are
placed together in some part of the network (in case of extreme affinity), there is relatively
low probability that there will be a node with large fanout in their proximity that will be
selected as a replica (unless the number of clustered clients is very large and altogether
they cover a notable fraction of the network). When all clients are clustered in various
parts of the network (in case of extreme clustering), each of those clusters has a relatively
small size, therefore it is even less likely there is a replica in a proximity of each cluster;
yet, given the relatively small number of clusters, eventually most clusters are “pushed” to
the edge of the network where is less likely there is a node with a large fanout. This also
explains the notably worse performance of extreme clustering compared to extreme affinity

and extreme disaffinity.

84

From the above results we can see that the client population size has impact on perfor-
mance only when the number of clients is small. Only then the fanout-based placements

perform notably worse than the greedy placement.

3.3.3.4 Network Topology Impact

Replica placement impact (random clients, clients fraction = 0.2)

(&)

- 1.3

I

Q

% 1.25f h
5

2

- 1.2 + 1
©

(O]

g 115} max-router fanout—<— 1
= random routers—=a—

(@]

'}"E 1.1+ 1
>

2

5 105} 3
(8]

LIJ l Il Il Il 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Number of replicas

Figure 3.10: Random graph: replica placement impact (random clients).

The next factor we consider that may have impact on performance is the type of
topology. First, we repeat the same simulations with two different types of generated
topologies. The first one is a random graph (see Table 3.1 for some of its metrics, as well
for the metrics of the other topologies), generated by the GT-ITM topology generator [8].
The second one is a power-law graph® created by a generator based on the algorithm
described in [1]. A recent study shows that this topology qualitatively resembles both the

AS and the router-level topologies [114]. Obviously, we do not have ASs over the generated

50ne of the characteristics of the power-law graphs is that the node fanout distribution can be described
by a power law: fq ox d° where f; is the frequency of out-degree d, and 3 is a constant.

85

Replica placement impact (random clients, clients fraction = 0.2)

(&)
- 2.2
I
Q
& 2f 1
5
2
=~ 1.8+ b
©
g
3 16+]
o
s 14+ 1
>
[&]
S l12r¢ 1
e max-router fanout—x<—
E random routers—=a—
l Ne NE 3. A2 S +

0 5 10 15 20 25 30 35 40 45 50
Number of replicas

Figure 3.11: Power-law graph: replica placement impact (random clients).

Replica placement impact (random clients, clients fraction = 0.2)

S}

- 24

I

S 22

@

z

2 2

3

o 18

8

-~ 1.6

ie)

S 14}]
>

(8]

T 12} |
s v max-router fanout—s<—
iy 1 ‘ ‘ ‘ ‘ random routers—&—

0 5 10 15 20 25 30 35 40 45 50
Number of replicas

Figure 3.12: Mbone topology: replica placement impact (random clients).

86

topologies, therefore we have to use shortest-path routing; for the same reason we cannot
apply the maz-AS/maz-router or the maz-AS/min-router replica placement methods.

The results for the random graph with randomly placed clients (20% of all nodes) when
we vary the number of replicas are in Figure 3.10. We can see that the difference between
the greedy placement and the maz-router fanout placement is even smaller (within a factor
of 1.05). On the other hand, even random replica placement can perform within a factor
of 1.25 which is much lower compared to the Internet-core results.

The results for the the power-law graph are in Figure 3.11. As expected, the fanout-
based placement performs very well, while the random placement performs notably worse.
We tried also a real-world AS-level topology itself [12], and the results were very similar to
the results for the generated power-law graph.

However, we should note that this result is not universal. When we tried the Mbone [75]
overlay topology [123] we found that the maz-router fanout replica placement is not better
than the random placement. In fact, in most cases it was even worse (see Figure 3.12). We
believe the reason is that the connectivity of the Mbone topology is very sparse compared
to the other topologies we have considered (compare the topology size, topology diameter
and average inter-node distances of all topologies on Table 3.1). As a result, the average
distance from a well-connected node to the rest of the nodes is relatively large, therefore
such node is not a good choice to be a replica.

Finally, we should note that when we repeated the Internet-core simulations with using
shortest-path routing instead of the approximated AS-policy routing, we did not see any
notable difference. From this we can conclude that the impact of the routing on relative

performance is insignificant.

87

3.4 Results Discussion

In this section we discuss our findings, and try to explain the reasons behind some of them.

Our main finding is that the fanout-based placement methods can perform remarkably
well. Unlike more sophisticated methods such as greedy placement that takes into ac-
count the client locations to compute the appropriate replica placement, the fanout-based
placement does not require any knowledge about expected client locations. This is a very
significant simplification, because it basically suggests that we do not need a dynamic and
adaptive replica placement that requires knowledge about expected client locations. In
other words, as long as the replicas are placed in some “key” locations in the network, then
the expected performance would be reasonably good. The only notable exception is when
we use extreme clustering to place the clients, when the results are worse compared to
other client placement methods, but even then the difference is not significant.

If we abstract from the particular replica placement methods and ask the question “if
we had to select a single node as a replica, what would be the best node to select,” the
answer would be the node that is as close as possible to all clients. Typically, if a node
has a large fanout, it means that it is a one-hop away from a large number of nodes, and
therefore probabilistically it is close to a large number of clients as well. The AS and
the Internet topologies have the characteristics of power-law graphs [34, 98]. One of the
characteristics of those topologies is that they have a small number of nodes with very
large fanout which nodes are apparently just few hops away from all other nodes. In other
words, the high-fanout nodes are the “key-location” nodes for the power-law graphs that

in most cases are very close to the rest of the nodes.

88

Here someone may ask the question why did we get similar results for the random graph
which is not a power-law graph? The answer to that question may be in the fact that the
majority of the nodes in the random graphs have similar fanout, while overall random
graphs have very high topology expansion (defined as the growth of neighborhood size as a
function of distance) [98]. The combination of these two factors eventually means that all
nodes are just few hops away from each other, and then choosing any node to be a replica
will be a good solution. This observation also explains why the random replica selection
performs much better for random graph compared to power-law graph (see Figure 3.10
and 3.11).

Another observation is that a two-level fanout-based placement such as the maz-
AS/maz-router placement method can perform very well. One possible speculation here
may be that the AS fanout is the factor that matters, i.e., that choosing any node within an
AS with a large fanout will be a good solution. However, the results for the maz-AS/min-
router replica placement show that router selection based on the AS-level fanout only is
not sufficient: the router-level fanout must be considered as well. One possible explanation
to this is as follows. Typically, an AS with large fanout has inside a large number of nodes,
and some of those nodes may not be very well connected.” Therefore, choosing such not
well connected node as a replica may not be beneficial at all to reduce client latency or
network overhead.

Finally, we should note that in most cases the maz-AS/min-router fanout replica place-

ment performs slightly better compared to the maz-router fanout placement. The reason

"Indeed, when we compared the number of nodes assigned to each AS versus the AS fanout, on average
the relation can be approximated with a straight line on the log-log scale, which means that each of the
few ASs with the largest fanout contains a large number of nodes inside.

89

for this, we believe, is that the maz-AS/min-router fanout placement spreads the replicas
among a number of ASs, by placing no more than one replica inside each AS. On the
other hand, the maz-router fanout placement does not have this property, therefore it may
place a number of replicas very close to each other without adding significant benefit to

the clients.

3.5 Conclusions

In this chapter we studied the efficient replica placement for Content Distribution Networks.
We have demonstrated that by using a small amount of information about the underly-
ing topology such as node fanout, we can improve significantly the protocol performance.
In our case, node fanout-based replica placement can be used to achieve results that are
within a factor of 1.1-1.2 of solutions that are much more complicated and computationally
expensive. The results are not affected by the client placement. However, they are affected
by the underlying topology: the results can be applied to power-law and random graphs,
but they do not apply for overlay topologies such as Mbone, or canonical topologies such
as tree and mesh. This case-study suggests that in some cases it may be worth collect-
ing some topology-related information that can be used to improve significantly protocol
performance.

In the next chapter we study another problem where again we can use the help of
partial knowledge about the underlying network to improve performance. In particular,
we compare hierarchical router-assisted and application-level reliable multicast schemes,
and we use partial topology knowledge to improve the creation of the application-level
hierarchy.

90

Chapter 4

Case Study: Hierarchical Reliable Multicast

In this chapter we study another problem where we can benefit from using partial knowledge
about the underlying network to improve protocol performance. We compare the perfor-
mance of hierarchical router-assisted and application-level reliable multicast schemes. The
router-assisted schemes use the help of the intermediate routers to create the data recov-
ery hierarchy. Intuitively, such hierarchy would be more congruent with the underlying
physical topology, therefore its performance should be significantly better compared to
hierarchies that were created without the help of the intermediate routers. However, we
find that if participants have information about all-pairs end-to-end distances, that partial
information about the topology can be used to create an efficient application-level data
recovery hierarchy. The performance of such hierarchy is comparable to the performance

of router-assisted hierarchies.

91

4.1 Introduction

Reliable multicast has received significant attention recently in the research literature [36,
88, 72,49, 16, 71, 68, 132]. The key design challenge for reliable multicast is scalable recov-
ery of losses. The two main impediments to scale are implosion and erposure. Implosion
occurs when, in the absence of coordination, the loss of a packet triggers simultaneous
redundant messages (requests and/or retransmissions) from many receivers. In large mul-
ticast groups, these messages may swamp the sender, the network, or even other receivers.
Exposure wastes resources by delivering a retransmitted message to receivers which have
not experienced loss. Another challenge that arises in the design of reliable multicast is
long recovery latency, which may result from suppression mechanisms to solve the implo-
sion problem. Latency can have significant effect on application utility and on the amount
of buffering required for retransmissions. Finally, highly dynamic groups may result in a
loss of efficiency because they break assumptions about group constituency and structure.

One popular class of solutions is hierarchical data recovery. In these schemes, partic-
ipants are organized into a hierarchy. By limiting the scope of recovery data and control
messages between parents and children in the hierarchy, both implosion and exposure can
be substantially reduced. Hierarchies introduce a latency penalty, but that only grows pro-
portional to the depth of the hierarchy. The biggest challenge with hierarchical solutions
is the construction and maintenance of the hierarchy, especially for dynamic groups. For

optimal efficiency, the recovery hierarchy must be congruent with the actual underlying

92

multicast tree.!

Divergence of these structures can lead to inefficiencies when children
select parents who are located downstream in the multicast tree.

One approach, exemplified by RMTP [72], is to use manual configuration or application-
level mechanisms to construct and maintain the hierarchy. Manual hierarchy construction
techniques rely either on complete or partial (e.g., where the border routers are) knowl-
edge of the topology. Automated hierarchy construction techniques rely on dynamically
discovering tree structure, either explicitly by tracing tree paths [71], or implicitly by using
techniques based on expanding ring search. Once a hierarchy is formed, children recursively
recover losses from their parents in the hierarchy by sending explicit negative acknowledg-
ments.

Another approach, exemplified by LMS [88], proposes to use minimal router support
not only to make informed parent/child allocation, but also to adapt the hierarchy under
dynamic conditions. In some of these router-assisted schemes, hierarchy construction is
achieved by routers keeping minimal information about parents for downstream receivers,
then carefully forwarding loss recovery control and data messages to minimize implosion
and exposure. In these schemes, hierarchy construction requires little explicit mechanism
at the application-level at the expense of adding router functionality. Because of this, one
would expect these router-assisted hierarchies (Section 4.2.2) to differ from the application-
level hierarchies (Section 4.2.1) in two different ways: a) router-assisted hierarchies are
finer-grained; that is, have many more “internal nodes” in the hierarchy; and b) they are

more congruent to the underlying multicast tree.

!Congruency is achieved when the virtual hierarchy and the underlying multicast tree coincide.

93

Then, it is natural to ask, as we do in this work: Is the performance of application-level
hierarchies qualitatively different than that of router-assisted hierarchies? To our knowl-
edge, this question has not been addressed before. We study this question by evaluating
two specific schemes: LMS and an RMTP-like schemes which use two specific hierarchy
construction techniques. For our comparison we used four metrics: recovery latency, ex-
posure, data traffic network overhead, and control traffic network overhead. We approach
the question from two angles: first, we use analysis (Section 4.3) to determine the asymp-
totic behavior of the two schemes for regular trees, and second, we employ simulation
(Section 4.4) to study the performance of large irregular multicast trees. These irregular
multicast trees are randomly generated on real-world topologies such as the Internet [38],
and the Mbone [75] topology [123].

Before doing this performance comparison, our expectation was that router-assisted
hierarchies would significantly outperform application-level hierarchies. Our finding was
surprising: that, with careful hierarchy construction, the performance of application-level
hierarchies is comparable to that of router-assisted hierarchies, even though the former have
a coarse-grained recovery structure. However, as we show, there exist pathological hierarchy
construction techniques for which application-level hierarchies perform qualitatively worse
than router-assisted hierarchies. Thus, the congruence of the hierarchy to the underlying
multicast tree seems to be more important to performance that having a fine-grain recovery
structure.

We should emphasize that we model only the essential features of the two schemes,
and while our conclusions may be colored by the specific schemes we chose, we believe our

results have a bearing on the larger issue of how router-assisted hierarchies compare to

94

application-level hierarchies. Furthermore, our conclusions inform but do not necessarily
close the debate regarding the appropriate approach to hierarchical data recovery. Our
evaluation metrics do not capture the complexity and cost of hierarchy construction, or
the complexity of adding router-assistance for hierarchical recovery to the network.

The rest of the chapter is organized as follows. In Section 4.2 we present in details the
application-level and router-assisted schemes we consider in this paper, and describe the
evaluation metrics. Section 4.3 presents the k-ary tree analytical results for both schemes.
Section 4.4 present and discusses the simulation results for real-network topologies. Con-

clusions are in Section 4.5.

4.2 Hierarchical Multicast Data Recovery Schemes

As the name implies, hierarchical reliable multicast schemes solve the scalability problem by
structuring the group into a hierarchy. Because a hierarchy explicitly enforces scope on the
data recovery, it is a natural approach to address many of the problems described earlier,
including implosion, exposure and latency. Based on the mechanisms used to create and
maintain the hierarchy, we can distinguish between two classes of hierarchical schemes. The
first class, application-level hierarchical schemes (ALH), uses only end-to-end mechanisms
assisted by the end-systems (the receivers) to create and maintain the hierarchy. The
second class, router-assisted hierarchical schemes (RAH), uses assistance from the routers

in the creation and maintenance of the hierarchy.

95

----=> :NACK
———= : Unicast data

—=> : Multicast data

Rx1

Rx3 Rx4 Rx5 Rx6

Virtual topology
for data recovery

----=> :NACK

——= : Unicast data

—=— : Multicast data

Rx2 Rx7 Rx8

Virtual topology
for data recovery

Figure 4.2: ALH example: sub-optimal hierarchy organization.

96

4.2.1 Application-Level Hierarchical Schemes

ALH schemes create and maintain the data recovery hierarchy by using only end-to-end
mechanisms. Typical mechanisms include manual (static) configuration and expanding
ring search to locate the nearest candidates. More sophisticated schemes employ heuristics
such as “loss fingerprinting” where receivers compare their loss fingerprints with those of
potential parents and select the most appropriate. Both types, however, tend to be slow
to adapt to dynamic conditions and are not always accurate in maintaining congruency.

The Reliable Multicast Transport Protocol (RMTP) [72] is an example of an ALH
scheme, and forms the basis of our ALH model. RMTP employs a combination of positive
and negative acknowledgments (ACK and NACK) for data recovery. Because the focus of
this work is not on modeling and evaluating protocol details, but rather understanding the
underlying mechanisms, we do not follow exactly the RMTP protocol; instead, we adopt
the hierarchical approach in RMTP and model only NACKSs and retransmissions.

Briefly, our ALH scheme works as follows. In Figure 4.1 Rxl is a parent for Rz2,
Rz7, and Rz8, while Rz?2 itself is a parent for Rx3, Rx4, Rxb and Rx6. Upon detecting
loss (link R1 — R2), children unicast NACKSs to their parents (Rz3, Rz4, Rz5, Rz6 to
Rz2, and Rz2 to Rzl.) If the parent has the data, the parent sends it to its children by
either unicast or multicast. A multicast response is sent to a local multicast group where
only the children and the parent are members of that group. To select between unicast
and multicast, a parent collects NACKs and uses multicast if at least 50% of the children
requested data retransmission; otherwise the parent uses unicast (parent Rzl to Rz2.) If a

parent does not have the requested data, its own parent also detects the loss from missing

97

acknowledgments (and so on until we reach the root). After receiving the data each parent
sends it to its children.

RMTP does not explicitly specify how the hierarchy is created; rather, in its current
incarnation it assumes a manually configured static hierarchy. In order to explore the
potential of ALH schemes, we introduce a rather powerful heuristic: we hypothesize that
all participants have somehow obtained information about the distance to each other, and
use that information in a heuristic algorithm to create the hierarchy. The algorithm creates
the hierarchy in a bottom-up fashion as follows: among a group of participants, the node
with the smallest sum of distances to all other nodes becomes a parent. Initially, all
receivers are eligible to become parents and thus the lowest level of the hierarchy is formed
by selecting parents among all receivers. Each of the receivers which was not elected as
a parent chooses the closest parent node as its parent. The same heuristic is recursively
applied at the next level among all the nodes that were selected as parents in the previous
iteration, until we are left with a small number of nodes which become children of the root
of the tree (i.e., the sender). The depth of the hierarchy is defined by the fraction of nodes
to choose at each iteration, which is a number in the interval (0.0,0.5). A value of 0.1 for
example means that among all nodes at level ¢ in the data recovery hierarchy, 10% of them

will become parents of the remaining 90%.

4.2.2 Router-Assisted Hierarchical Schemes

Router-assisted hierarchical schemes (RAH) use network assistance to achieve congruency
between the hierarchy and the multicast tree. By eliminating the need to maintain the hier-

archy through potentially expensive and complicated endsystem-based mechanisms, RAH

98

schemes reduce application complexity and enable the development of large-scale reliable
multicast applications. For our evaluation of RAH schemes we chose Light-weight Multi-
cast Services (LMS) [88] as our model. LMS employs router assistance to create a dynamic
hierarchy which continuously tracks the underlying multicast routing tree regardless of
membership changes. The network assistance required by LMS is in the form of new for-
warding services at the routers, and thus has no impact at the transport level. With LMS
each router marks a downstream link as belonging to a path leading to a replier. A replier
is simply a group member willing to assist with error recovery by acting as a parent for
that router’s immediate downstream nodes. Because they are selected by routers, parents
are always upstream and close to their children. The forwarding services introduced by
LMS allow routers to steer control messages to their replier, and allow repliers to request
limited scope multicast from routers. More specifically, LMS adds the following three new

services to routers:

o Replier selection: potential repliers advertise their willingness to serve as repliers for
a particular (Source, Group) pair with their local router. Routers propagate these
advertisements upstream. Before propagating the message upstream, a router selects
one of its downstream interfaces (based on an application-defined metric) as the
replier interface. When all routers have received advertisements the replier state is
established. Replier state is soft state which provides robustness and guards against

replier and link failures.

o NACK forwarding: LMS routers forward NACKs hop-by-hop according to the fol-

lowing rules: a NACK from the replier interface is forwarded upstream; a NACK

99

from a non-replier interface (including the upstream interface) is forwarded on the
replier interface. However, a NACK from a non-replier downstream interface marks
this router as the “turning point” of that NACK. Note that by definition, there can
be only one turning point for each NACK but the same turning point may be shared
by multiple NACKSs. Before forwarding a NACK, the turning point router inserts in
the packet the addresses of the incoming and outgoing interfaces, which we call the
“turning point information” of the NACK. This information is carried by the NACK

to the replier.

Directed multicast (DMCAST): DMCAST is used by repliers to perform fine-grain
multicast. A replier creates a multicast packet containing the requested data and
addresses it to the group. The multicast packet is encapsulated into an unicast packet
and sent to the turning point router (whose address was part of the turning point
information) along with the address of the interface the NACK originally arrived
at the turning point router. When the turning point router receives the packet,
it decapsulates and multicasts it on the specified interface. An enhanced version
of DMCAST may allow repliers to specify more than one interface that the packet

should be directed to send on.

LMS works well in most cases to deliver the requested packet with minimum latency

and only to receivers that need it. Figure 4.3 shows such an example. The loss on link

R1 — R2 is recovered from replier R1 by sending a DMCAST to R1. However, in some

cases LMS may expose receivers to retransmissions that do not need it. This occurs when

loss happens on the replier path, as shown in Figure 4.4. The resulting exposure does not

100

— Replier link
(2) Directed O ----=>:NACK
multicast
— : Multicast date
=> : Directed

(3) Multicast multicast date

(0) Link loss

— Replier link
(2) Directed ---=>:NACK
multicast
— : Multicast date
=> : Directed

(3) Multicast multicast date

Rx3 Rx4 Rx5 Rx6
Rx3, Rx4, Rx5, Rx6: exposure

Figure 4.4: LMS vanilla example: data loss by replier only and exposure to other receivers.

101

: Replier link

----=:NACK

——=: Unicast data

(0) Link loss

m—: Replier link
----=>:NACK

——= : Unicast data

—= : Multicast date

(0) Link loss

_ ~ _(3) Directed
- S\ multicast

Rx3 Rx4 Rx5 Rx6

Figure 4.6: LMS enhanced example: two-step data recovery (unicast followed by direct
multicast).

102

affect correctness but may lead to wasted resources if a replier branch (the link between R2
and Rz2 in our example) is particularly lossy. LMS addresses this problem by selecting the
replier branch that advertises the least loss. However, determining path loss characteristics
can be hard, and thus LMS employs another method to eliminate exposure, which comes at
the cost of eventually adding an extra hop to the retransmission. With this enhancement,
a NACK by a downstream replier specifies that the reply should be unicast to the requestor
itself rather than the turning point. For example, in Figure 4.5 (the same loss scenario as
in Figure 4.4) Rzl will directly unicast the reply to Rx2 and therefore there will be no
exposure on the subtrees rooted at R3 and R4. The extra hop of retransmission can be
illustrated by the example in Figure 4.6 where the packet loss occurs on the link between
R1 and R2. Similar to the previous example, the request by downstream replier Rx2 will
reach Rx1 and the reply will be unicast back to Rx2. However, because in the mean time
Rz2 has received NACKs from the downstream parts of the tree (Rz4 and Rz6), now
it just needs to send a single enhanced directed multicast to R2 specifying that the reply
should be multicast on links R2— R3 and R2— R4. Only if at some later time the requestor
Rz2 receives more requests, direct multicasts are sent to the remaining part of the subtree.
Note that this two-step process occurs only once, between the replier above the loss and
the first requestor. We distinguish the previous version (which we call vanilla LMS) from
this version, which we call “enhanced LMS.” Preliminary experiments have shown that for
large groups the increase in latency in enhanced LMS is negligible but there is a significant
reduction in exposure. Therefore, in this work we use the enhanced version of LMS.

We note that LMS is not the most aggressive router-assisted recovery scheme. Finer

grain recovery schemes, in which routers themselves respond to loss recovery requests from

103

downstream neighbors, can, perhaps perform better than LMS. While such schemes are

conceivable, we believe they are impractical in that they require significant router state.

4.2.3 Metric Space

We did not model the overhead of creating a hierarchy with ALH schemes, because this
depends strongly on the application and network characteristics. For example, in an ap-
plication where membership is static, parents can be deployed manually and can yield
excellent performance. At the other extreme, applications with mobile receivers may im-
pose many restrictions on the type of the hierarchy creation algorithm and the parent—child
associations.

If we ignore the overhead for creating and maintaining the hierarchy, the main source
of inefficiencies in ALH schemes is the lack of congruency between the possibly fine grain
hierarchy and the underlying multicast tree. Divergence of the two structures results in
problems when children inadvertently join parents that are located downstream or are
too far away, which results in an increase in recovery latency and network overhead. For
example, in Figure 4.2 Rz6 is at the very bottom of the multicast delivery tree, but is
inadequately a parent for the upstream Rz2, Rz7 and Rx8. RAH schemes do not suffer
from these problems because they continuously track the multicast topology (although the
cost varies among different schemes).

We have defined a set of metrics to evaluate the two schemes which represent the impact
of the data recovery mechanism on the application and the network. These metrics are
defined below; in section 4.2.4 we will present some examples of those metrics computed

for different data recovery schemes.

104

e Data recovery latency. The recovery latency is defined as the ratio of the data
recovery time observed by a receiver and the round-trip time from that receiver to
the sender. A smaller value means that the receivers will wait shorter time to receive
the missing data. For example, latency of 0.5 means that the time it will take for the
receiver to recover the data is half of the round-trip time to the root/sender. The
formula we use to compute the average data recovery latency across all receivers and

across all links being lossy is:

Lat(r,l
Zreceivers(r) Zlinks(l) ngg(r))

N Lat =
ormaa NumberO f LossRcvs * NumberO f Links

where Lat(r,l) is the receiver r latency when the packet loss is on link I, RTT(r) is
the round-trip time from receiver r to the root of the tree, NumberO f LossRcvs is
the total number of receivers that have observed any loss, and NumberOf Links is

the total number of links in the topology.

In ALH schemes, sources of latency include longer recovery paths due to lack of
congruency between the hierarchy and the multicast tree, and the latency due to
multiple hops (parents). RAH schemes typically do not suffer from these problems
because they (a) almost always recover from the nearest replier, and (b) have the

capability of sending the multicast data to only one branch of the tree.

e Receiver exposure. The exposure is defined as the ratio of the extra amount of
packets that have been received by a receiver (and eventually discarded), and the
total number of packets sent by the sender. Ideally, this metric should be 0 (i.e., no

extra packets are received and no extra processing by the receivers). The formula we

105

use to compute the average exposure across all receivers and across all links being

lossy is:

Zreceivers(r) Zlinks(l) E;vposure(r, l)
NumberO f ExpRcvs x NumberO f Links

NormFExp =

where Exposure(r,l) is the exposure for receiver r (in term of number of extra pack-
ets) when the packet loss is on link I, NumberO f ExpRcuvs is the total number of
receivers that have observed any exposure, and NumberO f Links is the total number

of links in the topology.

ALH schemes suffer from exposure when more than half (but not all) children lose a
packet which result into a local multicast. With RAH schemes the problem is limited

to only few specific cases due to the ability to use subcast.

Data traffic network overhead. The data traffic network overhead is defined
as the ratio of the amount of used network resources because of the retransmitted
multicast data (in term of total number of data packets sent over any link in the
network), and the size of the subtree (in number of links) that did not receive the
data. In the ideal case the data network overhead will be 1.0 (e.g., when the node
right above the lossy link has the data and it will send a single multicast packet
down the whole branch of the tree that did observe the loss). ALH schemes suffer
from this overhead because of the inefficiency introduced by the unicast/multicast
combination. The formula we use to compute the average data overhead across all

lossy links is:
Data(l
Zlinks(l) Sulircre(e()l)

NumberO f Links

NormDataOverhead =

106

where Data(l) is the total amount of data traffic that will be created when the packet
loss is on link I, Subtree(l) is the size of the subtree (in term of number of links)
that did not receive the data, i.e., the subtree below (and including) link /, and

NumberO f Links is the total number of links in the topology.

Control traffic network overhead. Similar to the data traffic overhead, the control
overhead is defined as the ratio of the amount of used network resources by the control
packets (the NACKs), and the size of the subtree that did not receive the data. We
consider ratio of 1.0 as optimal, even though this is not the theoretically lowest ratio.
For example, if the node right above the lossy link was a replier, the control overhead
will be 1.0 if there was exactly one NACK sent over each of the links of the subtree
below the lossy link. ALH schemes may suffer more than RAH schemes because with
ALH there is less opportunity to do NACK fusion. Similar to the data overhead, the
formula we use to compute the average control overhead is:

E Control(l)
links(l) ‘Subtree(l)

NumberO f Links

NormControlOverhead =

where Control(l) is the total amount of control traffic that will be generated in the

network when the packet loss is on link /.

4.2.4 Examples of Measuring ALH and RAH Performance

The metrics we described in the previous section can be illustrated by the following exam-

ples. Consider first the ALH example in Figure 4.1. Five of the receivers will send NACKs

to their parents, and the control overhead will be % = 1.875 (the size of the subtree that

107

did not receive the data is 8). The data overhead then will be 31’4 = 1.25. The data
latency for receiver Rz2 will be 6 (the RTT to Rz1), but the latency for Rz3, Rz4, Rx5,
Rz6 will be —1 4+ 6 + 3 = 8.2 If we assume that the sender is two hops away from R1,

w = 0.79. The exposure in this particular

then the average data latency will be
example is 0. If the ALH data recovery hierarchy was not created efficiently, such as the
hierarchy in Figure 4.2, then the latency, data and control overhead will be respectively
0.94, 1.375, and 2.375 (note that the latency for Rz2 is 12, because it is one hop closer to
the sender than its parent). The exposure in this example is also 0.

If we look in the example for the RAH scheme in Figure 4.6 (enhanced LMS) which has
the same setup of receivers and link loss as in the above example, the latency, data and
control overhead, and exposure are respectively 0.79, 1.25, 1.625 and 0. On the contrary,
if we used vanilla LMS (see Figure 4.3), the latency, data, and control overhead would be
respectively 0.63, 1.125 and 1.625. However, the average receiver exposure in Figure 4.4 for

each of the receivers that received extra packet (Rz3, Rz4, Rx5, Rz6) will be @ = 1.0.

4.3 K-ary Tree Analyses of RAH and ALH

To get initial understanding of the scalability property of the ALH and RAH schemes, we
apply some simple analyses on k-ary trees. In our analyses we assume that the root of the
tree is the sender, and that a fraction of the leaf nodes are receivers. Thus, a k-ary tree of
depth L has between k and k” receivers. The receiver set size is specified by a parameter

q (1 < g < L), such that the fraction of leaf nodes that are receivers is kql_ . For example,

*Receiver Rz2 will discover the data loss and will initiate the recovery one “link-hop” time unit earlier
than Rz3, Rx4, Rx5 and Rxz6, hence the —1 in the latency computation.

108

Sender

« : Receiver L=0 « : Receiver L=0

Sender

L=1 L=1
L=2 L=2
L=3 L=3

Tree fanout (k) = 3 Tree fanout (k) = 3

Tree depth (L) =3 Tree depth (L) =3

Receiver fraction parameter (q) =1 Receiver fraction parameter (q) = 2

Leaf node receiver fraction = (1/k*(q-1)) = 1 (all leaf nodes) Leaf node receiver fraction = (1/k*(q-1)) = 1/3th of all leaf nc

(@ (b)

Figure 4.7: Example of k-ary tree parameters.

Figure 4.7(a) has an example of a 3-ary tree with tree depth L = 3 and ¢ = 1 (i.e., all leaf
nodes are receivers). Figure 4.7(b) shows the same tree but with ¢ = 2 (i.e., 1/3th of the
leaf nodes are receivers). In case of ALH we assume that the recovery hierarchy is created
such that each parent has k — 1 children. Given these assumptions, the same parent nodes
for ALH are the repliers for RAH. For each of the schemes we assume a single link loss
and compute the average (per link-loss across all links) for each of the metrics described
in Section 4.2.3.

First we present the analytical results for the control overhead, and briefly describe the
methodology used to derive them. Then we present the analytical results for data overhead,
and for latency recovery. We do not analyze the receiver exposure metric because in this

particular scenario by definition it is always zero for both RAH and ALH.

4.3.1 RAH and ALH control overhead analyses results

In the particular scenario of a k-ary tree with the receivers chosen among the leaf nodes,
the RAH and ALH control overhead are the same by definition, therefore the results below

are same for both methods.

109

To analyze the average control overhead, we need to compute the following: (a) if there
is a packet loss on a link, what is the control overhead (in term of number of hops) to
recover the packet; (b) what is the size of the subtree below (and including) the link where
the loss has occurred, so we can compute the relative control overhead for that lossy link,
and (c) what is the relative control overhead averaged among all links in the tree being
lossy (one at a time).

First we can make the following observation. If we assume that all links at some
particular level of the tree become lossy one-after-another, the sum of the control overhead
for those links does not depend on the level of the tree the links belong to. For example,
in case of the 3-ary tree in Figure 4.7(b) with only 1/3th of all leaf nodes as receivers, if
all leaf links go down one-by-one, the control overhead sum in number of hops to reach a
replier or a parent for the first three leftmost receivers would be: 2% 2 +2 %2+ 3 %2 = 14.
The control overhead sum for the three receivers in the middle is same, but for the three
rightmost receivers the control overhead sum is 2 % 2 + 2 % 2 + 3 = 11. Therefore the sum
among all nine receivers is 14 + 14 4+ 11 = 39. If we consider the control overhead for the
links right above the L = 2 nodes, then the total sum will be same, except that the subtree
size below each lossy link is two instead of one. Similarly, if we consider the topmost three
links, the control overhead sum if they are lossy (one at a time) will be same, except that
each time there is a link loss, this will affect three receivers instead of one.

The control overhead sum can be computed by considering iteratively the size of the
corresponding subtrees. Hence, if all links at some level are lossy one at a time, the control

overhead sum is:

110

ControlOverheadSum(1 <i < L) =

L—qg+1
— Z (kL—q—l—l—i—l—l _ k_L—q-i—l—i) %% (l +q-— 1)
i=1
L—qg+1 _
= 2*(k " k—i—q*kL*qH)—L (4.1)

where k is the tree fanout, L is the tree depth, and ¢ defines the fraction of leaf nodes that
are receivers according to the formula: kq%l This sum is same, regardless of the particular
level of the lossy links.

To compute the relative control overhead, we need to compute the tree size below a
lossy link. If the lossy links are located in level i (starting to count from the bottom of the

tree), the subtree size depends on the value of 7 and can be expressed by the following two

equations:
SubtreeSize<i<q) = i (4.2)
SubtreeSize1<i<r) =
ki—l—q—|—1 -1 ;
_ —q
- +qgx*k
Eatl —(q—1) % k"9 —1
_ 4% IECI_ -) * (4.3)

Therefore, the relative control overhead sum across all links is:

111

Z RelativeControlOverhead =
AllLinks

zq: ControlOverheadSum(7) n EL: ControlOverheadSum(i) * (k — 1)

gxki=atl —(g—1)*xki=9 -1 (44)

]
i=1 i=q+1

Finally, to obtain the average single-link relative control overhead, we need to divide the

above sum by the total number of the lossy links (i.e., the links with downstream receivers):

LossyLinksNumber =

KA — (g —1) —k L

= - —qtl

- +(q—1)*k
EL—atlx (gxk—q+1)—k

k-1

Average network control overhead (1.0 = min. required) (k—ary tree)

6F 4

Control overhead (relative)
N w » [&]

[
T
I

— RAH and ALH,k=2
RAH and ALH k=4

—1

-4 -2

102

10 1
Receivers fraction (of all nodes)

10

Figure 4.8: RAH and ALH: average network control overhead.

Based on the above expressions, we can plot the results for different trees. Figure 4.8 shows

the network control overhead for both RAH and ALH for binary and 4-ary trees of depth

112

L = 10 when we vary the fraction of the receiver nodes. The results for larger tree depth

and fanout were similar.

4.3.2 RAH and ALH data overhead analyses results

Unlike the control overhead, there is difference between the data overhead for RAH and
ALH. To compute the data overhead, we use a method similar to the computation of the

control overhead described in Section 4.3.1.

4.3.2.1 RAH data overhead analyses results

In case of RAH, if all links at level s (s = 1 for leaf links) go down one-by-one, the sum of

the data overhead is:

DataOverheadSum(s,1 < s < q)rag =

L—qg+1
— Z (kL—q-i—l—i—l—l _ kL—q-i—l—z') %2 % (z +q— 1) + 7
i=1
kaq—f-l —k

DataOverheadSum(s,q+ 1< s < L)pag =

L—qg+1
=) (KFetE ol w o (i g - 1)

i=s—q+1

s—q s—q+1
+ D R L (=) BT B Y (i g - 1)+ L

i=1 =1

1 k kL—q—i—Q _ kL—5+2
- 2 L—s+1)y _9 1 L—q+1
* k *(S+k—1) *k—1+ 1 +(@—1)xk
— 1 —2

+ kL—S-f—l* (S Q+)*(5+q) - L (4.7)

L

113

To compute the relative data overhead, we need to divide the absolute data overhead sum
by the size of the affected subtree. Therefore, the sum of the relative data overhead when

all links go down one-by-one is:

Z RelativeDataOverheadrag =

AllLinks
L\ DataOverheadSum(i) L DataOverheadSum(i) * (k — 1)
= E : + — — (4.8)
‘ () ki—atlsxg —ki=9x(¢g—1) -1
i=1 i=q+1

Finally, to compute the average relative data overhead, we need to divide the above sum

by the total number of links (see Equation 4.5).

4.3.2.2 ALH data overhead analyses results

In case of ALH, if all links at level s (s = 1 for leaf links) go down one-by-one, the sum of

the data overhead is:

DataOverheadSum(s,1 < s < q)aLm =
L—qg+1
= > (P T g w0 (i g — 1) + L
i=1
EL-atl _

— 2*ﬁ+2*q*k’:_q+l—L (4.9)

DataOverheadSum/(s,q+1 < s < L)arg =

L—qg+1
=) (R B 9 (i g - 1)
i=s—q+1

s—q
+ D KT (k=) % (i+q—1)+1+q—1)+ L=
i=1

114

k
k-1

2
k:L_s+1*(q+S+f1)—2*

1
4+ (kL—q-}-l _ kL—s-I—l) (+ %) L (4‘10)

To compute the relative data overhead, we need to divide the absolute data overhead by
the size of the affected subtree. Therefore, the sum of the relative data overhead when all

links go down one-by-one is:

Z RelativeDataOverheadarg =
AllLinks
i DataOverheadSum() n L DataOverheadSum(i) * (k — 1)

ki=atl x g — ki=0x (¢ —1) — 1 (4.11)

i=1 i=q+1

Finally, to compute the average relative data overhead, we need to divide the above sum

by the total number of links (see Equation 4.5).

Average network data overhead (1.0 = min. required) (k—ary tree)

6L i
5 “‘*»\\\\ 4
o) Tm—
=
=
Sat -
=
[5+3
[<F)
= 3r B
=
o ~
<
Eof
— RAH,k=2
1r RAH, k=4
-— ALH,k=2
--- ALH,k=4
(o] 2 Y =3 =1

10 10 10 10
Receivers fraction (of all nodes)

Figure 4.9: RAH and ALH: average network data overhead.

115

Similar to the results for the control overhead, we use the above equations to plot the
results for binary and 4-ary trees of depth L = 10 (see Figure 4.9). First, we can notice
that there is almost no difference between the RAH and ALH data overhead. Further,
the results are very similar to the network control overhead (see Figure 4.8). The reason
that the difference between RAH and ALH is very small is as follows. In this particular
setup, the advantage of using RAH comes from the data retransmission method: in some
cases a single RAH replier would use multicast to retransmit the data to all receivers
within a subtree, while in case of ALH the retransmission would be a sequence of multicast
retransmissions, one at each level of the hierarchy. However, only when the lossy link is
close to the root of the tree, the number of sequential retransmissions can be on the order
of L, and even then the extra latency would be relatively small. Therefore, on average the
RAH advantage compared to ALH is very small. The reason that there is small difference
between the network data overhead and network control overhead is because in most cases
the data retransmission will be by unicast, and by definition the data overhead when we

use unicast to retransmit the data is same as the control overhead.

4.3.3 RAH and ALH data recovery latency analyses results

The data recovery latency computation method is slightly different from the computation
of the data and control overhead. First we compute the sum of the latencies when all links
at some level s go down one-by-one. After that we sum the latencies for all 1 < s < L.
Finally, we normalize the result by the round-trip time to the sender, and then we average

across all links.

116

4.3.3.1 RAH data recovery latency analyses results

In case of RAH, if all links at level s (s = 1 for leaf links) go down one-by-one, the sum of

the data recovery latency is:

RecoveryLatencySum(s,1 < s < q)rag =

L—qg+1
— Z (kL—q-f—l—i-f-l _ kL—q-f—l—i) x4 x ('l —q 4 1) 4 2% L
i=1
1
_ 4*kL—q+1*(q+m)_4*k_1—2*L (4.12)
RecoveryLatencySum(s,q+ 1< s < L)gag =
L—q+1
= Z (kL—q-H—H—l—kL—‘IH—l) sdx(i+qg—1)
i=s—q+1
s—1—q+1
+ Z (kL—q—H—z'-I-l _ kL—lH—l—i) * 2 % (s _ 1)
i=1
L—qg+1
+ (kST 1)« Z (kLo _ pLoatl=y y gy (1 4 g — 1)
i=s—q+1
s—1—qg+1))
+ Z (k’—k“l)*2*L+2*L
i=1
1 1
- 4 kL—q+1 _4 kS—(H-l -
* * (s + 1 1) * * -
+ 2% (KEatt — Rty (s — L)
k—1
+ 2x(s—q)x kP — 2% L ko0 (4.13)

Therefore, the average relative data recovery latency is:

Zstl RecoveryLatencySum(s)

A ; L =
veRelative RecoveryLatencyram AT

(4.14)

117

where kL~9%1 is the total number of receivers, L is the number of links that could affect a

receiver, and 2 % L is the RTT to the sender (same for all receivers).

4.3.3.2 ALH data recovery latency analyses results

In case of ALH, if all links at level s (s = 1 for leaf links) go down one-by-one, the sum of

the data recovery latency is:

RecoverLatencySum(s,1 < s < q)ary =

L—qg+1
= > (R B sk (i — g+ 1) + 2% L
i=1
_ 4*kaq+1*(q+L)_4* k — 2% L (4.15)
k-1 k—1
Recover LatencySum(s,q + 1 < s < L)aryg =
L—qg+1
D DR et EY BRI E)
i=s—q+1
5—q
+ D KET (k= 1) % 2% (i+ g — 1)
i=1
L—qg+1
+ (kS—l—q—I-l _ 1) % Z (kL—q+1—z'+1 _ kL—tH-l—i) % 4 % (Z +q— 1)
i=s—q+1
S_q . .
4 Z(k;’—k:”l)*2*L—|—2*L
i=1
= 4*kL_q+1*(s+L) —4>|<lc5_q"'1>|<L
k-1 k-1
+ (K (k=1 *(s—q)* (s +q—1) =2« Lk 1 (4.16)

118

Therefore, the average relative data recovery latency is:

Zstl RecoveryLatencySum(s)

kl—a+l « [% 2% [(4.17)

AveRelativyRecoveryLatencyarg =

where kL~9%1 is the total number of receivers, L is the number of links that could affect a

receiver, and 2 * L is the RTT to the sender (same for all receivers).

Average recovery latency vs RTT to sender (k—ary tree)

2.5+ 1
- I
= 2- B e
s 2 I -
3 I
= T ——
1.5+]
[}
=
>
g ar 1
o
(5]
@
| —— RAH,k=2 ||
0.5 RAH k=4
-— ALH,k=2
--- ALH,k=4
o -2 -1

10°° 10 10
Receivers fraction (of all nodes)

10

Figure 4.10: RAH and ALH: average data recovery latency.

The results for the data recovery latency latency for binary and 4-ary trees of depth
L = 10 are in Figure 4.10. From those results we can see that, unlike data and control
overhead, there is obvious difference between the RAH and ALH data recovery latency,
and this difference increases logarithmically when we increase the number of receivers. On
the other hand, the difference does not appear to be very large, and in the worst case the
ALH latency is 50% larger (for k¥ = 4). Even when we increased the tree depth to L = 20,
the ALH was within the order of two of the RAH latency. The reason that, unlike the

data overhead, the difference between the RAH and ALH data recovery latency is notable

119

is that when we normalize the latency by the RT'T, the result is much more sensitive to a
single extra link-hop the retransmitted data may travel. On the other hand, the impact of
that single extra link-hop when we compute the data overhead is much smaller when we

normalize by the affected subtree size.

4.4 Simulation Results

The analytical results we presented in Section 4.3 apply only given the assumptions we
have about the topology and the receivers setup, and may not be true in the general case.

Some of the questions we want to answer through numerical simulations are:

e How RAH and ALH perform with real-world router-level topology and how do they

compare to each other.

o How other topologies may impact the results.

e What is the impact of the hierarchy creation parameter for the ALH scheme.

e What would be the performance penalty for ALH if we did not use any heuristic to

create the data recovery topology (i.e., if the hierarchy was randomly created).

First we will describe our simulation setup, and then will present and discuss the results.

4.4.1 Simulation Setup

In most of the simulations we used a router-level Internet-core topology of 54533 nodes [38].
To investigate the topology sensitivity, we used several other topologies: AS-level map [122,
12], Mbone [123], random graph, mesh, and tree. Some of the characteristics of all topolo-
gies are summarized in Table 4.1.

120

Topology H Nodes ‘ Links ‘ Diam. ‘ Ave. dist. ‘ Ave. fanout ‘

Internet core 54533 | 146419 23 7.6 5.4
Mbone 4179 8549 26 10.1 4.1
AS 4830 9077 11 3.7 3.8
Random 19596 | 40094 16 7.2 4.1
Mesh 54756 | 109044 466 156.0 4.0
K-ary tree (3-ary) || 29524 | 29523 18 16.0 2.0

Table 4.1: Metrics of used topologies.

We assumed a single-source multicast distribution tree with the source at the root of
the tree. The receivers were placed according to the client placement methods described
in Section: 3.2.3: random, extreme affinity, extreme disaffinity, and extreme clustering.
The number of the receives varied as a fraction of topology size between 0.0001 and 0.2
(i.e., 0.01% and 20% of all nodes).> The default hierarchy creation parameter for the ALH
scheme was 0.1, i.e., on average each parent had 9 children (1/0.1 - 1). Further, to prevent
extremely uneven distribution of the children among the parents, the maximum number
of children a parent may have at each level was set to (4 * (1/fracp. — 1)), where fracy.
is the hierarchy creation parameter. Some of the results we present for ALH are both
with the inter-receiver distance heuristic we described in Section 4.2.1, and without any
heuristic (named ALH-heuristic and ALH-random respectively). In the second case, the set
of parents selected at each level of the hierarchy is completely random, and then each child
chooses randomly the parent to connect to. The results for ALH-random would eventually
give us the worst-case ALH performance, i.e., when we do not have a good mechanism to

create the recovery hierarchy. For each set of parameters we performed 50 simulations with

3For the smaller topologies the smallest fraction was 0.0002 or 0.001, depending on the topology size.

121

a different set of receivers. The results we present are averaged across all simulations, but
we also present the 95% confidence interval (even though in most cases this interval is very
small to be noticed).

For each scheme we measured the data recovery latency, exposure, data overhead, and
control overhead across all links going down (one-by-one). For simplicity we assumed that
all links have the same propagation latency, and that sending a single packet over any of
the links creates the same overhead to the network. The measured results were averaged
across all links.> The metrics were computed using the expressions in Section 4.2.3.

As we mentioned in Section 4.1, we are not interested in investigating the particular
protocols in details, but only in the underlaying schemes instead. For this reason we did not
include in the basic schemes various protocol enhancements such as multiple LMS router
state for routers with large fanout [88] that can help to reduce the control overhead.

In Section 4.4.2 we present the results for the Internet core topology with random
receiver placement. In Section 4.4.3 we present the sensitivity results: ALH hierarchy
organization sensitivity (Section 4.4.3.1), topology sensitivity (Section 4.4.3.2), and receiver

placement sensitivity (Section 4.4.3.3).

4.4.2 RAH and ALH Simulation Results

Figure 4.11 shows the data recovery latency for RAH and ALH for the Internet core topol-
ogy and random receiver placement (with and without the hierarchy creation heuristic).

First, we can see that the results for RAH did match our analytical results. The fact that

“We did some experiments with a larger number of receiver sets but in all simulations there was relatively
small variation in the results.

SWe also experimented with weighting the results by the link loss probability which we assumed is
proportional to the number of end-to-end shortest paths that use each link, but the results were similar.

122

the RAH latency decreases when the number of receivers increase can be explained by the
simple observation that a larger number of receivers increases the probability that there
is a closer replier that has received the data, and therefore the recovery latency will be
shorter. Surprisingly, the ALH-heuristic results were very similar to the RAH results but
did not match our analytical results. This can be explained by the fact that in the k-ary
trees there is strict enforcement on the recovery hierarchy construction (i.e., a parent can
only be a leaf node), while in real-world topologies our heuristic will quite likely choose for
each child /receiver its parent node to be reasonably close on the shortest path to the root.
It is quite likely that such node will be chosen as a replier in RAH, and therefore the results
for both schemes are similar. On the other hand, it is less likely that in ALH-random the
parent will be on the shortest path. Hence, when the number of receivers increase, the
number of levels in the data recovery hierarchy which do not follow the shortest path be-
tween the sender and each receiver will increase as well, and therefore the receiver latency
will be longer.

Figure 4.12 presents the results for the receiver exposure. The RAH exposure is always
zero by the mechanism definition (true for a single link loss, but may not always be true if
there were multiple link losses). The results for both ALH-heuristic and ALH-random are
reasonably low. Surprisingly, ALH-heuristic performed worse than the ALH-random. The
reason is that in ALH we can have exposure only if the parent uses multicast to send the
data to its children. In our simulations the parent would use multicast only if at least 50%
of the children did not receive the data. With ALH-heuristic there is larger probability

for children locality, and therefore if any of them did not receive the data, there is larger

123

Average recovery latency vs. RTT to sender (rcvs random)

Recovery latency (relative)

0.4 RAH —x%— 1

0.2 ALH (heuristic) —8— -
0 ALH (random) —6— ‘
0.0001 0.001 0.01 0.1

Receivers fraction

Figure 4.11: RAH and ALH (Internet core): average data recovery latency.

Average receiver exposure (rcvs random)

o
2 012 :
o RAH —x—
g ALH (heuristic) —&—
g 01t ALH (random) —6— 1
<
1
o 0.08
<
£ 0.06
?
g
x 0.04
(]
g
2 0.02
(8}
(O]
x 0 R
0.0001 0.001 0.01 0.1

Receivers fraction

Figure 4.12: RAH and ALH (Internet core): average receiver exposure.

124

Average network data overhead (1.0 = min. required) (rcvs random)
10

RAH —x—
L ALH (heuristic) —&— f
ALH (random) —6—

0.001 0.01 0.1
Receivers fraction

Data overhead (relative)
O P N W b O O N 0O ©

o
o
o
o
s

Figure 4.13: RAH and ALH (Internet core): average network data overhead.

Average network control overhead (1.0 = min. required) (rcvs random)
10

RAH —x—
L ALH (heuristic) —&— f
ALH (random) —6—

0.001 0.01 0.1
Receivers fraction

Control ovethead (relative)
O P N W b O O N 0O ©

o
o
o
o
s

Figure 4.14: RAH and ALH (Internet core): average network control overhead.

125

probability that at least 50% of its siblings did not receive it either (i.e., larger probability
that the parent will use multicast).

Figure 4.13 and Figure 4.14 show the results for data and control overhead respectively.
Here again the results for RAH and ALH-heuristic are very similar. However, while the
RAH results match the analytical results, it is difficult to say the same thing for the ALH.
Similar to the latency, the ALH-random results show that the overhead increases for a larger
number of receivers, an artifact from the increased average depth of the data recovery tree.

We should note that for all simulation the data and the control overhead seemed to be
almost identical. On closer examination, the RAH control overhead was approximately 5-
10% higher than the data overhead. We can explain the reason for this small difference by
the fact that there is extra control traffic only over the path between a router-turning point
and its replier, a path that by definition is as short as possible for that router, therefore
the control overhead is minimized. Indeed, this overhead can be up to O(Router Fanout),
but in most cases it did not have a significant impact. For ALH the control overhead was
even closer to the data overhead. The reason for this can be explained by the observation
that the data overhead can be smaller only if the parent used multicast, but then the gain

in some parts in the network may be reduced by the exposure in other parts.

126

4.4.3 Simulation Results Sensitivity
4.4.3.1 ALH Hierarchy Organization Sensitivity

Figure 4.15 shows the latency results for three different values of the hierarchy creation
parameter fracp.: 0.02, 0.1, and 0.4.% Interestingly, this parameter had almost no impact
on the latency (only for a very large number of receivers the results for larger parameter
value were slightly better). We believe that the reason for this is as follows. The recovery
tree depth would eventually be larger when there is a large number of receivers. However,
when the number of receivers increase, there is a higher probability that a parent will be
on the shortest path between a child and the root (or at least almost on the shortest path).
Then, if all of the parents are on the shortest path, there is no extra latency regardless of

the number of intermediate hops to the root.

Average recovery latency vs. RTT to sender (rcvs random)

1.4

/q? .
=
8
e 4
-
(8]
& i
(]
8
> 0.6 - 1
g
§ 0.4+ i
o 0.2+ ALH Parents/Children ratio = 0.3—<— |

) ALH Parents/Children ratio = 0.02—&5—

0 ALH Parents/Chi‘Idren ratio = 0.4—o—

0.0001 0.001 0.01 0.1
Receivers fraction

Figure 4.15: ALH: latency sensitivity to hierarchy organization.

SNote that for a very small number of receivers and a small parameter value the results are identical
simply because the result is always a two-level hierarchy: the sender is the root and all receivers are its
children.

127

Average receiver exposure (rcvs random)

©

7 0.18 ‘ - - :

o ALH Parents/Children ratio = 0.1—<x—

Z 016+ ALH Parents/Children ratio = 0.02—&5—

o ALH Parents/Children ratio = 0.4——

2 014

I

o 0.12

o

~ 01

L ;

2 0.08

<3

x 0.06

[¢}]

_g 0.04

8 0.02

D: o = =] = =
0.0001 0.001 0.01 0.1

Receivers fraction

Figure 4.16: ALH: exposure sensitivity to hierarchy organization.

The data and control overhead results (Figure 4.17 and Figure 4.18) do show however,
that the overhead is more sensitive to the number of parents a child has to choose from.
The higher sensitivity of the data and control overhead compared to the latency sensitivity
can be explained by the fact that there is a large number of leaf links (i.e., when the size
of the subtree that lost the data is 1), and in all those cases the overhead is much more
sensitive to the distance to the parent that eventually has the data. On the contrary,
the number of receivers that have very small round-trip time (the basic for comparing the
latency), and therefore the distance to their parents may have a larger impact on the result,
is much smaller.

From Figure 4.16 we can see that exposure increases when the number of potential
parents is larger. The reason for the increase is because of the increased locality among
all siblings, and therefore there is a larger probability the parent needs to use multicast to
recover the data.

128

Average network data overhead (1.0 = min.

required) (rcvs random)

5
4.5
4
35
3 6s
25+
2l
15}
1}
05+

Data overhead (relative)

ALH Parents/Children ratio = 0.1—<—
ALH Parents/Children ratio = 0.02—5—
ALH Parents/Chi‘Idren ratio = 0.4‘—%

0
0.0001

Figure 4.17: ALH: network data overhead sensitivity to hierarchy

Average network control overhead (1.0 = min

5

0.001 0.01 0.1
Receivers fraction

organization.

. required) (rcvs random)

4.5
4
35
3
25}
2l
15}
1}
05 ¢t

Control ovehhead (relative)

ALH Parents/Children ratio = 0.1—<—
ALH Parents/Children ratio = 0.02—5—
ALH Parents/Chi‘Idren ratio = 0.4‘—%

0
0.0001

Figure 4.18: ALH: network control overhead sensitivity to hierarchy organization.

0.001 0.01 0.1
Receivers fraction

129

4.4.3.2 Network Topology Sensitivity

Figure 4.19, Figure 4.20, Figure 4.21, Figure 4.22, and Figure 4.23 show the average latency
for AS, Mbone, random graph, mesh, and tree respectively. All results are with random
receiver placement. If we compare those results with the Internet-core results (Figure 4.11),
we can see that the results are similar. The only notable exception is the mesh where the
difference between RAH and ALH-heuristic is much larger for a large number of receivers.
We believe the reason for this is because the multicast distribution tree that is created
is composed of long, skinny branches, an artifact of the particular routing in the mesh.
Therefore, even small inaccuracy in the parent selection heuristic may have a large penalty

in inefficiency.

Average recovery latency vs. RTT to sender (rcvs random)

16+
14 ¢
1.2 ¢

0.8 r

Recovery latency (relative)
H

04r RAH —>—

0.2 ALH (heuristic) —&— -
0 ALH (random) —6— ‘
0.0001 0.001 0.01 0.1

Receivers fraction

Figure 4.19: RAH and ALH topology sensitivity (AS): average latency.

The results for the data and control overhead were qualitatively similar to the Internet

core results, with the notable exception of mesh for which again ALH-heuristic performed

130

Average recovery latency vs. RTT to sender (rcvs random)

16
14+r
12 ¢

08 r
06 r

Recovery latency (relative)
(=Y

RAH —x—
02+ ALH (heuristic) —8— i
ALH (random) —6—

0.0001 0.001 0.01 0.1
Receivers fraction

Figure 4.20: RAH and ALH topology sensitivity (Mbone): average latency.

notably worse compared to RAH for large number of receivers. The results for the receiver

exposure for all topologies were qualitatively similar to the Internet core results.

4.4.3.3 Receiver Placement Sensitivity

Figure 4.24, Figure 4.25, and Figure 4.26 contain the results for network data overhead for
the Internet core topology with extreme affinity, extreme disaffinity, and extreme clustering
receiver placement respectively. If we compare those results with the random receiver
placement (Figure 4.17), we can see that the extreme affinity and extreme disaffinity results
are qualitatively similar to the random receiver placement results. Only in case of extreme
clustering placement, the difference between RAH and ALH-heuristic can be on the order
of four times and more. The results for the network control overhead were similar to
the network data overhead results. The results for the data recovery latency and receiver

exposure were similar across all receiver placement models.

131

Average recovery latency vs. RTT to sender (rcvs random)

16}]
14 ¢ :
1.2 ¢ .

0.8 r]
0.6]

Recovery latency (relative)
H

0.4r RAH —%— 1
0.2 ALH (heuristic) —8— -
ALH (random) —6—

0.0001 0.001 0.01 0.1
Receivers fraction

Figure 4.21: RAH and ALH topology sensitivity (Random graph): average latency.

Average recovery latency vs. RTT to sender (rcvs random)
35

Recovery latency (relative)

ALH (heuristic) —8—
ALH (random) —6—

0.0001 0.001 0.01 0.1
Receivers fraction

Figure 4.22: RAH and ALH topology sensitivity (Mesh): average latency.

132

Figure

Average recovery latency vs. RTT to sender (rcvs random)
1.8

161
14r
12 ¢

0.8}
0.6 |
0.4+

RAH —x—

02t ALH (heuristic) —=— 1
ALH (random) —6—

Recovery latency (relative)

0
0.0001 0.001 0.01 0.1
Receivers fraction

4.23: RAH and ALH topology sensitivity (Tree): average latency.

Average network data overhead (1.0 = min. required) (rcvs affinity)

9
~ 8 i]
(]
=2 7t 4
ks
2 6t 1
e]
S 5[*
<
o 4r A
3
s 31 - 1
8 25"]
1 ALH (heuristic) —&— 7
0 ALH (random) —6— ‘ ‘
0.0001 0.001 0.01 0.1

Receivers fraction

Figure 4.24: RAH and ALH (Internet core, receiver affinity): average network data over-

head.

133

Average network data overhead (1.0 = min. required) (rcvs disaffinity)

9
~ 8]
[<H)
2 7 J
©
. :
=]
g *
< py
g 4 1
3
g 3 1
8 2}]
RAH —x—
1+t ALH (heuristic) —8— -
0 ALH (random) —6— ‘ ‘
0.0001 0.001 0.01 0.1

Receivers fraction

Figure 4.25: RAH and ALH (Internet core, receiver disaffinity): average network data
overhead.

Average network data overhead (1.0 = min. required) (rcvs clustering)
14

12

10

Data overhead (relative)

2 ¥ RAH —<— |
ALH (heuristi

ALH (random) ——

0.0001 0.001 0.01 0.1
Receivers fraction

Figure 4.26: RAH and ALH (Internet core, receiver clustering): average network data
overhead.

134

The results for the other topologies were similar to the results with random receiver
placement with the notable exception again of the extreme clustering receiver placement,
even though for other topologies the difference between extreme clustering and random
placement was smaller.

The results from our simulations did show that ALH schemes with a good hierarchy
organization can perform within a constant factor of RAH schemes. Further, the ALH
performance was not affected by the levels in the hierarchy, but primarily by the parent
selection at each level of the hierarchy. The results were similar for all topologies (with the

exception of the mesh topology in some cases).

4.5 Conclusions

In this chapter we have studied another problem that can be beneficial from using partial
knowledge about the underlying network to improve performance. We analyze and compare
the performance of two types for hierarchical reliable multicast data recovery: router-
assisted and application-level. We have demonstrated that if the application-level hierarchy
is created appropriately, the performance can be comparable to solutions that require the
help of the intermediate routers. The difference can be within a factor of 2 or even lower.
Further, we show that a heuristic based on the all-receivers end-to-end distances is sufficient
to create such application-level hierarchy. The results are valid for a variety of topologies

and receiver placement.

135

Chapter 5

Improving Protocol Performance with End-to-end

Mechanisms: Design-case for Application-Level Multicast

In this chapter we consider the problem of using end-to-end mechanisms to adapt the
application-level virtual topology and communication pattern to the underlying network
topology. We study tree construction and management for application-level multicast.
First, we investigate the expected performance of application-level multicast in general.
The results from that investigation show that typically the performance of application-
level multicast is within a factor of two of the performance of network-layer multicast.
Encouraged by those findings, we design and implement a set of adaptive algorithms for
tree creation and management, within the framework of Yoid application-level multicast
system [37]. By considering both data-loss and delivery latency, we can create application-
level trees with reasonable performance. We evaluate the tree performance by both sim-
ulations and real-world experiments over the Internet. The results are robust for various
topologies and participant placement, which demonstrates that it is possible to achieve

reasonable results even if we use only end-to-end mechanisms to improve performance.

136

5.1 Topology Impact on Endsystem Multicast

Recently, some research efforts have proposed endsystem based multicast schemes [37, 51].
These approaches do not require network support for group communication. Rather, the
endsystems (hosts) to which participants are attached conspire to set up a distribution
tree comprised of point-to-point links between them. In both schemes, the endsystems
continually refine the tree in order to improve the overall delivery latency and reduce
network overhead. Endsystem multicast schemes are attractive because of their inherent
deployability.

In this section, we study the impact of topology on the efficiency of endsystem multicast
schemes. To our knowledge, ongoing research has not considered this issue. Our evaluation
is meant to inform, but not resolve, the larger architectural debate about the relative merits
of such schemes vis-a-vis network-layer multicast. To analyze the efficiency of endsystem

multicast, we define two performance metrics, following [51]:

Tree Stretch is the ratio of links in the endsystem tree to that in a native multicast

shared tree.

Tree Stress is the maximum number of endsystem tree links that traverse any physical

link in the topology.

The stretch and stress metrics depend largely on the particulars of the tree construction
methodology. Rather than attempt to faithfully model the methodologies proposed in [37,
51], we consider two simple heuristics. The first heuristic approximately models the initial
tree construction procedure in [37, 51], and the second approximates the result of their
continual tree refinement procedures.

137

Closest Receiver This simple heuristic adds new receivers in their join order. Each
receiver is connected to the closest node already on the tree whose degree is smaller

than some limit. In our evaluation, we choose a limit of 5.

Minimum Spanning Tree This assumes that all receivers are known in advance, as are
the corresponding inter-receiver communication costs. Receivers are added to the

distribution tree using a Minimum Spanning Tree (MST) algorithm.

First we describe the results for the closest receiver heuristic, and then for the MST heuris-
tic.

The topologies we use for the evaluation are same as those described in Section 2.3.
To compute stretch and stress, we first uniformly select a fraction of receivers in a given
topology. We then order the receivers randomly and compute the endsystem tree according
to the closest receiver heuristic. To compute the corresponding native multicast shared tree,
we randomly select one of the receivers to be the source. We average the stretch and stress
thus obtained across a variety of receiver orderings and choices of source. We repeat this

steps for different receiver occupancies.

5.1.1 Endsystem Multicast with Closest Receiver Heuristic

5.1.1.1 Discussion of Tree Stretch Results

Figure 5.1 plots the tree stretch as a function of occupancy. The canonical topologies
exhibit two kinds of behavior (Figure 5.1(b)). First, in some topologies, the stretch is
actually less than 1 at low (about 5%) occupancies. In this category fall the mesh and the

random graph, because they, unlike the tree and the reduced mesh, have alternate paths

138

~ 3 3
o
i
I
® 25 25
g
a 2 &] 2+]
k] b 4
E f
g 15F p 15 1
z] EM
[5) Ha] 4
g 1 g 1
ﬁ Random —&—
® 05 Mesh —<— 05r Tiers —5—
= Reduced mesh—e— Transit-stub —x—
ol Mbone o ol o Tee v ol . . . Waxman—o -
0 0102030405060.70809 1 0 010203040506070809 1 0 010203040506070809 1
Fraction of nodes with receivers Fraction of nodes with receivers Fraction of nodes with receivers
(a) Real topologies (b) Canonical topologies (c) Generated topologies

Figure 5.1: Endsystem tree stretch for closest receiver heuristic.

between the receivers. Second, the mesh and the reduced mesh exhibit a dependency of
the stretch on occupancy, while the other canonical topologies do not.

For all real topologies, the tree stretch is larger than 1 even at low occupancy (Fig-
ure 5.1(a)). Further, their stretch does not depend on the occupancy. In this sense, the
stretch of all real topologies lies between a tree and a random graph. Finally, the stretch
for all real topologies is less than 1.6, even given that we have a small, fixed limit on the
degree of each node in the endsystem tree. In particular, it is interesting to note that the
endsystem tree over the Internet core shows low stretch (approximately 1.4), regardless of
occupancy. This is encouraging; endsystem multicast schemes are at least not completely
unreasonable from an efficiency perspective.

Among the generated topologies, Tiers and Transit-Stub qualitatively match the be-
havior of the real topologies (Figure 5.1(c)). The same cannot be said of the Waxman

network, which behaves more like a random graph.

139

Finally, although we do not present the results here, we considered a variant of the
closest receiver heuristic without any limit on the degree of a endsystem tree node. The

tree stretch using our heuristic is about 15% higher than that of this variant.

__ 30 —_— 30 —_— 30

o

—

I

g 25+ R 25 + 25 +

= Internet core—5— Random —&— Tiers —8—

@ 20t AS —<— 20 + Mesh —=— 1 20 b Transit-stub —=—

8 Mbone —e— Reduced mesh—e— Waxman —e—

5 Tree —v—

= 15¢] 15 15 t

a

\%’ L

g 10r 1 10 1

m il

g s 1 s Eém

= 1

0 010203040506070809 1 0 0102030405060.70809 1 0 0102030405060.70809 1

Fraction of nodes with receivers Fraction of nodes with receivers Fraction of nodes with receivers
(a) Real topologies (b) Canonical topologies (c) Generated topologies

Figure 5.2: Endsystem tree stress for closest receiver heuristic.

5.1.1.2 Discussion of Tree Stress Results

Figure 5.2 plots endsystem tree stress as a function of occupancy. Beyond about 10% occu-
pancy, all canonical topologies are insensitive to the occupancy (Figure 5.2(b)). However,
while for the random graph and the mesh the stress is less than or equal to the node degree
limit of 5, for the reduced mesh and the tree the stress is noticeably higher.

All real topologies have similar stress, which is close to the degree limit. Compared
to the canonical topologies, this places them between a tree and a mesh (Figure 5.2(a)).
Among the generated topologies, Tiers and Transit-stub, like the real topologies, are be-
tween the tree and the mesh, while Waxman is more closer to the random graph (Fig-

ure 5.2(c)).

140

5.1.2 Endsystem Multicast with Minimum Spanning Tree Heuristic

) " Internet core—&—— " Random —&— "Tiers —5—
i AS —=— Mesh —=<— Transit-stub —><—
L'J 25 Mbone —&— 25+ Reduced mesh—e— 25¢ Waxman —e—
I Tree —v—
§ 2 2
k)
E 3
E 15}
% g&e%
g 'y
7]
@ 0.5
=
0 010203040506070809 1 0 0102030405060.70.809 1 0 0.1020304050.6070809 1
Fraction of nodes with receivers Fraction of nodes with receivers Fraction of nodes with receivers
(a) Real topologies (b) Canonical topologies (c) Generated topologies

Figure 5.3: Endsystem tree stretch for minimum spanning tree heuristic.

In Section 5.1.1 we presented the tree stretch and stress results for the closest receiver
heuristic with limiting node degree heuristic. Here we describe the results for the Minimum
Spanning Tree (MST) algorithm.

Figure 5.3 shows the tree stretch as a function of occupancy. At an occupancy of 1,
the number of links in the MST is N — 1, as is that in the IP multicast tree. In the limit,
then, stretch is 1. The mesh and random graph have stretch less than 1 at low occupancy
such as mesh and random. On the other hand, the tree and the reduced mesh have stretch
higher than one, as do the real topologies.

If we compare the MST stretch with the closest receiver tree stretch in Figure 5.1, we
can see that for low occupancy (20% or less) the results are qualitatively the same (e.g., the
topologies with low closest receiver tree stretch have also low MST stretch, and vice versa).
Quantitatively, the closest receiver tree stretch is about 30% higher compared to the MST.

For higher occupancy this difference increases. It is interesting to note that for all real

141

topologies the difference in stretch between the closest receiver and the MST heuristic for

low occupancy is remarkably low (on the order of 20-30%).

30

30

30

Interhet Core—&— ' Random —&— " Tiers —8— '
AS —x— Mesh —x— Transit-stub —=—
25 4 Mbone —e— 25 | Reduced mesh—e— 1 25 | Waxman —e—

Tree —v—

20 20 r
15

10

Tree Stress (IP Multicast tree = 1.0)

3]

0 L L L L L L L L L 0 L L L L n L L = L L b 0 L L L L L L L L L
0 01020304050.6070809 1 0 0.1020.3040506070809 1 0 0.1020.3040506070809 1
Fraction of nodes with receivers Fraction of nodes with receivers Fraction of nodes with receivers
(a) Real topologies (b) Canonical topologies (c) Generated topologies

Figure 5.4: Endsystem tree stress for minimum spanning tree heuristic.

Figure 5.4 plots the MST stress as a function of occupancy. All real topologies (Fig-
ure 5.4(a)) have very high stress, and this depends significantly on the occupancy. At first
glance, it may seems that the real topologies are in the same category as the tree and
the reduced mesh. However, after some more careful investigation, we found that in all
cases the high stress of the real topologies was because of some node with very large node
degree.!

In summary, the MST stretch improvement over the closest receiver heuristic is rela-

tively small for low occupancy, and is on the order of 20-30%. However, because for some

real topologies the MST heuristic can induce high stress, this makes it impractical.

!The highly overloaded link was between such node and some of its physical neighbor-receiver, because
such neighbor is potentially closer to many other nodes, and therefore it will have much higher degree on
the endsystem tree.

142

5.2 Introduction to Yoid Application-Level Multicast System

The recent interest in application-level multicast [51, 37, 90], or endsystem multicast [98] as
it is sometimes known, is motivated by the disappointing delays encountered in deploying
network-layer multicast [30]. Application-level multicast is an attractive and deployable al-
ternative, because it requires no support from the underlying network. Rather, application
software automatically creates an overlay distribution tree spanning all the participants of
a multicast group and forwards application data over this tree. This software also adapts
the distribution tree to participant dynamics (joins and leaves) and network failures.

We see these application-level systems as being medium-term alternatives, while IP
multicast deployment issues are ironed out, for small group collaboration, and for medium-
sized lecture style applications. More generally, as [37] argues, this kind of distribution
applies not just to traditional multicast applications (like shared whiteboards, and audio
and video conferencing), but also to most forms of content distribution. For example, one
can imagine a Content Distribution Network’s replication network to be built upon such
an overlay [14]. It might also be feasible to implement peer-to-peer file sharing systems on
top of such overlays.

In this work, we discuss the design of networking mechanisms for one kind of application-
layer multicast system called Yoid (Your Own Internet Distribution). We begin by briefly
describing the Yoid architecture in the next few paragraphs.

Similar to IP multicast ([4, 33]), a rendezvous mechanism is an important part of the
Yoid system. Participants in a Yoid group rendezvous through a shared logical label for

the group. In IP multicast, the logical label is a globally unique IP address. In Yoid,

143

however, the logical label for a group syntactically resembles a URL and encodes the name
of a rendezvous host, a port number that the rendezvous host is listening on, and the
name of the group which is unique to the rendezvous host. Thus, a Yoid label of the
form yoid://foo.bar.org/wb:5555 denotes a Yoid group named wb, whose rendezvous
host name is foo.bar.org, and that host is listening on port 5555. Because group names
need not be globally unique, Yoid does not require global coordination in group label
assignment [66].

When a participating host (henceforth, a member) wishes to join a Yoid group, it
contacts the rendezvous host (or simply, the rendezvous). From the rendezvous, it obtains
its own node ID that is unique within that group, as well as a list of some (not necessarily
all) current members. These are the host’s candidate-parents. The host then uses this list
to graft itself, in a manner described later, to the tree topology that is used to distribute
application content. The rendezvous is responsible for keeping its list of members current,
by explicitly checking for their liveness. The rendezvous does not participate in application
content forwarding. It, however, plays a key role in other functions, such as partition healing
and group security; these are discussed more fully in [37]. This design of a centralized
rendezvous host is an obvious impediment to scaling and robustness. The scaling drawbacks
can be alleviated by carefully designing the rendezvous, as Yoid does, so that members only
contact the rendezvous initially or from time to time, and the rendezvous only maintains
state about a subset of the members. Dealing with robustness is slightly more complicated
and described in [37]; we note, however, that failure of the rendezvous only affects the

joining of new members, and does not impact the existing tree.

144

As alluded to earlier, Yoid essentially constructs a shared-tree overlay. Each node on
this shared tree is an endsystem on which a group member resides, and each link is a tunnel
between two members. Such shared-tree overlay construction is not the only way to achieve
application-layer multicast. Another approach, which may be called mesh-first, has new
members establish mesh links to several current members. Over this mesh, all members
run a link-state or distance-vector routing protocol. Using this, members can conspire to
construct distribution trees rooted at each source of data (i.e., source-specific trees). This
is the approach followed in [51].

Despite the superiority of source-specific trees over shared trees for IP multicast in term
of source-destination data propagation latency and data traffic concentration, we contend
that Yoid’s design choice of a shared-tree overlay is actually reasonable, even for latency
and loss-sensitive applications like audio and video conferencing. First, source-specific
application-level trees are very sensitive to actual member placement, and may need fairly
sophisticated metric tweaking in order to work [17]. Given this, it isn’t immediately obvious
that source-specific application-level trees are necessarily better than shared trees. Second,
most commercial server-based H.323 conferencing systems [42] in use today are essentially
shared trees. This is at least an existence proof that shared application-level trees are not
a completely unreasonable design choice.

On the shared tree, application content is flooded. That is, each member receiving
a frame of application data from a neighbor forwards a copy of this frame to each of its
other on-tree neighbors. Yoid defines a fairly complete application-level protocol stack that
allows the transport of application content over the tree. These protocols run over UDP

or TCP and perform several functions. The Yoid Identification Protocol (YIDP) identifies

145

the group that a Yoid frame belongs to, and the sending members. Sitting on top of YIDP
is the Yoid Distribution Protocol (YDP), which provides framing, push-back flow control
between tree neighbors, and sequencing. These distribution protocols are not the focus of
this work, but they are described in more details in [37].

This work explores mechanisms for constructing and maintaining the Yoid shared tree.
How does the Yoid shared tree actually get built? The first member to join the group is
designated by the rendezvous to be the root of the tree. Each subsequent joining member
contacts the rendezvous and obtains a list of current members. The joining member then
selects one of the current members to be its parent. The choice of parent can be dictated by
performance considerations. For example, a member might choose the topologically closest
current member as its parent, if this can be determined (e.g., based on heuristics such
as IP address prefix). Clearly, the choice of parent crucially determines overall perceived
performance; we will return to this subject later. A member is not responsible for finding
children, although it may reject another member that requests to be its child. When a
member loses connectivity to its parent, it attempts to contact other members in order to
select a new parent. When the member switches parents, its relationship with its offspring
is unaffected.

While this tree construction protocol is simple and requires little inter-member coordi-
nation, it presents two challenges.

First, this distributed tree construction is susceptible to loop formation (see Sec-
tion 5.3.1 for an example). To deal with the possibility of loops caused by our simple,
localized tree grafting algorithm, we do not use loop avoidance techniques. Intuitively,

loop avoidance may require a priori knowledge of the overlay topology, or dissemination of

146

“routing” information. Yoid, however, starts off with a very simple method to graft nodes
onto the overlay tree that doesn’t require running a routing protocol. In keeping with this
design, we use a novel loop detection mechanism, together with a technique for fast loop
termination (Section 5.3.1).

Second, the tree construction algorithm described above largely ignores issues of per-
formance. In particular, because Yoid builds overlays using hosts, it can be susceptible to
performance degradation that arise from poor choices of topology.

To take a concrete example, consider a host that is behind a limited capacity broad-
band connection (such as a DSL line). If this host’s fanout in a Yoid tree is N (one parent
and N — 1 children), it requires a bandwidth of N * R where R is the application content
data rate (e.g., an audio stream). If this bandwidth exceeds the capacity of the host’s con-
nection to the network, it adversely affects the perceived performance at all hosts whose
on-tree path to the source traverses this host. One obvious way to avoid this problem is
to have a static fanout limit at each Yoid host. This approach is undesirable because it
may require manually configuring the fanout based on a host’s network connection speed,
and also because the available bandwidth can vary dynamically. Accordingly, Yoid dy-
namically refines the tree based on observed data losses. In Yoid, each host compares (see
Section 5.3.2.2 for details) its loss fingerprints (the specific Yoid data frames lost within
a fixed window), called lossprints later in the text, with those of its neighbors and, if the
lossprints differ significantly, the host decides whether it should terminate the connections
to some of its on-tree neighbors (for example, to reduce its own fanout, or to avoid lossy
links). This kind of topology adaptation is unique to application-level infrastructures. It is

also complementary to congestion control mechanisms that adapt the sending rate of the

147

audio streams to the capacity of the tree. We do not explore such mechanisms in this work,
but they could, in principle be designed by combining ideas from RAP [101] together with
some sort of push-back flow control [37].

To take another concrete example, consider a host behind a high latency network con-
nection, such as a phone-line modem. If the tree construction algorithm results in this host
being near the root of the tree, all hosts downstream of this host with respect to a given
source will observe high latency data delivery. For real-time audio and video conferencing
applications, clearly, this is a problem. Yoid deals with this kind of performance degrada-
tion by dynamic refinement as well. Specifically, Yoid hosts occasionally test new parents
to see if they can consistently deliver Yoid data frames at significantly lower latency, then
switch to these parents (Section 5.3.2.1).

Although we have described the latency and loss-rate refinement algorithms separately,
they are intended to work together to balance reasonable latency performance with low loss-
rate. We illustrate how these algorithms work together in our evaluations in Section 5.4.

In Section 5.4.1 we use simulation to validate the loop-detection algorithm. We also
use simulation to verify, using a scenario-based approach, the design of the tree refinement
algorithms. In addition, we have also implemented a Yoid library to which we have ported
several applications including wb [57], vic [78], and rat [99]. We also present results from
experiments with our implementation (Section 5.4.2).

The importance of our work lies in the context of emerging interest in self-configuring

peer-to-peer distribution systems. In these systems, loop-free rapid topology repair and

148

adaptation to the physical topology will be recurring problems. This work is, to our knowl-
edge, one of the first to explicitly consider these issues, and present simple, implementable

distributed algorithms for these problems.

5.3 Tree Management Algorithms

In this section, we describe our designs for the two mechanisms necessitated by our tree-first
approach to application-level overlay construction. We first describe our loop detection and
fast termination techniques (Section 5.3.1). Then, in Section 5.3.2 we discuss our latency

and loss-rate tree refinement techniques.

5.3.1 Loop-Detection Algorithm

Recall that Yoid’s tree construction algorithm is conceptually very simple. In Yoid, each
node that wants to graft itself onto the tree issues a join request to an on-tree node.
The latter node becomes its parent. A node that detects a failed parent uses the same
mechanism to find a new parent. Finally, for reasons we describe later, Yoid nodes also use
this mechanism to switch parents. In all cases, nodes select prospective parents based on
information obtained from the rendezvous.

If each on-tree node maintains the list of Yoid nodes between the root of the tree and
itself (a list which we call rootpath), there exists a simple loop avoidance technique: a node
accepts a join request only if the originator of that request is not in the rootpath of that
node. If the join is accepted, the parent node’s rootpath is sent to the new child. The child
adds itself to the end of the rootpath it receives from its parent and forwards it to all of

its children.

149

AR, : Rootpath with switchstamps

—= : Parent—child link

----------=: New parent—child link

RCGH : Rootpath sent

RAH
012

RAI

RCG
012 01:

RAIF
lo12
RCGX RCGE --. RAHB /" RAIF
RCGH__ -
012

RCGX RCGE RAHB RAIF
0123 0123 0123 0123

(a) Original Yoid tree. (b) Loop formation: F' selects E as a new par-
ent, H selects F, G selects B.

Figure 5.5: Example of loop formation.

This simple join acceptance rule does not guarantee that there are no loops at all, but
is sufficient to prevent most loops. However, if two or more nodes that are the roots of
different subtrees select new parents at approximately the same time, this rule alone is
insufficient to avoid a loop.

For example, consider the Yoid tree in Figure 5.5(a). If, for some reason, node F
joins F as its new parent, and at the same time H joins F' and G joins B, then a loop
involving nodes EF HBG is formed (see Figure 5.5(b)). At the instant the nodes join new
parents, the parents’ rootpath may not indicate a loop, so the loop avoidance rule described
above doesn’t prevent this loop. However, a possible solution follows from the following
observation. A switch to a new parent triggers the propagation of the new rootpath over
the subtree rooted at that node, therefore if there is a loop the rootpath is propagated back

to the same node that originated it. If a node receives a rootpath that already includes

150

that node inside, this clearly indicates the existence of a loop and forms the basis of Yoid’s
loop detection rule.

Loop termination (i.e., breaking the loop after it is detected) is non-trivial, however. A
simple mechanism to deal with loops would be for a node to switch immediately to a new
parent after it detects a loop. For example, after F', G and H discover the loop, each of
them them would disconnect from its parent (E, B and F respectively), and then would try
to join toward a new parent. However, such actions could result in a significant transient
tree reconfiguration activity. Such activity can result in degraded application performance,
since Yoid frames might be dropped while tree links are in flux.? Furthermore, there is no
guarantee that the new configuration does not contain a loop, so this solution may result
in increased tree convergence time.

We can improve the convergence if, instead of all nodes breaking the loop, only one of
them is selected to break it. The difficult question, then, is how to have all nodes on the
loop agree on which node terminates that loop, without introducing extra control messages
or extra latency.

The solution we propose is to augment the rootpath with a small amount of additional
per-hop information. Specifically, each node has associated with it a so-called switchstamp.
The switchstamp is an integer that is initialized to zero for each node on startup, and is
associated with that node’s ID in the rootpath messages. When a node receives the first
rootpath message from a new parent, the switchstamp for that node is set to be greater than

any of the switchstamps of the nodes in the new rootpath. In other words, the switchstamp

%Yoid, being an application-level system, can reduce such data loss by buffering application content.
However, depending on how these buffers are provisioned, such losses may still happen.

151

is never decremented,® and is never modified by later rootpath messages coming from the
same parent.

The switchstamp is used to help identify the node that should terminate the loop by
selecting a new parent. Recall that from any rootpath message, each node can locally
determine the IDs and the switchstamps of all nodes on the loop. If a node receives a
rootpath containing a loop, the node compares the switchstamps of all other nodes with
its own switchstamp, and if it has the largest one (with tie-breaking based on the largest
host ID), then it selects itself as the loop terminator. Otherwise, the node forwards the
rootpath down to its children, but does not accept new join requests until it receives a
loop-free rootpath message from its parent, an indication that the loop has been resolved.

For example, Figure 5.5(a) shows the initial rootpaths with the switchstamps for some
of the nodes on the tree. Figure 5.5(b) shows the loop that has been formed and the
rootpaths that are sent right after 7', G and H have attempted to switch to new par-
ents simultaneously. The figures also show the internally stored rootpath information for
those nodes. The hop-by-hoop rootpaths propagation is illustrated in Figure 5.6(a), Fig-
ure 5.6(b), Figure 5.6(c), and Figure 5.6(d). Figure 5.6(e) shows what all rootpaths look
like after the three messages originated by F', G and H have traversed the loop to reach
G, H and F respectively. The switchstamps of F'; G and H are the highest among all
nodes on the loop therefore one of them has to break the loop. If we assume that based on
the host IDs H is the winner, then H should terminate the loop by disconnecting from its

current parent F', and should attempt to find another parent (not on the loop) from among

3We assume that the switchstamp space is large enough that it never wraps around within the duration
of a single Yoid session.

152

e : Rootpath update will be sent

R °

‘\ RAHB ~'RCGEF
RCGX RCGE -. /
0123 0123 ... 0123 0123.

(a) The new rootpaths are propagated one hop
away.

RAIFHBG RCGEFH
012343 012344
o .
*(»)
RCGEFHB ~ RAHBGEF
RAHBGX RAHBGE . _ A

012343012343 - 0123443

(c) The new rootpaths are propagated three
hops away.

RCGEFHBG RAHBGEFH
0123443 ®01234344
) o N
e \o
RAIFHBGX RAIFHBGE . RCGEFHB v RA'FHBGEF
0123443 01234343

0123434301234343~._

(e) All nodes that switched to a new parent have
discovered the loop.

RCGEFHBG
0123443 -

RCGEFH
012344
P\ AN

~'RCGEF
0123.

B~ RAIFHB
RAHBGX RAHBGE "~ _ - 012343

012343012343 °

(b) The new rootpaths are propagated two hops
away.

RAHBGEFH
01234344
. o —"" .
. (@

RAIFHBGX RAIFHBGE . _ RCGEFHB
0123434301234343~._ 0123443

" RAHBGEF
012343

(d) The new rootpaths are propagated four
hops away.

Root

oF

STV

RHBGX RHBGE RH RHBGEF

(f) Final tree after loop termination (H breaks
the loop by joining toward R).

Figure 5.6: Example of loop discovery and termination.

153

its set of candidate-parents. In the mean time G and F' will forward their rootpaths down
the loop so even if the rootpath message originated by G did not reach H, then the one
originated by H itself would reach H.* Finally, Figure 5.6(f) shows what the tree looks
like after H has broken the loop and has joined the rest of the tree at node R.

The pseudo-code of the algorithm is relatively simple and is included below.

Loop detection algorithm pseudo-code

// Algorithm for loop-detection
rootpath_recv(rootpath)
{

// Check for loops

loop_found = FALSE;

FOREACH entry IN rootpath {
IF my_id == entry.id {
loop_found = TRUE;

loop_start = entry.next;

BREAK;

}
IF loop_found {
i_break_loop = TRUE;

IF new_parent

“In an earlier version of the algorithm, a rootpath was not forwarded if it contains a loop. However,
when we tried to prove the algorithm correctness, we found that in some complicated scenarios this may
create a deadlock, hence we had to fix the problem by modifying the rootpath forwarding rule.

154

GOTO loop_break;
// Compare switchstamps
FOREACH entry IN loop_start {
IF my_sstamp < entry.sstamp
|| my_sstamp == entry.sstamp
&& my_addr < entry.addr {
i_break_loop = FALSE;

BREAK;

loop_break:
IF i_break_loop {

// Join toward a new parent

RETURN;

dont_accept_joins = TRUE;

GOTO send_rootpath;
}
// A loop-free rootpath
dont_accept_joins = FALSE;
// Set my switchstamp
IF new_parent {

FOREACH entry IN rootpath {

IF my_sstamp <= entry.sstamp

my_sstamp = entry.sstamp + 1;

155

b

send_rootpath:

append (rootpath, me);
FOREACH child IN my_children

send(child, rootpath);

The algorithm properties can be summarizes by the following theorem.

Loop Detection and Termination Theorem

Theorem 1. If two or more nodes using the loop-detection algorithm described in Sec-
tion 5.3.1 select simultaneously new parents such that a loop is formed, then one and only
one of those nodes is implicitly elected to break the loop. The amount of time for that node
to discover that it has to break the loop is no longer than the on-loop hop-by-hop Rootpath

message propagation time.

Proof. A Rootpath message is forwarded by a node to its children as long as it does not
contain a loop, or if this node is not the winner that should break the loop. Therefore, in
the worst case the Rootpath message that was originated by the winner itself will come
back to that node so the winner will initiate the loop break, and the latency is equal to
the on-loop hop-by-hop Rootpath message propagation time. If there was a long-lasting
network partitioning or other nodes on the loop switched to a new parent, the winner may
not receive that Rootpath message; however, such events will effectively break the loop
(e.g., by neighbor timeout in case of network partitioning).

156

If no on-loop node changed its parent after the loop was formed, then the winner on that
loop remains the same node during the lifetime of the loop. Hence, the Rootpath messages
propagation effectively synchronizes the rootpath information for all on-loop nodes, and
only one of those nodes is recognized as a winner. If, due to membership dynamics, a node
switches several times its parent, it may effectively increase its own switchstamp, therefore
the absolute winner may change while the Rootpath messages are in transit. This change
however will not result in several nodes declaring themselves as winners and initiating
loop break. The reason for this is that even if a future winner node W forwarded first a
Rootpath message by another on-loop node before originating its own Rootpath message,
the first Rootpath message will effectively break the loop when received by some other
node. Therefore, the Rootpath message from W cannot complete the loop traversing and
therefore “declare” W a winner as well.?

Finally, the reason that only a node that had switched a parent is elected to break the
loop is because when a node switches to a new parent, the new switchstamp of that node
is always larger than the switchstamps of the nodes above it (toward the root of the tree)
that did not switch to a new parent. Therefore, a node that did not switch a parent will
not have large enough switchstamp to become a winner to break the loop.

O

Obviously, loop termination could have been achieved in a simpler manner, e.g., by
selecting the node with the highest ID. However, such algorithm does not have the following

desirable property. Within a loop, nodes that did not initiate a switch to a new parent

5The assumption here is that the Rootpath messages are not reordered while in transit from a parent
to a child which can easily be achieved when we use reliable transport protocol such as TCP to transmit
the control messages between any two nodes.

157

right before the loop was formed (i.e., nodes that did not “cause” the loop), should not be
the ones to terminate the loop, if possible. This property is desirable because it does not
impact long-lasting virtual links that have already adapted (using the refinement techniques
discussed below) for good performance. The switchstamp-based node election attempts to

more carefully select the node that terminates the loop.

5.3.2 Tree Refinement

Yoid’s tree construction algorithm allows nodes to graft themselves onto the application-
level overlay simply by joining an existing tree node (the parent). Clearly, the choice of
parent is oblivious to performance. As discussed in Section 5.2, this choice can lead to
degraded trees—those that are susceptible to sustained data loss because a node’s tree
fanout exceeds the available bandwidth, or those that experience high latency because
nodes behind high-latency links are placed high up in the tree. Either of these scenar-
ios can adversely impact application performance, particularly that of audio and video
applications.

In keeping with its overall design, Yoid attempts to iteratively and adaptively refine its
tree in an attempt to avoid such performance degradation. Specifically, Yoid’s approach
relies on local observations of data loss and latency. If a node observes high loss or high
latency, it unilaterally decides to correct the situation by switching parents. In this section
we describe these tree refinement algorithms. Before we do so, it is worth emphasizing
that our goal in tree refinement is not to optimize performance, but to avoid unacceptable

scenarios that affect notably the performance. Our local refinement techniques are well

158

suited to this approach; optimizing tree performance might require running a routing al-
gorithm over a richer overlay, as [51] does. Our sense, based on our experience with the
Yoid software, is that avoiding unacceptable scenarios can get us a long way toward having
reasonable levels of performance. It is also worth pointing out that there is some tension
between loss-rate refinement, and latency refinement. For example, one can construct a tree
with low loss-rate by ensuring a chain topology, but this has poor latency characteristics.

Below we describe how we address these issues.

5.3.2.1 Latency Refinement Algorithm

— > Yoid Parent-Child datalink
-------—--= Yoid Parent—Child measurement link

10m 10m 10m

10m 10ms | 10m

10m 10m

10ms|.
80m/\\10ms 80;71/\ Oms 80m 10ms
N
©

Initial Yoid tree: R2 JOIN_MEASUREs to S: R2 switches to S:
S-R1 latency = 110ms Difference between S-R1-R2 S-R1 latency = 110r
S-R1-R2 latency = 200ms and S—-R2 latency = 160ms S-R2 latency = 40m:

Figure 5.7: Latency refinement algorithm: R2 measures the data frames latency difference
between S and R1 and then switches to S.

The algorithm for avoiding latency degradation is relatively simple. Recall from Sec-

tion 5.2 that each node obtains from the rendezvous a list of nodes which it can choose

159

as candidate parents. The list can be periodically updated by explicitly querying the ren-
dezvous to obtain information about new members. Among the nodes on the candidate-
parents list, each node selects a subset as active candidate-parents by opening a tentative
Yoid link® to each of them. Over a tentative link, an active candidate-parent forwards a
sample (one in N, where N is a tunable algorithm parameter) of data frames to the node.
Then, the node timestamps the exact time when the frame arrives, but does not forward
data frames received over tentative links. It also timestamps the same data frame when
it arrives on the data distribution tree.” If, averaged over some number of data frames,
the latency difference between data frames received on the tree and data frames received
from an active candidate-parent is above a certain threshold, the node switches to the
new active candidate-parent. In addition, the node also disconnects from its worst active
candidate-parent and tries to open a connection to another candidate-parent; this ensures
that over time a node can explore many candidate-parents and will eventually find the
most appropriate. Our approach is similar in spirit to the multicast join experiments for
detecting congestion levels [79], and the sensor net reinforcement algorithms for finding the
best performing path [54]. Because our focus is on avoiding degradation, and not optimiz-

ing performance, it is reasonable to expect that the node will converge quickly on a “good

enough” parent. Indeed, our simulations bear this out.

5These tentative links also allow Yoid to quickly recover from parent failures.

"Each data frame has an unique (per sender) ID, therefore the IDs of the data frames that need to be
timestamp can be computed from the pre-defined N.

81If there are several senders, the latency difference is averaged among them. One alternative is to try
to optimize for the notably worst sender, but that solution may result in oscillations.

160

The algorithm can be understand better with an example. Figure 5.7 is an example of
how the data delivery latency from S to R2 can be improved from 200ms (the Yoid tree on
the left) to 40ms (the Yoid tree on the right) by avoiding the 80ms long-latency edge link.

The algorithm has several parameters, the settings of which determine its efficacy. The
first is the latency difference threshold which determines whether an active candidate-
parent is desirable. Because our goals is to avoid worst-case placements, such as tree links
that cross transcontinental links twice, or tree links that span dialin lines, we choose a
relatively large value for this threshold (50ms). This choice is in keeping with transconti-
nental propagation delays of tens of milliseconds, and dialin line equalization latencies and
scrambling /descrambling latencies of the same order. Two other parameters that affect
how quickly nodes converge to acceptable latencies are the sampling rate of data frames
over tentative links, the number of active candidate-parents, and the number of nodes for
which a node can be an active candidate-parent. We choose 1-in-100, 5 and 5, respectively
for these, based on our simulations. This choice limits the overhead of the algorithm to
about 5% of overall data, traffic.?

Even though the algorithm is designed to eliminate the impact of single long-latency
links, in practice it also reduces the depth of the tree by short-cutting a long chain of

upstream nodes, therefore effectively reducing the average end-to-end latency as well.

5.3.2.2 Loss-rate Refinement Algorithm

The basic idea behind the loss-rate refinement algorithm is that each node monitors its

data losses (based on the recently received data frame IDs), and if the losses are above

9Strictly speaking, an active candidate-parent does not need to send the whole data frame, but only
the sender ID and the data frame ID, therefore the overhead can be even lower.

161

a threshold, it joins toward a new parent (or forces a child node to find a new parent if
the data is received via that child). However, this mechanism alone is insufficient, since
it does not detect which link is responsible for the losses. Thus, a lossy link close to the
sender may result in all downstream nodes trying to switch to new parents. Furthermore,
if the problem was because of a congested edge link of a parent node with a large number
of children, then all its children may try to switch to new parents, when it may suffice for
only one or few of them to switch parents.

The solution we propose is for each node to coordinate with its neighbors in order
to determine the location of the loss, and decide who should switch parents. To achieve
this, each node periodically exchanges lossprint information with its neighbor. A lossprint
specifies the number of data frames received within some window of data frame IDs. If
high data losses are observed,'? the lossprint information is used to locate the lossy link.

If an upstream and a downstream nodes with respect to a particular sender'! both
share similar losses, then the lossy link is very likely located closer to the sender. A
notable exception is if there is a node with a large fanout: that node and its downstream
nodes may share similar losses, but the problem is “between” them. Therefore, in Yoid, an
upstream node collects and compares the lossprints from all of its downstream nodes, and
if all of them have high losses, then one or several of the downstream nodes are “kicked-out”
to reduce the upstream node fanout (unless there is information that the losses are indeed
somewhere upstream). However, if there is only one downstream node with high data

losses, i.e., if the high losses are not shared among several downstream nodes, then very

10Currently, the threshold for high data losses is 5%.
11n case of bi-directional shared trees such as the one used by Yoid, the data from a sender can come
from any neighbor.

162

likely the losses are because that particular downstream node has large fanout. Therefore,
the disconnection of that node it temporary postponed, giving it some time to reduce its
own fanout and to eliminate the losses. If the losses continue to be persistent, then the

node is “kicked-out,” because quite likely the particular link to that node is lossy.

—— : Data flow ---= : Lossprint report
e . Congested link

C, D and E observe data losses due Each node sends Lossprint mess:
to a link congestion. to its upstream and downstream
neighbors.

Figure 5.8: Loss-rate refinement algorithm: initial setup and lossprint messages origination.

The algorithm can be illustrated better with an example. Consider the setup in Fig-
ure 5.8 where S is the sender and the upstream node for of A, A is the upstream of B
and C, and C is the upstream of D and E. If we assume that the edge link of C is a low-
bandwidth link, then it may not be able to carry three times the data bandwidth (once
from A to C, then from C to D and E respectively).

Due to the link congestion, C, D and E will all observe data losses. Therefore, when
each of the nodes sends its lossprint to its upstream node and downstream nodes, A will
learn that C' observes high data losses, and C' will learn that it shares similar losses with
D and E. However, A will also learn that its second downstream node B does not share

163

—— Data flow —— : Data flow

%@
0

il
omae

=0

1%

d
gt

C discovers that it shares similar E rejoins the tree (e.g., from |
losses with its downstreams D and E, and no more losses because
but A postpones any action. After a C’s fanout.

while, C kicks—out E.

Figure 5.9: Loss-rate refinement algorithm: C'; D and F reorganize to reduce the load on
the congested bottleneck link.

similar losses with C, therefore A will postpone taking the action of kicking-out C. In
the mean time C will kick-out the downstream node with the worst losses (node F in this
example), After E is disconnected from the tree, if it was a child of C, it must connect
quickly back by selecting a new parent, otherwise C' is the one that will have to find a new
parent on the Yoid tree. After F chooses D as its new parent, the tree has converged and

there are no more losses because of C’s large fanout (see Figure 5.9).

5.3.2.3 Discussion

Both tree refinement algorithms are data-triggered; in other words, if there is no active
sender, the tree will not change. This has its advantages and disadvantages. On one hand,

if the group is idle for long time, then there is no need to reorganize the tree, especially if

164

we want to minimize the amount of extra control traffic. On the other hand, if the tree has
undesired characteristics and if we wait for the senders to start sending data to improve it,
there is a transient period of poor performance until the tree adapts.

The tree refinement algorithms (latency and loss-rate) are independent of each other,
but because both of them are running at the same time we can consider them as two
forces that define the tree shape. The first force, the latency refinement algorithm tries to
improve the end-to-end latency by effectively reducing the tree depth. At the same time
the second force, the loss-rate refinement algorithm restricts the maximum fanout of the
nodes behind low bandwidth links. Thus, Yoid implicitly considers both metrics (latency
and throughput) in constructing the application-level overlay.

Finally, we should note that both the latency and the loss-rate refinement algorithms are
local, involving coordination only between a node and its neighbors. Therefore, because
our goal is avoidance of worst-case performance, there is a reasonable expectation that
these local algorithms will converge quickly. On the other hand, strictly speaking, the
loop termination algorithm is not local. For example, in the worst case, if all participants
create one single loop, then each of the participants would use information about all other
participants to decide whether it would be the node to break the loop. However, it is only
the information that is “global,” an artifact from the particular mechanism that is used.
Apart of that, the mechanism does not rely on any explicit global methods, therefore it is
reasonable to expect that it would not result in long convergence time. This is confirmed

by the performance results described in the next section.

165

5.4 Performance Results

In this section we describe the results of several experiments we conducted to validate
the design of the tree management algorithms, and to understand the impact of various
parameter settings. Our first set describes results from a Yoid simulator. Then, we report

the results of Yoid experiments over the Internet.

5.4.1 Simulation Results

For our simulations we developed a packet-level simulator. The inputs to the simulator
include the underlying network topology and the placement of the Yoid nodes. Each of
the selected Yoid nodes is running the Yoid stack. All packets are handled by the topology
routing engine. The engine forwards the packets hop-by-hop, and at each hop it considers
the latency and the bandwidth of the topology link to propagate or queue the packets.
There is also a simple queueing mechanism (FIFO) which tail-drops the packets if the
queue is full. In all simulations the queue size is 1000 packets.

For most simulations we use a real-world router-level topology. The topology is same
as the Internet core topology described in Section 3.3.2. However, after we select location
of Yoid nodes in the topology, we add an extra leaf node to each location, and those extra
nodes are the Yoid members. This step helps us simulate bottleneck edge links.

In all simulations we use constant-rate 9kbps traffic of packet size of 50 octets which
approximately models the audio traffic generated by RAT [99] with low-end GSM encoding.
In most cases we use 200 receivers placed at random.

In our simulations we consider two metrics. The average end-to-end latency is computed
as the sum of the pre-configured latency on each link from all sender nodes to all receivers,

166

YOID and unicast average latency YOID worst-case loss-rate

1200 " ; . . 1 . . . ; , : .

- YOID average latency—x— YOID loss-rate (max.)—»—
a Unicast average latency—5—
@ 1000 1 - 0.8
7]] .
£ c
E 800 €
> & 0.6 -
& 600 %
?“; 5‘3 04 r
=) 400 =]
9
Z 200§ 02}

3| |

o 0 . & PR P O O RO S
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Time (seconds) Time (seconds)
(a) Average latency (b) Worst-case data losses

Figure 5.10: Simulation results: sender and 25% of receivers behind 40kbps/80ms links.

and then averaged across all senders and receivers. The worst-case data loss-rate represents
the largest loss seen at a receiver in a window of 10 seconds.

In most simulations we did not observe any loops. In some, however, we saw 1 or 2
loops formed per simulation run, and these were quickly resolved within the order of few
hundred milliseconds. We do not further discuss loop convergence.

In the following paragraphs, we discuss the performance of Yoid’s tree refinement algo-
rithms across a wide variety of scenarios.

In the first simulation we test the Yoid performance with typical setup when a number
of members are behind bottleneck links. In this scenario, the edge links of 25% of all
Yoid nodes have bandwidth capacity of only 40kbps and link latency of 80ms. The rest
of the links in the topology have bandwidth capacity of 1Mbps and latency of 10ms. This
scenario is intended to model a Yoid group with many receivers behind low bandwidth and
high latency bottleneck links such as dial-up phone modems. Initially, all receivers join

the tree one-by-one with an interval of 1 second between them. Then, 300 seconds after

167

YOID and unicast average latency YOID worst-case loss-rate

1200 T T T T 1 T T T T T T T

PR YOID average latency—x— YOIP loss-rate (max.)—»—
a Unicast average latency—5—
® 1000 1 _
@ P
£ c
E 800 €
& g
& 600 Py
ks]
° 9
g 400 g
g >
< 200 }

R 3|

O L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000
Time (seconds) Time (seconds)
(a) Average latency (b) Worst-case data losses

Figure 5.11: Simulation results: 25% of receivers are members for only 1000 seconds.

the last member joins the tree (500 seconds from the beginning of the simulation), that
last member starts sending data. To stress the mechanisms further, the simulation is setup
such that the sender is behind a bottleneck link as well.

The results for the average latency and worst-case data losses are in Figure 5.10(a) and
Figure 5.10(b) respectively. The average latency results show that before the sender starts
sending data at time 500, the average sender-to-receivers Yoid latency can be on the order
of 10 times larger than the average unicast latency between sender and receivers. This
difference is not a surprise, because basically the tree is created at random and latency
refinement hasn’t had a chance to work. After the sender starts sending data, eventually
both the latency and loss-rate refinement algorithms are triggered. Indeed, we can see
a drastic drop in the Yoid average latency from 1000ms down to 260ms (compared to
the 110ms unicast latency). After that the tree has almost converged, and there are few
changes. During the rapid tree improvement the worst-case loss-rate for some nodes is close

to 100% (Figure 5.10(b)), primarily due to transient packet losses when a large number of

168

members almost simultaneously select and switch to new parents. After that, most of the
losses are negligible, and occur when a member selects a new parent to improve its data
delivery latency. However, over time there were few occasional high losses as well (see the
spikes at time 1400, 2500 and 3300 in Figure 5.10(b)). The reason is that typically the
sender behind the bottleneck link would have the maximum number of on-tree neighbors
that its bottleneck link can support. However, from time to time other members would try
to select the sender as a parent, as determined by the latency refinement algorithm. When
an extra child joins the sender, the bottleneck edge link of the sender becomes congested,
and therefore its children observe high data losses. In that case, the loss-rate refinement
algorithm is triggered, and the new child, being the one that has been for very short amount
of time connected to the parent, is disconnected and forced to select a new parent. Here
we should emphasize that usually the worst-case losses are observed by a fraction of the
Yoid nodes; indeed, when we looked at the average losses, they were significantly lower; for
example, the average loss-rate during the spikes of the worst-case losses are on the order
of 5-10%. For this typical scenario, we conclude that the Yoid tree refinement algorithms
work well to reduce the tree latency without affecting loss performance.

The second simulation setup is same as the first one except that after 1000 seconds
25% of the receivers start leaving the group, one-by-one with interval of 4 seconds between
them. The results for the average latency and worst-case data losses are in Figure 5.11(a)
and Figure 5.11(b) respectively. Soon after the members start leaving at time 1000, there
are nodes that observe high losses due to the temporary tree partitioning. However, in
most cases there are just few on-tree nodes that are affected by a node that has just

left the group. Soon after all 50 nodes have left the tree (approximately 1200 seconds

169

YOID and unicast average latency YOID worst-case loss-rate

1000 T T T T 1 T T T T
- YOID average latency—x— YOID loss-rate (max.)—»—
9 900 Unicast average latency—5—
& 800 < 08¢
£ c
g 700 E
> 600 % 0.6 -
& 500 Py
ks]
o 400 S 04}
=) [a]
& 300 o
: 200§ > o2}

100

0 1 1 1 1 1 1 1 0 A R
0 500 1000 1500 2000 2500 3000 3500 4000 0 00 3 3500 4000
Time (seconds) Time (seconds)
(a) Average latency (b) Worst-case data losses

Figure 5.12: Simulation results: two senders, 25% of receivers behind 40kbps/80ms links.

from the beginning of the simulation), the worst-case losses become sporadic. Apart of
the higher losses while members are leaving the group, the rest of the results are very
similar to the previous simulation without member dynamics. Thus, Yoid’s refinement
algorithm maintains tree performance (modulo transient losses which we can alleviate with
application-level buffering, Section 5.2) across membership changes.

Finally, the third simulation setup is same as the first simulation (25% of receivers are
behind 40kbps 80ms links), except that now there are two senders (the first and the last
members) instead of one, and each of them is sending with bandwidth rate of 4500bps so
the total bandwidth is same as in the first simulation with a single sender. The results
for the average latency and worst-case data losses are in Figure 5.12(a) and Figure 5.12(b)
respectively. When we have more than one sender, we can see that the average latency
of the Yoid tree increases from 260ms to approximately 350ms, which is not unexpected,
because now the data distribution tree has to be “balanced” among the senders. Another

interesting observation is that with two senders, the spikes in the worst-case losses have been

170

reduced notably (compare Figure 5.10(b) with Figure 5.12(b)). One possible explanation
for this is that fewer members would select one of the senders as their parent, because it
is less likely that would improve their overall data propagation latency if we consider the
second sender as well.

We actually performed several more simulations, whose results we summarize in the
next few paragraphs.

To stress the loss-rate refinement algorithm, we use a setup similar to the first simu-
lation, except that the selected bottleneck links have capacity of only 15kbps, but their
latency is reduced to 10ms. Thus, a member behind a bottleneck link cannot have more
than one on-tree neighbor without introducing significant losses. In this case, we observed
that the average tree latency increased from 260ms to approximately 300ms, primarily due
to the fewer choices there are to interconnect the members. However, the time duration
length of the spikes with the data losses increased approximately twice and reached 100%
losses (even for the average losses). The reason is that now the sender bottleneck link
is much more fragile, and after it is congested, not only it will take longer to return to
its non-congested state, but disturbing the single outgoing data flow from the sender will
affect all members equally.

To stress the latency refinement algorithm, we increase the latency of the same edge
links as in the previous simulation to 80ms, but at the same time we increase the link
bandwidth to the default of 1Mbps. In that case the average latency was lower, on the
order of 210ms, but the worst-case losses were much smaller (i.e., on the order of 10% right

after the sender was activated, and no spikes were observed after that). The reason for

171

that is because we have much more flexibility about the number of children a parent node
can have.

To test the sensitivity of the latency refinement algorithm to the latency improvement
threshold, we use setup same as in the first simulation, except that the latency improvement
threshold is 5ms instead of 50ms. Because 5ms is smaller than the latency of any single
link, the expectation is that the average latency will improve and will become closer to
the unicast average latency. However, it turned out that the results are very similar to the
previous results with 50ms threshold. This suggests that the bandwidth limitation of the
bottleneck links is the dominant factor in defining the shape of the data propagation tree.

On a smaller group of 28 members, the average Yoid tree latency was on the order of
180ms (versus 100ms for unicast), and there were almost no losses. Even during the rapid
tree reconfiguration right after the sender was activated, the worst-case losses were below
5%. This result suggests that on smaller groups such as desktop conference meetings Yoid
would perform much better than the results we have demonstrated with 200 members.

We tried other member placement as well-extreme affinity, extreme disaffinity, extreme
clustering (see Section 3.2.3), and in all cases the results were similar to the results with
random member placement. We tried also some other topologies—Mbone, AS, random
graph, generated power-law graph,'? with various member placement. For all topologies,
the results were qualitatively similar to the Internet-core results. This result suggests
that Yoid tree management algorithms are robust for a variety of topology and member

placement.

12Gee Section 3.3.2 for some of their metrics.

172

5.4.2 Experimental Results

65/75ms
C D
40/55ms
B
A 75/85ms 75/85ms

S

(a) Initial setup (b) Yoid topology after latency refinement

Figure 5.13: Latency refinement experiment topology.

To verify how the tree refinement algorithms work in practice, we created two real-world
experiments over the Internet with our Yoid implementation. Our experiments validate the
overall design, and show how our algorithms handle real world artifacts, such as abnormally
configured unicast routing and asymmetric access links.

For the first experiment we explicitly setup a number of hosts in the Yoid tree topology
shown in Figure 5.13(a), where S is the sender and the root of the tree, and all other
hosts are receivers. Node S and A are on the same LAN on the South-West coast of the
US, C is on the North-West coast, D and F are on the same LAN on the East coast of
the US, and B is in the UK. Some of the ping-measured end-to-end latencies (computed
as half of the round-trip time) are shown in the figure, including the latencies in both
directions if they differ notably. Approximately one minute and a half after S began
sending data at approximately 4kbps constant-rate (5 packets/s, 64 octets data payload),
all of the nodes collected several samples from their active candidate-parents. We expected
that only C' would select A or S as its new parent, and no other tree changes would

occur. Surprisingly, first £ selected A as its new parent despite the fact that the average

173

YOID member data delivery latency

S
2 200 ‘ ‘ ‘ ‘
g Sender-receiver latency +
E 180p+
8 160}
(2]
b=
3 140 Hill
> 120t
c
100 +
k=
> 80
2 60 .
S 40t +
©
T 0| ee————
D L L

0

0 200 400 600 800 1000 1200 1400
Time since first packet (seconds)

Figure 5.14: Latency refinement experiment result.

improvement seemed to be below the 50ms threshold. A closer investigation suggested
that the reason is probably the unusual underlying unicast routing (hosts B, D and E are
part of the CAIRN experimental network [7]). First, the unicast paths from A to D and
FE are 9 hops, while the paths in the opposite directions are 15 and 16 hop respectively!
Second, even though D and E are on the same LAN, their paths to A are different, and
as a result there was notable difference in the latency: from D to A the round-trip time
was 110ms, while from F to A it was 80ms. Therefore, asymmetric routing, as well as
the different paths that are used may have resulted in larger difference in the one-way
propagation latency from A to D and FE than the difference we have estimated based on
the round-trip time. Soon after F selected A as its parent, C' selected A as its parent as
well. Interestingly, soon after that D selected E as its new parent. After that no changes
were observed, and the tree converged to the one shown in Figure 5.13 (b). Figure 5.14

shows how the data propagation latency'? from S to C' changes over time (note the 130ms

13The propagation latency is computed based on the absolute time difference measured by the sending
and receiving hosts, but despite that the hosts are running NTP [83], only the relative time difference
change should be considered accurate.

174

. YOID member data delivery latency ."g YOID member packet losses (accumulated)
(8] X
@ T T T T 3500 T T T T
g 14000 F Sender-receiver latency + § Accumulated losses—x—
Pt 5 3000]
& g
S 2 25001
S 2
g 2000 ¢
8]
5] L
= g 1500
E B 1000}
G o
o =]
P E 500
a g S
0 100 200 300 400 500 600 0 50 100 150 200 250 300 350
Time since first packet (seconds) Time since first packet (seconds)
(a) Data delivery latency (b) Accumulated packet losses

Figure 5.15: Loss-rate refinement experiment results.

latency improvement approximately 80 seconds after the sender was activated). During
the experiment, only one packet was lost by a member (D), probably because of switching
parents, but if the sending rate were higher we would expect greater packet loss.

For the loss-rate adaptation experiment we set up a Yoid tree similar to the one in
the example in Figure 5.8, where C' is a host behind an ADSL link with bandwidth of
384+ /128kbps downstream and upstream respectively. Initially, all nodes joined the group,
except E. After the sender began sending data at the rate of approximately 75kbps (80
packets/s), no notable losses were observed, and the propagation latency was on the order
of tens of milliseconds. However, after F joined the tree (it was explicitly configured to
select C' as its parent), the ADSL link became congested, because the outgoing traffic was
higher than the upstream bandwidth capacity of the link. Figure 5.15(a) shows how the
data propagation latency observed by E quickly increased to approximately 14 seconds.!*

Soon after that the link began to drop packets, and both D and E observed high losses.

'We wanted to test the loss-rate refinement algorithm only, therefore we explicitly disabled the latency
refinement algorithm; otherwise, F may have switched to a new parent with the help of the latency
refinement algorithm instead of the loss-rate refinement algorithm.

175

Figure 5.15(b) shows the accumulated packet losses for E. Node C' itself did not observe
any losses because the downstream and upstream bandwidth capacity are independent,
therefore soon after C received the lossprint control messages from D and F that indicated
high losses, C “kick-out” F, because both D and E had similarly high losses, but £ had
been a child of C for much shorter time. After E was forced to find a new parent, it selected
node D, and no significant losses were observed after that. The total amount of time
between when FE joined the group and when it switched to a new parent to eliminate the
losses was about 90 seconds. In some earlier experiments with a different ADSL line that
had same bandwidth capacity, we observed that the line became congested much faster,
and packets were dropped very soon. In this experiment, it seems that the router on the
other side of the DSL link was queueing much more packets, therefore for more than 20
seconds D and E observed long propagation latency due to the large queue, but no losses.
If the router was dropping the excess packets instead of queueing them for very long time,

the amount of time for E to switch to a new parent would have been shorter.

5.5 Conclusions

In this chapter we studied the problem of tree construction and management for application-
level multicast. First, we studied the inefficiency of application-level multicast in general
for a variety of topologies, and we found that in most cases the inefficiency can be within

a factor of 2.5-3.0 compared to network-layer multicast.

15In fact, it was explicitly configured to select node D, so we could stress further the mechanism;
otherwise, it may have selected some of the nodes closer to the sender.

176

Encouraged by those results, we attempted to design practical mechanisms that can
be used to achieve similar performance in reality. We designed, within the framework of
Yoid application-level multicast system, a set of algorithms that can be used for rapid
management of the application-level multicast data delivery tree, and for refining the tree
characteristics in term of end-to-end propagation latency and data losses. The simulation
results demonstrate that the end-to-end propagation latency indeed can within a factor of
2 of the unicast latency, and at the same time the losses due to bottleneck links can be
minimized. The mechanisms we use are adaptive, and in our simulations we demonstrate
that the performance is not impacted by the underlying topology or the placement of the
participants. We also used real-world experiments to verify how those algorithms can work
in practice. The tree management mechanisms are implemented and are used in Yoid
application-level multicast system.

By this study, we demonstrate that if we use the appropriate end-to-end mechanisms,
we can achieve reasonable performance, and if the mechanisms are adaptive, they can
reduce the impact of the underlying topology or participant placement on the protocol

performance.

177

Chapter 6

Related Work

6.1 Multicast Forwarding State Aggregation Related Work

Multicast forwarding state scalability is analyzed in greater details in [131] by taking into
account receiver placement and membership interest. Various topologies (Tiers, Transit-
Stub, Mbone and AS) are considered as well. One of their findings is that there is difference
in state among the topologies, and one of the reasons for this is the difference in node-
fanout distribution among topologies. Further, increasing network connectivity increases
the amount of state in few core routers or domains, but reduces it everywhere else. This is
the only work we are aware of that has studied the topology impact on multicast forwarding
state aggregatability. Our study is complementary to theirs.

To our knowledge, leaky multicast forwarding entry aggregation has not been studied in
the literature. However, several other forwarding table compaction approaches have either
been implemented or considered in the literature. We discuss these now.

One alternative to aggregation is to only cache forwarding entries of currently active

multicast groups. By active, we mean those groups for which a router received data in

178

the recent past. The cache entries are populated from a routing table held in slower,
less expensive memory. However, this approach only works when there is sufficient traffic
locality to maintain high cache hit ratio. As the number of concurrently active groups
increases, the degree of traffic interleaving will grow, requiring a large cache to achieve
good hit ratios. Conversely, because each cache miss results in slow path router forwarding,
router performance can degrade with an increase in the number of groups.

A number of papers ([28] [126] [85] [67] [109]) describe software based solutions that
use carefully chosen data structures to reduce the size of the unicast forwarding table such
that it fits in on-chip caches. Accesses to such cache are fast, allowing very high-speed
unicast packet forwarding even without expensive lookup hardware. These solutions are
attractive because of their flexibility, but unfortunately they are limited by the capacity of
the CPU cache. The number of unicast forwarding entries that can be stored in the CPU
cache is on the order of 100,000. This is an order of magnitude or more smaller than the
possible number of multicast forwarding entries.

A hybrid hardware/software approach is described in [40]. Using some simple additional
hardware and a reasonable amount of cheap memory (33 MB of DRAM for IPv4), the
lookup can be completed by using only 1-2 memory accesses (50-100 ns, i.e. 10-20 Gbps
lookup bandwidth) to slower main memory. This type of solution can be used to store a
much larger number of entries (several million entries), but may not be flexible enough to
accommodate the expected size of multicast forwarding tables.

Study [118] is the first work we are aware of that addresses directly the problem of
reducing the number of multicast forwarding entries. The basic idea is to dynamically

establish tunnels that bypass the routers with fanout of only one outgoing interface for

179

a given group. To accomplish this, however, the multicast routing protocol needs to be
modified, and there is the additional encapsulation/decapsulation overhead per data packet.
Also, this solution is not beneficial if the fanout of the forwarding state is more than one.
Nevertheless, this solution can be applied together with the leaky aggregation scheme we
have studied.

The basic idea in REUNITE [111] is similar to [118]: bypass the routers with fanout on
the multicast tree of only one outgoing interface by using unicast to the next downstream
router that has more than one outgoing interfaces. The mechanism to unicast the packets
is different and does not use dynamic tunneling.

Distributed Core Multicast (DCM) [6] proposes a mechanism to setup a number of
core routers in each area at the edge of the backbone. The DCM routers act as backbone
access point for sender inside their area, and outside receivers. A special protocol for
receiver membership and data distribution is run among the DCM routers. This protocol
eliminates the need for any non-DCM backbone router to perform multicast routing.

Study [116] proposes and analyzes a mechanism for per-interface state aggregation. The
assumption is that the router multicast lookup is designed as “filters” on each interface.
This design has the advantage that it can be fast and easy to implement on high-end
routers that can have a separate CPU and lookup table on each interface, but its drawback
is that it imposes a specific architectural choice. The state aggregatability is analyzed with
different multicast address allocation schemes and receiver placement, but the impact of
topology is not considered. Their results demonstrate that it is possible to achieve some
aggregation, even though not dramatic, and qualitatively they match our entropy-based

results.

180

6.2 Replica Placement Related Work

A number of papers have studied the impact of Web server replica or cache placement on
performance. Note that some of the recently published papers are independent studies, but
have notable similarity in problem formulation and final results. The replica or cache place-
ment problem can be modeled after the center placement problem, a well-known problem
in graph theory, and in particular two of its variations: the facility location problem, or the
minimum K-median problem [22]. A number of approximate solutions have been proposed
in the past [125], but they are either very computationally expensive, or are difficult to
apply in practice.

Krishnan et al. [65] study the problem of placing transparent en-route network caches
(TERCs), and in particular how various placement methods can be used to reduce the
network traffic or the average access latency. Unlike our work where we assume the replicas
can be placed anywhere in the network, their work restricts the caches to be only on the
path between a client and the server. The topology-based evaluation is performed by using
traceroute-collected Internet trees; other topologies are not considered.

Qiu et al. [95] consider the problem of placement strategies for Web server replicas
within the context of CDNs that offer Web server hosting services. They propose several
placement algorithms, including a simple greedy placement which we use in our work, and
which is very similar to the greedy algorithm in [65]. They find that this greedy algorithm
performs very well in practice (typically within a factor of 1.1-1.5 of the optimal solution).

Further, its performance is relatively insensitive to imperfect input data such as client

181

locations and network topology information. However, this study does not consider node-
fanout based placement. Similar to our study, the evaluation metric is relative performance.
In their study they use random trees, random graph and AS topologies, and the results for
all topologies are qualitatively similar, which supports our thesis that for relative metrics
the topology impact is relatively small.

The study by Jamin et al. [60] is similar to [95]. Their work examines the impact of the
number of replicas on the performance of various replica placement methods. Their main
finding is that, regardless of the placement method, increasing the number of replicas is
effective in reducing client download time only for a very small number of replicas. In their
study they use power-law generated topologies, as well as Internet traces. They also discuss
an AS-level fanout-based placement, in which replicas are placed within ASs in decreasing
order of node degree on the AS topology. The results suggest that the AS-level fanout-
based placement can perform almost as well as the greedy placement. Our study on replica
placement is centered around this finding, and we try to verify it through more detailed
simulations by using router-level Internet topology, instead of only AS-level topology, and

by exploring in more details the impact of various replica and client placement methods.

6.3 Reliable Multicast Related Work

Previous work on reliable multicast that compares router assisted with non-assisted schemes
is [88]. However, the comparison there is limited in scope compared to our work. For
example, network overhead is not considered, and the used topologies are much smaller
(approximately 200 nodes) generated topologies, while in our study we use a variety of
topologies—canonical, generated and real-world, including a large (over 50K nodes) real

182

world router-level network topology. Moreover, in our work we have added analysis to
complement our results.

We now briefly describe some of the latest proposals for reliable multicast and point
out relations to our ALH and RAH schemes. While our list is not exhaustive, it covers a
broad range of current proposals. We begin with the non-assisted schemes first.

SRM |[36] employs two global mechanisms to limit the number of messages generated,
namely duplicate suppression and back-off timers. In SRM, recovery messages (requests
and replies) are multicast to the entire group; receivers listen for recovery messages from
other receivers before sending their own, and suppress duplicates. Thus, SRM creates a
virtual hierarchy on the fly every time there is loss in the group. However, lack of scoping
means that requests and retransmissions generated by SRM will reach the entire group.
Local recovery methods have been proposed for SRM [73], which bring SRM closer to our
ALH scheme.

RMTP [72] is a typical example of a static hierarchical scheme which closely resembles
our generic ALH scheme. The group is manually configured into Designated Receivers
(DRs) and their children. DRs and their children form local groups. The source multicasts
data to all receivers on the global group, but only the DRs return acknowledgments. Chil-
dren unicast acknowledgments to their DRs, which schedule retransmissions using either
unicast or local multicast depending on how many requests a DR has received. The Log-
Based Receiver-reliable Multicast (LBRRM) [49] is another example of a static hierarchical
scheme. LBRRM uses a primary logging server and a static hierarchy of secondary logging

servers which log all transmitted data. Data is multicast from the source to all logging

183

servers and all receivers, but only the primary logging server sends acknowledgments. Re-
ceivers request lost data from the secondary loggers, and in turn the secondary loggers
request lost data from the primary logger.

The Tree-based Multicast Transport Protocol (TMTP) [132] is another example of an
ALH scheme, but it uses a dynamic hierarchy. In TMTP, new members discover parents
using an expanding ring search. Each endpoint maintains the hop distance to its parent,
and each parent maintains the hop distance to its farthest child. These values are used
to set the TTL field on requests and replies to limit their scope. LGMP [48] is another
hierarchical, subgroup-based protocol, where receivers dynamically organize themselves
into subgroups by selecting a Group Controller to coordinate local retransmissions and
process feedback messages. TRAM [16] is another dynamic tree-based protocol designed
to support bulk data transfer. The tree formation and maintenance algorithms borrow from
other schemes like TMTP, but TRAM has a richer tree management framework. TRAM
supports member repair and monitoring, pruning of unsuitable members, and aggregation
and propagation of protocol related information.

Moving to router-assisted schemes, Addressable Internet Multicast (AIM) [68] is a
scheme that uses forwarding services that require routers to assign per-multicast group
labels to all routers participating in that group. AIM uses these labels to send a request
towards the source which get redirected to the nearest upstream member. If data is avail-
able, the NACK receiver responds with a retransmission which is also forwarded according
to the router labels. AIM is very similar to our RAH scheme. Active Error Recovery

(AER) [63] is another scheme that is very similar to our RAH scheme. In AER, each

184

router that has a repair server attached periodically announces its existence to the down-
stream routers and receivers, and serves as a retransmitter of the lost data on the subtree
below it, or collects and send NACKs upstream. OTERS [71], uses a modified version of
the mtrace [11] utility to build the hierarchy by incrementally identifying sub-roots using
back-tracing. For each subroot, OTERS selects a parent. Unlike our RAH scheme, OT-
ERS assumes the responsibility of discovering the topology and keeping track of changes
in the structure of the underlying multicast group. Similar to OTERS, Tracer [69] also
uses mtrace to allow each receiver to discover its path to the source. Once the path is
discovered, receivers advertise their paths to near-by receivers using expanding ring search.
Once receivers discover nearby receivers, they use the data from the traces and their loss
rate to select parents.

Finally, PGM [108], unlike the schemes described earlier, peeks into transport headers
to filter messages. NACKs create state at the routers which is used to suppress duplicate
NACKSs and guide retransmissions to receivers that requested them. PGM creates a hier-
archy rooted at the source, but provision is made for suitable receivers to act as Designated

Local Retransmiters (DLRs) if desired.

6.4 Application Level Multicast Related Work

Recently, there has been significant research activity in application-level multicast archi-
tectures. Among these, Narada [51, 17] is architecturally the closest to Yoid, but its design
is very different. Yoid creates a single shared tree per session, while Narada creates multi-

ple, source-specific trees. The tree construction is different as well. In Yoid the “tree-first”

185

approach creates first the tree, and then the tree is gradually refined. In Narada the “mesh-
first” approach creates first a virtual mesh among all participants, and then a distance-
vector protocol with a dual latency-bandwidth metric creates the tree. The mechanisms for
measuring the latency and bandwidth are also very different. Narada uses active probing
to determine available network bandwidth, while Yoid passively measures data losses to
locate bottleneck links; on the other hand, Narada measures the absolute latency of each
link, while Yoid considers the latency difference between alternative solutions. The perfor-
mance evaluation of Narada is done by using three different topology types: Waxman, AS,
and backbone connectivity. The results for all topologies are similar, which supports our
thesis that end-to-end mechanism can be adaptive to topology characteristics, among other
factors. Other architectures differ significantly from Yoid. Overcast [61] is another end-
system multicast architecture, but designed specifically for single-source reliable multicast
services. The performance of the tree is carefully monitored, and the tree is reorganized
when necessary. ALMI [90] (Application Level Multicast Infrastructure) is an example of
an architecture that uses centralized mechanisms to manage the distribution tree. In that
work the authors evaluate their scheme over Random graph and Transit-Stub generated
topologies [8]. For both topologies the results are similar. This result, similar to our work,
demonstrates that with the appropriate end-to-end mechanisms it is possible to achieve re-
sults that are well adaptive to various topologies. Banana Tree Protocol [47] is an end-host
multicast protocol for distributed file sharing. Bayeux [136] uses hierarchical addressing
and routing to achieve scalability and fault-tolerance. Unicast-based approach for building

multicast services is used in [19] and [129] as well.

186

Tangentially related to Yoid are overlay networks. Scattercast [14] is an architecture
that can be used to create an overlay of servers for broadcast services. The overlay trees
are created using a protocol similar to Narada, but designed for better scalability. Resilient
Overlay Networks [3] is a service for application-level routing that can be used to discover
“short-cut” paths with better characteristics than the paths provided by the underlying
unicast routing. The X-Bone [119] is designed for rapid, automated deployment and man-
agement of overlay networks. An architecture for self-organizing overlays is described in
[58]. Within the context of ad-hoc networks, CEDAR [107] is a distributed algorithm to
establish and maintain a self-organizing routing infrastructure.

Finally, peer-to-peer architectures for sharing files, music and other information have
gained large popularity (e.g., Napster and Gnutella). These, together with peer-to-peer

distributed hash tables [110, 100] are architectural cousins of Yoid.

6.5 Network Topology and Protocol Performance Related

Work

One of the early works that consider multicast protocol performance by comparing shared
with source-specific trees is [128]. The topologies used in the evaluation are the early
ARPAnet topology, as well as some generated topologies using the Waxman model [127].
The evaluation shows that the results across all topologies are similar. The impact of
topologies on multicast routing protocol performance is studied in [134]. Their results

show that different topology generation methods and parameters may create topologies

187

with different metrics. However, the difference between topologies in term of multicast
protocol performance metrics is not significant, or virtually not existing.

A more recent work [92] examines the interesting suggestion made earlier [18] that
L(m) o< m®8 where m is the number of receivers, and L(m) is the multicast tree size in
number of links. Through analyses and simulations over a range of topologies (real and
generated), they have found that this correlation exists for several topologies and for a va-
riety of receiver placement. Only when the topology reachability does not have exponential
property, this correlation is not so strong. This result is a good demonstration of when
a particular protocol performance metric does not depend on the particular topology, but
eventually is affected by a specific topology metric.

In recent years there has been notable interest in modeling network topologies. GT-
ITM [8] and Tiers [31] are two popular topology generators. However, more recently
they have been compared with real-world topologies and it has been suggested that the
topologies generated by GT-ITM and Tiers have different properties from the real-world
topologies [98].

The first work to suggest that real-world topologies have power-law characteristics is
[34]. One possible model that explains this observation is described in [5]. The factors
that contribute to the power-law characteristics of the topologies based on that model are
examined in [81]. Topology generators that create topologies with power-law characteristics
are described in [81, 1, 87, 62]. Power law topologies are examined more closely in [112],
and is suggested that degree-based generators produce better models of both AS-level
and router-level Internet graphs. Very recently, the power-law characteristics of real-world

Internet topologies (AS and router-level) have been re-examined and it has been suggested

188

that the topologies have power-law-like characteristics, but in fact are not exact power-law
graphs [15].

In [98] network topology properties are investigated, including how topologies properties
may affect the protocol performance. Our work originated from this one. Virtual topology
constriction is considered in [133], a study that also originated from [98]. A number of
virtual topology construction algorithms are studied for different topologies: random graph,
tree, mesh, reduced mesh, Mbone and AS. The results show that for some metrics there is a
notable performance difference for different topologies, but for other metrics the difference

is small.

189

Chapter 7

Conclusions and Future Work

In the beginning of this thesis we asked the question if there is anything else beyond
raw wire speed and router throughput that has impact on network performance. To find
an answer, we considered the impact of network topology on protocol performance. In
particular, (a) what is the impact of the underlying topology on protocol performance;
(b) can we use partial knowledge about the underlying topology to improve performance,
and (c) can we use end-to-end mechanisms to design protocols that are adaptive to the
underlying network topology?

To answer those questions, we performed four case-studies. Below we summarize our

findings for each of the studies.

7.1 Summary of Case Studies

Summary of multicast forwarding state aggregation case-study
We use a simple information-theoretical approach, the interface entropy to estimate
the lower bounds on the aggregatability. We look into different topologies and different

receiver size set, and found that the aggregatability in fact depends significantly on the

190

topology: for some topologies we can aggregate the state with compression ratio on the
order of 10 times or more if less than 5% of nodes are receivers. On the other hand, for
other topologies the aggregation ratio is much lower and could be close to 1.0 (i.e., no
aggregation is possible). Unfortunately, those aggregation ratios may not be sufficient or
may be difficult to implement in practice to solve the problem. Therefore, we look into
alternative solutions that can be used to achieve better aggregation, but at the expense
of losing some information. One such solution that trades router memory for network

bandwidth is described and evaluated.

Summary of Content Distribution Network replica placement case-study

The replica or placement problem can be modeled after the facility location problem, a
well-known NP-complete problem in graph theory. Various approximation algorithms exist,
but they are not practical because they assume detailed knowledge about the underlying
network topology. Surprisingly, we found that a simple heuristic such as node fanout can
be used to achieve results that are within a factor of 1.1-1.2 of existing approximation
algorithms that usually perform within a factor of 1.1-1.5 of the optimal solution. Further,
in most cases the fanout-based placement performance does not depend on client placement.
However, those results are not universal: they apply for power-law and random graphs, but

do not apply for topologies such as tree, mesh, and overlay networks such as Mbone [75].

Summary of hierarchical reliable multicast schemes case-study
We look into two classes of hierarchical schemes for reliable multicast: application-level
and router-assisted. Our comparison shows that, surprisingly, the application-level schemes

could have performance that is qualitatively comparable to router-assisted schemes, as long

191

as there is a good algorithm to create the application-level hierarchy. One such algorithm
is based on the topology distance among all the participants. Further, the results are

consistent for a variety of topologies and client placement.

Summary of application-level multicast case-study

First, we study the impact of various topologies on application-level multicast in general
and we found that the inefficiency of application-level multicast is acceptable and, in case
of overall network overhead for example, in most cases it is within a factor of 2.5-3.0
compared to network-layer multicast. Encouraged by those findings, we ask whether it is
possible to have an application-level multicast system that can indeed achieve such level of
performance. We design and implement a set of algorithms for endsystem tree management
within the framework of an existing application-level multicast system named Yoid. Those
algorithms use only end-to-end mechanisms to manage the overlay data distribution tree.
Through simulations and real-world experiments we demonstrate that indeed it is possible

to achieve reasonable level of performance.

7.2 Conclusions

Now it is time to return back to the three questions we asked in the beginning of this thesis

and try to answer them with the help of the findings from each case-study.

1. What is the impact of the underlying topology on protocol performance? In other
words, if the Internet topology were substantially different, should we expect similar

performance?

192

In all of our case studies we considered various topologies for the protocol perfor-
mance evaluation. In some cases we found that the topology has some impact on
performance (multicast state aggregation and replica placement), but in others it
had practically no impact (reliable multicast and application-level multicast). By
considering the particular metrics in each of those studies, it seems that if we are
considering absolute metrics, then the topology has impact; if the metrics are rela-
tive, then the impact is much smaller. On the other hand, the topology impact we
observed was considerably smaller than we were expected. From those findings we
cannot conclude that the topology impact on other metrics will be similar; rather,
in many cases the topology factor could be ignored. A notable exception of a topol-
ogy that constantly produces results that are significantly different from the other
topologies is mesh. This observation can be used for stress-testing new protocols and
algorithms. On the other hand, in some cases the random graphs had performance
that was notably better compared to real-world topologies; therefore protocol evalu-
ation based on random graphs may produce unrealistic results that are better than

they would be in reality.

. Can we use information about the underlying topology to improve protocol perfor-

mance, and what gain can we expect?

In two of our studies (replica placement and reliable multicast) we considered us-
ing partial knowledge about the underlying topology. Surprisingly, small amount of
carefully selected knowledge was sufficient to improve significantly the performance.

In case of replica placement problem, selecting replica location based on node fanout

193

was sufficient to achieve very good performance, within a factor of 1.1-1.2 of much
more complicated solutions. Similarly, if we carefully create an application-level mul-
ticast hierarchical scheme, its performance can be comparable to the performance of
schemes that require router support. It turned-out that in our particular case, in-
formation about the end-to-end distance among all pairs of participants is sufficient
to create a reasonably good hierarchy. The importance of this finding is that we can
achieve reasonably good results even without the explicit support from the network,
as long as we have the right mechanism. Indeed, this is what we confirm with our last

case-study on application-level multicast, and also the answer of our last question.

. Can we use end-to-end mechanisms to design protocols that are adaptive to the un-

derlying network topology?

In our case-study on reliable multicast we demonstrated that in many cases the
performance of application-level hierarchy can be comparable to the performance of
router-assisted hierarchy that uses support from the network to improve performance.
However, we did not design any algorithms that can be used to create such efficient
application-level hierarchy. In our last case study on application-level multicast we
wanted to demonstrate that it is possible to design practical mechanisms that are
adaptive to the underlying network topology, and can be used to achieve perfor-
mance comparable to topology-informed mechanisms. We considered the problem of
application-level multicast distribution tree tree creation and management, and we
designed a set of algorithms to ensure tree integrity and at the same time to gradually

refine the tree performance. We demonstrated through simulations and real-world

194

Internet experiment that it is possible to achieve results that are typically within a
factor of 2.5-3.0 of the optimal solution. The algorithms are adaptive and the result
are consistent for various topologies and placement of participants. The particular
set of algorithms was implemented and now is used by Yoid, an application-level

multicast system.

7.3 Future Work

In this work we have studied four problems. Each of those problems itself can be a candidate
for future research.

To improve the performance of the leaky multicast state aggregation, we may need to
find stateless mechanisms for identifying high bandwidth data flows. Also, we may need to
consider the macro-impact of leaky aggregation on the network, such as whether the leaks
are primarily local or global.

The node-fanout based replica placement algorithm we studied is very simple, and
reasonably efficient in most cases. However, it is not difficult to imagine some scenarios
when such placement is not sufficient. In that case, we may need to apply a hybrid solution:
e.g, apply first a node-fanout based placement, and then refine the solution with the help
of other, more sophisticated algorithms.

In our case-study on reliable multicast we ignored the cost of collecting the information
about the underlying topology, and the cost for maintaining the application-level data
recovery hierarchy. Future research is needed to find a practical solution to the problem.

The fourth case study, application-level multicast, is a whole new area that can be
studied further. For example, in our work we did not consider fault-tolerant issues and we

195

did not study scalability limitations. Another problem to consider could be to add support
for alternative mechanisms for on-tree data delivery such as anycast or subcast.

Our study of topology impact on protocol performance is far from being completed.
In fact, it is one of the initial steps toward understanding the mechanisms that may have
impact on protocol performance. Our goal was to have some initial understanding of the
problem, hence we used the case-study approach. Thus, we were able to concentrate on
various specific details of the issues that may be essential.

The natural next step would be to generalize the problem, and to use more systematic
approach in our study. For example, first we may want to classify the factors that may
have directed impact on protocol performance (e.g., inter-participant distance, or any-to-
any path-concentration).! On the other hand, early in that stage we may want to ignore
the factors that may not have notable impact, such as the routing (e.g., non-hierarchical
vs hierarchical shortest-path). Then, we can try to relate, for example, the topology
characteristics and participant placement method to the above factors. Such an approach
would eventually give us more conclusive answers. However, without having the case-study
results first, taking this approach instead may be much more challenging, and may be more
error-prone. Further, there is no guarantee that the problem can indeed be generalized, so
it is possible that we may end with analyzing a number of classes of applications. In that
case, our case-study results could help to to classify the variety of problems we may have

to analyze.

'Topology metrics and protocol performance have been considered in an earlier work [98]. We believe
that the answer is probably more complicated, especially because currently it is still not completely clear
what the exact characteristics of real-world topologies are.

196

Reference List

[1]

2]
3]

[4]

[5]

[6]

[7]

8]

19]

[10]

[11]

[12]
[13]

AIELLO, W., CHUNG, F., AND LU, L. A Random Graph Model for Massive Graphs.
In Proc. of the 32nd Annual Symposium on Theory of Computing (2000).

Akamai. http://www.akamai.com/.

ANDERSEN, D. G., BALAKRISHNAN, H., KAASHOEK, M. F., AND MORRIS, R.
The Case for Resilient Overlay Networks. In Proceedings of the 8th Workshop on
Hot Topics in Operating Systems (HotOS-VIII) (Elmau/Oberbayern, Germany, May
2001).

BALLARDIE, T., FrANCIS, P., AND CROWCROFT, J. Core Based Trees. In Pro-
ceedings of the ACM SIGCOMM’93 (San Francisco, USA, September 1993).

BArRABASI, A.-L., AND ALBERT, R. Emergence of scaling in random networks.
Science, 286 (1999), 509-512.

Brazevic, L., AND BOUDEC, J.-Y. L. Distributed Core Multicast (DCM): a rout-
ing protocol for IP with application to host mobility. In Proceedings of Networked
Group Communication Workshop (Pisa, Italy, November 1999).

CAIRN: Collaborative Advanced Interagency Research Network.
http://www.cairn.net /.

CALVERT, K. L., DOAR, M. B., AND ZEGURA, E. W. Modeling Internet Topology.
IEEE Communications Magazine (June 1997).

CARZANIGA, A., ROSENBLUM, D., AND WOLF, A. Design of a Scalable Event Noti-
fication Service: Interface and Architecture. Tech. Rep. CU-CS-863-98, Department
of Computer Science, University of Colorado at Boulder, September 1998.

CASNER, S. First IETF Internet audiocast. Computer Communication Review 22,
3 (July 1992), 92-97.

CASNER, S., AND THYAGARAJAN, A. mtrace(8): Tool to print multicast path from
a source to a receiver. UNIX manual page.

CENTER, U. D. S. The NLANR Project. http://moat.nlanr.net/Routing/rawdata,.

CHANDY, K. M., RIFKIN, A., AND SCHOOLER, E. Using Announce-Listen with
Global Events to Develop Distributed Control Systems. In Proceedings of the ACM
Workshop on High Performance Java Network Computing (February 1998).

197

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

CHAWATHE, Y. Scattercast: An Architecture for Internet Broadcast Distribution as
an Infrastructure Service. PhD thesis, University of California at Berkeley, December
2000.

CHEN, Q., CHANG, H., GovINDAN, R., JAMIN, S., SHENKER, S. J., AND
WILLINGER, W. The Origin of Power Laws in Internet Topologies Revisited.
http://topology.eecs.umich.edu/archive/origin.ps.

CHiu, D., HURST, S., KADANSKY, M., AND WESLEY, J. TRAM: A Tree-based
Reliable Multicast Protocol. Tech. Rep. Sun Technical Report SML TR-98-66, Sun
Microsystems, July 1998.

CHu, Y.-H., RAo, S. G., SESHAN, S., AND ZHANG, H. Enabling Conferencing
Applications on the Internet using an Overlay Multicast Architecture. In Proceedings

of the ACM SIGCOMM 2001 (San Diego, CA, USA, August 2001).

CHUANG, J., AND SIRBU, M. Pricing Multicast Communications: A Cost-Based
Approach. In Proceedings of the INET 98 (1998).

CoHEN, R., AND KAEMPFER, G. A Unicast-based Approach for Streaming Mul-
ticast. In Proceedings of the IEEE Infocom 2001 (Anchorage, Alaska, USA, April
2001).

CorMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. Introduction to Algorithms.
MIT Press, 1990.

CoOVER, T. M., AND THOMAS, J. A. Elements of Information Theory. John Wiley
& Sons, Inc., 1991.

CRESCENZI, P.; AND (EDITORS), V. K. A compendium of NP optimization prob-
lems. http://www.nada.kth.se/ viggo/problemlist/.

DaANziG, P., JAMIN, S., CACERES, R., MITZEL, D., AND ESTRIN, D. An Empirical
Workload Model for Driving Wide-Area TCP/IP Network Simulations. Journal of
Internetworking: Research and Ezperience 3, 1 (March 1992), 1-26.

DAvIiDSON, S. B., GARciA-MoLINA, H., AND SKEEN, D. Consistency in Parti-
tioned Networks. Computing Surveys 17, 3 (September 1985).

DEERING, S. Multicast Routing in a Datagram Internetwork. PhD thesis, Stanford
University, 1991.

DEERING, S., ESTRIN, D., FARINACCI, D., JACOBSON, V., HELMY, A., MEYER,
D., aAND WEI, L. Protocol Independent Multicast Version 2 Dense Mode Specifica-
tion. Internet Draft, draft-ietf-pim-v2-dm-03.tzt (June 1999). Work in progress.

DEERING, S., AND HINDEN, R. Internet Protocol, Version 6 (IPv6) Specification.
Request for Comments 2460 (December 1998).

198

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

DEGERMARK, M., BRODNIK, A., CARLSSON, S., AND PINK, S. Small Forwarding
Tables for Fast Routing Lookups. In Proceedings of the ACM SIGCOMM’97 (Cannes,
France, September 1997).

Digital Island. http://www.digitalisland.com/.

DioT, C., LEVINE, B. N., LyLES, B., KassEM, H., AND BALENSIEFEN, D. De-
ployment Issues for the IP Multicast Service and Architecture. IEEE Network (Jan-
uary/February 2000).

DoARr, M. B. A Better Model for Generating Test Networks. Proceedings of the
IEEFE Global Telecommunications Conference (GLOBECOM) (November 1996).

Droms, R. Dynamic Host Configuration Protocol. Regquest for Comments 2131
(March 1997).

EsTRIN, D., FARINACCI, D., HELMY, A., THALER, D., DEERING, S., HANDLEY,
M., JACOBSON, V., Liu, C.-G., SHARMA, P., AND WEI, L. Protocol Independent
Multicast-Sparse Mode (PIM-SM): Protocol Specification. Request for Comments
2362 (June 1998).

FarLoutsos, M., FaALouTsos, P., AND FALouTsos, C. On Power-Law Relation-
ships of the Internet Topology. In Proceedings of the ACM SIGCOMM’99 (Cam-
bridge, Massachusetts, USA, August 1999).

Frovyp, S., AND FALL, K. Promoting the Use of End-to-End Congestion Control in
the Internet. under submission to IEEE/ACM Transactions on Networking.

Frovp, S., JAcoBsoN, V., Liu, C.-G., MCCANNE, S., AND ZHANG, L. A Reli-
able Multicast Framework for Light-weight Sessions and Application Level Framing.
IEEE/ACM Transactions on Networking (November 1997).

Francis, P. Yoid: Extending the Internet Multicast Architecture. White paper,
available from http://www.isi.edu/div7/yoid/, April 2 2000.

GOVINDAN, R., AND TANGMUNARUNKIT, H. Heuristics for Internet Map Discovery.
In Proceedings of the IEEE Infocom 2000 (Tel-Aviv, Israel, March 2000).

GOVINDAN, R., Yu, H., AND EsSTRIN, D. Large-Scale Weakly Consistent Replica-
tion using Multicast. Tech. Rep. 98-682, Department of Computer Science, University
of Southern California, July 1998.

GuPTA, P., LIN, S., AND MCcKEOWN, N. Routing Lookups in Hardware at Memory
Access Speeds. In Proceedings of the IEEE Infocom’98 (San Francisco, USA, March
1998).

GWERTZMAN, J. Autonomous Replication in Wide-Area Internetworks. BA thesis,
Harvard College, Cambridge, Massachusetts., 1995.

Packet-Based Multimedia Communications Systems. ITU-T Recommendation
H.323. http://www.itu.int/.

199

[43] HANDLEY, M. Session Directories and Scalable Internet Multicast Address Alloca-
tion. In Proceedings of the ACM SIGCOMM’98 (Vancouver, Canada, August 1998).

[44] HANDLEY, M., AND HANNA, S. R. Multicast Address Allocation Protocol (AAP).
Internet Draft, draft-ietf-malloc-aap-04.txt (June 2000). Work in progress.

[45] HANDLEY, M., KOUVELAS, 1., SPEAKMAN, T., AND VICISANO, L. Bi-directional
Protocol Independent Multicast. Internet Draft, draft-ietf-pim-bidir-03.tzt (June
2001). Work in progress.

[46] HANNA, S. R., PATEL, B. V., AND SHAH, M. Multicast Address Dynamic Client
Allocation Protocol (MADCAP). Request for Commments 2730 (December 1999).

[47] HELDER, D. A., AND JAMIN, S. Banana Tree Protocol, and End-host Multicast
Protocol. CSE-TR, CSE-TR-429-00, University of Michigan, Jul 2000.

[48] HOFMANN, M. Home page of the Local Group Concept (LGC).
http://www.telematik.informatik.uni-karlsruhe.de/ “hofmann/lgc/.

[49] HOoLBROOK, H., SINGHAL, S., AND CHERITON, D. Log-Based Receiver-Reliable
Multicast for Distributed Interactive Simulation. In Proceedings of the ACM SIG-
COMM’95 (Cambridge, MA, USA, August 1995), pp. 328-341.

[50] HoLBROOK, H. W., AND CHERITON, D. R. IP Multicast Channels: EXPRESS
Support for Large-scale Single-source Applications. In Proceedings of the ACM SIG-
COMM’99 (Cambridge, Massachusetts, USA, August 1999).

[51] HUA CHU, Y., RAO, S. G., AND ZHANG, H. A Case For End System Multicast. In
Proceedings of ACM SIGMETRICS 2000 (Santa Clara, CA, USA, June 2000).

[52] Internet Assigned Numbers Authority. http://www.iana.org/.
[53] Inktomi. http://www.inktomi.com/.

[64] INTANAGONWIWAT, C., GOVINDAN, R., AND ESTRIN, D. Directed Diffusion: A

scalable and Robust Communication Paradigm for Sensor Networks. In Proceedings
of the ACM Mobicom 2000 (Boston, MA, USA, August 2000).

[65] JACOBSON, V. traceroute(8): Tool for displaying the route packets take to network
host. UNIX manual page.

[56] JACOBSON, V. Some Notes on Multicast Scaling and PIM. IDMR Working Group
Presentation, 30th IETF, Toronto, Canada, July 1994.

[57] JAcOBSON, V., AND MCCANNE, S. wb - LBNL Whiteboard Tool. http://www-
nrg.ee.lbl.gov/wb/.

[58] JAIN, S., AND MAHAJAN, R. Self-Organizing Overlays.
http://www.cs.washington.edu/homes/sushjain/overlays.html, May 2000.

200

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

JaMIN, S., DANZIG, P. B., SHENKER, S. J., AND ZHANG, L. A Measurement-based
Admission Control Algorithm for Integrated Services Packet Networks (Extended
Version). EEE/ACM Transactions on Networking 5, 1 (February 1997), 56-70.

Jamin, S., JiN, C., KURC, A. R., RAaz, D., AND SHAVITT, Y. Constrained Mirror
Placement on the Internet. In Proceedings of the IEEE Infocom 2001 (Anchorage,
Alaska, USA, April 2001).

JANNOTTI, J., GIFFORD, D. K., JOHNSON, K. L., KAASHOEK, M. F., AND JAMES
W. O’TooLE, J. Overcast: Reliable Multicasting with an Overlay Network. In

Proceedings of the 4th Symposium on Operating Systems Design and Implementation
(OSDI 2000) (San Diego, CA, USA, October 2000).

Jin, C., CHEN, Q., AND JAMIN, S. Inet: Internet Topology Generator. Tech. Rep.
CSE-TR-433-00, University of Michigan at Ann Arbor, 2000.

KAsERrRA, S. K., BHATTACHARYYA, S., KEATON, M., Kiwior, D., KUROSE, J.,
TowsLEY, D., AND ZABELE, S. Scalable Fair Reliable Multicast Using Active
Services. IEEE Network Magazine (Special Issue on Multicast) (January/February
2000).

Kiniry, J. R. Wavelength Division Multiplexing: Ultra High Speed Fiber Optics.
IEEE Internet Computing 2, 2 (March/April 1998).

KRrisuNAN, P., Raz, D., AND SHAVITT, Y. The Cache Location Problem.
IEEE/ACM Transactions of Networking 8, 5 (October 2000), 568-582.

KuMAR, S., RaposLavov, P., THALER, D., ALAETTINOGLU, C., ESTRIN, D.,
AND HANDLEY, M. The MASC/BGMP Architecture for Inter-domain Multicast
Routing. In Proceedings of the ACM SIGCOMM’98 (Vancouver, Canada, August
1998).

LAMPSON, B., SRINIVASAN, V., AND VARGHESE, G. IP Lookups using Multiway
and Multicolumn Search. In Proceedings of the IEEE Infocom’98 (San Francisco,
USA, March 1998).

LEVINE, B., AND GARCIA-LUNA-ACEVES, J. J. Improving Internet Multicast with
Routing Labels. In Proceedings of the 5th IEEFE International Conference on Network
Protocols (ICNP’97) (Atlanta, GA, USA, October 1997).

LEVINE, B. N., PAUL, S.; AND GARCIA-LUNA-ACEVES, J. J. Organizing Multicast
Receivers Deterministically According to Packet-Loss Correlation. In Proceedings of
the 6th ACM International Conference on Multimedia (September 1998), pp. 201-
210.

Li, B., GoLin, M. J., ItaLiaANO, G. F., DENG, X., AND SOHRABY, K. On the
Optimal Placement of Web Proxies in the Internet. In Proceedings of the IEEFE
Infocom 1999 (New York, USA, March 1999), pp. 1282-1290.

201

[71] L1, D., aND CHERITON, D. R. OTERS (On-Tree Efficient Recovery using Subcast-
ing): A Reliable Multicast Protocol. In Proceedings of the 6th IEEE International
Conference on Network Protocols (ICNP’98) (October 1998), pp. 237-245.

[72] LiN, J., AND PauL, S. RMTP: A Reliable Multicast Transport Protocol. In Pro-
ceedings of the IEEE Infocom’96 (San Francisco, USA, March 1996), pp. 1414-1424.

[73] Liu, C.-G., ESTRIN, D., SHENKER, S., AND ZHANG, L. Local Error Recovery in
SRM: Comparison of Two Approaches. Tech. Rep. 99-648, Department of Computer
Science, University of Southern California, January 1997.

[74] LivingsTON, M., Lo, V. M., WINDIscH, K. J., AND ZAPPALA, D. Cyclic Block
Allocation: A New Scheme for Hierarchical Multicast Address Allocation. In Pro-
ceedings of the First International Workshop on Networked Group Communication
(Pisa, Italy, November 1999), pp. 216-234.

[75] MACEDONIA, M. R., AND BRUTZMAN, D. P. MBone Provides Audio and Video
Across the Internet. IEEE Computer (April 1994).

[76] Multicast Address Allocation (MALLOC) Working Group.
http://www.aciri.org/malloc/.

[77] McCANNE, S. Scalable Multimedia Communication with Internet Multicast, Light-
weight Sessions, and the Mbone. Tech. Rep. CSD-98-1002, Department of Computer
Science, University of California, Berkeley, March 1998.

[78] McCANNE, S., AND JACOBSON, V. Vic: A flexible framework for packet video. In
Proceedings of the ACM Multimedia’95 (November 1995), pp. 511-522.

[79] McCANNE, S., JACOBSON, V., AND VETTERLI, M. Receiver-driven Layered Mul-
ticast. In Proceedings of the ACM SIGCOMM’96 (Stanford, USA, August 1996).

[80] McKEOWN, N. Fast Switched Backplane for a Gigabit Switched Router. white
paper, available from http://www.cisco.com/warp/public/733/12000/fasts _wp.pdf.

[81] MEDINA, A., MATTA, 1., AND BYERS, J. On the Origin of Power Laws in Internet
Topologies. Tech. Rep. 2000-004, Boston University, January, 20 2000.

[82] MEYER, D., AND LOTHBERG, P. GLOP Addressing in 233/8. Request For Com-
ments (RFC) 3180, September 2001. http://www.ietf.org/rfc.html.

[83] MiLLs, D. L. Network Time Protocol (Version 3) Specification, Implementation and
Analysis. Request for Comments 1305 (March 1992).

[84] Moy, J. Multicast Extensions to OSPF. Request for Comments 1584 (March 1994).

[85] NiLssoN, S., AND KARLSSON, G. Fast address lookup for Internet routers. In
Proceedings of the IFIP 4th International Conference on Broadband Communications
(Stutgart, Germany, 1998), pp. 11-22.

202

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]
[94]

[95]

[96]

[97]

OBRACZKA, K., AND SiwvA, F. Network Latency Metrics for Server Proximity. In
Proceedings of the IEEE Globecom 2000 (San Francisco, California, USA, November
2000).

PALMER, C. R., AND STEFFAN, J. G. Generating Network Topologies that Obey
Power Laws. In Proceedings of the IEEE Globecom 2000 (San Francisco, California,
USA, November 2000).

PAPADOPOULOS, C., PARULKAR, G., AND VARGHESE, G. An Error Control Scheme
for Large-Scale Multicast Applications. In Proceedings of the IEEE Infocom’98 (San
Francisco, USA, March 1998), pp. 1188-1196.

PATRIDGE, C., CARVEY, P., BURGESS, E., CASTINEYRA, 1., CLARKE, T., GRA-
HAM, L., HATHAWAY, M., HERMAN, P., KiNnGg, A., KoHLAMI, S., MaA, T.,
McALLEN, J., MENDEZ, T., MILLIKEN, W., OSTERLIND, R., PETTYJOHN, R.,
RoOKoOsz, J., SEEGER, J., SOLLINS, M., STORCH, S., TOBER, B., TROXEL, G.,
WAITZMAN, D., AND WINTERBLE, S. A Fifty Gigabit Per Second IP Router.
IEEE/ACM Transactions on Networking 6, 3 (June 1998), 237-248.

PENDARAKIS, D., SHI, S., VERMA, D., AND WALDVOGEL, M. ALMI: An Applica-
tion Level Multicast Infrastructure. In Proceedings of the 3th USENIX Symposium of
Internet Technologies and Systems (USITS) (San Francisco, CA, USA, March 2001).

PErLMAN, R., LEg, C.-Y., BALLARDIE, T., CROWCROFT, J., WANG, Z.,
MAUFER, T., DioT, C., THOO, J., AND GREEN, M. Simple Multicast: A Design
for Simple, Low-Overhead Multicast. Internet Draft, draft-perlman-simple-multicast-
03.tzt (October 1999). Work in progress.

PHILLIPS, G., SHENKER, S., AND TANGMUNARUNKIT, H. Scaling of Multicast
Trees: Comments on the Chuang-Sirbu scaling law. In Proceedings of the ACM
SIGCOMM’99 (Cambridge, Massachusetts, USA, August 1999).

PosTEL, J. Internet Protocol. Request for Comments 791 (September 1981).

PusaTeR1, T. Distance Vector Multicast Routing Protocol. Internet Draft, draft-
ietf-idmr-dvmrp-v3-10.tzt (August 2000). Work in progress.

Qiu, L., PADMANABHAN, V. N.; AND VOELKER, G. M. On the Placement of Web
Server Replicas. In Proceedings of the IEEE Infocom 2001 (Anchorage, Alaska, USA,
April 2001).

RaposLavov, P. MASC implementation (mascd) and MASC simulator (mascsim).
http://netweb.usc.edu/masc/mascd/, October 1999.

RADposLAvov, P., ESTRIN, D., GOVINDAN, R., HANDLEY, M., KUMAR, S., AND
THALER, D. The Multicast Address-Set Claim (MASC) Protocol. Request For
Comments (RFC) 2909, September 2000. http://www.ietf.org/rfc.html.

203

[98]

[99]
[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

RabposLavov, P., TANGMUNARUNKIT, H., Yu, H., GOVINDAN, R., SHENKER,
S., AND EsTRIN, D. On Characterizing Network Topologies and Analyzing Their
Impact on Protocol Design. Tech. Rep. 00-731, University of Southern California,
Dept. of CS, February 2000.

Robust Audio Tool (RAT). http://www-mice.cs.ucl.ac.uk/mice/rat/.

RATNASAMY, S., FrANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. A
Scalable Content-Addressable Network. In Proceedings of the ACM SIGCOMM 2001
Conference (San Diego, California, USA, August 2001).

REJAIE, R., HANDELY, M., AND ESTRIN, D. RAP: An End-to-end Rate-based
Congestion Control Mechanism for Realtime Streams in the Internet. In Proceedings
of IEEE Infocom’99 (New York, USA, March 1999).

REKHTER, Y., AND LI, T. A Border Gateway Protocol 4 (BGP-4). Request for
Comments 1771 (March 1995).

REKHTER, Y., AND TopoLcic, C. Exchanging Routing Information Across
Provider Boundaries in the CIDR Environment. Request for Comments 1520
(September 1993).

RODRIGUEZ, P., AND BIERSACK, E. W. Continuous Multicast Distribution of Web
Documents over the Internet. JEEE Network Magazine (March/April 1998).

SALTZER, J. H., REED, D. P., AND CLARK, D. D. End-To-End Arguments in
System Design. ACM Transactions on Computer Systems 2, 4 (November 1984),
277-288.

SHARMA, P., EsTrIN, D., FLOYD, S., AND JACOBSON, V. Scalable Timers
for Protocol Independent Multicast (PIM). Internet Draft, draft-ietf-pimwg-PIM-
STimers-00.ps (December 1998). Work in progress, currently available only from
ftp://catarina.usc.edu/pub/puneetsh/pim/stimers_id.ps.

SIVAKUMAR, R., SINHA, P., AND BHARGHAVAN, V. CEDAR: a Core Extraction
Distributed Ad hoc Routing Algorithm. IEEE Journal on Selected Areas in Commu-
nication (JSAC) 17, 8 (August 1999).

SPEAKMAN, T., FAriNAcci, D., LiN, S., TWEEDLY, A., BHASKAR, N., EDMON-
STONE, R., JOHNSON, K. M., SUMANASEKERA, R., VICISANO, L., CROWCROFT,
J., GEMMELL, J., LESHCHINER, D., LuBY, M., MONTGOMERY, T. L., AND R1ZZO0,
L. PGM Reliable Transport Protocol Specification. Internet Draft, draft-speakman-
pgm-spec-07.txt (September 2001). Work in progress.

SRINIVASAN, V., AND VARGHESE, G. Fast Address Lookups using Controlled Prefix
Exnansion. ACM Transactions on Computer Systems 17, 1 (February 1999), 1-40.

StoicaA, 1., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN,
H. Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In
Proceedings of the ACM SIGCOMM 2001 Conference (San Diego, California, USA,
August 2001).

204

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Stoica, 1., NG, T. S. E., AND ZHANG, H. REUNITE: A Recursive Unicast Ap-
proach to Multicast. In Proceedings of the IEEE Infocom 2000 (Tel-Aviv, Israel,
March 2000).

TANGMUNARUNKIT, H., GOVINDAN, R., JAMIN, S., SHENKER, S., AND WILL-
INGER, W. Network Topologies, Power Laws, and Hierarchy. Tech. Rep. 01-746,
University of Southern California, 2001.

TANGMUNARUNKIT, H., GOVINDAN, R., SHENKER, S., AND ESTRIN, D. The

Impact of Routing Policy on Internet Paths. In Proceedings of the IEEE Infocom
2001 (Anchorage, Alaska, USA, April 2001).

TANGMUNARUNKIT, H., GOVINDAN, R., SHENKER, S., JAMIN, S., AND WILL-
INGER, W. Network Topologies, Power Laws, and Hierarchy. Work in progress.

THALER, D.; ESTRIN, D.;, AND MEYER, D. Border Gateway Multicast Protocol
(BGMP): Protocol Specification. Internet Draft, draft-ietf-bgmp-spec-02.txt (Novem-
ber 2000). Work in progress.

THALER, D.; AND HANDLEY, M. On the Aggregatability of Multicast Forwarding
State. In Proceedings of the IEEE Infocom 2000 (Tel-Aviv, Israel, March 2000).

THALER, D., HANDLEY, M., AND ESTRIN, D. The Internet Multicast Address
Allocation Architecture. Request For Comments (RFC) 2908, September 2000.
http://www.ietf.org/rfc.html.

T1AN, J., AND NEUFELD, G. Forwarding State Reduction for Sparse Mode Multicast
Communication. In Proceedings of the IEEE Infocom’98 (San Francisco, USA, March
1998).

ToucH, J., AND HoTZz, S. The X-Bone. In Proceedings of the Third Global Internet
Mini-Conference at Globecom ’98 (Sydney, Australia, November 1998).

TroOLL, R. Automatically Choosing an IP Address in an Ad-Hoc IPv4 Network.
Internet Draft, draft-ietf-dhc-ipvj-autoconfig-05.txt (March 2000). Work in progress.

TsucHivyAa, P. Efficient and Flexible Hierarchical Address Assignment. INET92
(June 1992), 441-450.

University of oregon route views project. http://www.antc.uoregon.edu/route-
views/.

USC/ISI. The SCAN Project. http://www.isi.edu/scan/.

VAHDAT, A., EASTHAM, P., AND ANDERSON, T. WebFS: A Global Cache Coher-
ent Filesystem. http://www.cs.berkeley.edu/ vahdat/webfs/webfs.html, December
1996. Department of EECS, University of California, Berkeley.

VAZIRANI, V. Approzimation Methods. Springer-Verlag, 2001.

205

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

WALDVOGE, M., VARGHESE, G., TURNER, J., AND PLATTNER, B. Scalable High
Speed IP Routing Lookups. In Proceedings of the ACM SIGCOMM’97 (Cannes,
France, September 1997).

WaxMAN, B. M. Routing on Multipoint Connections. IEEE Journal of Selected
Areas on Communications 6, 9 (December 1988), 1617-1622.

WEI, L., AND ESTRIN, D. A Comparison of Multicast Trees and Algorithms. In
Proceedings of the IEEE Infocom’9) (Toronto, Canada, June 1994).

WEN, S., GRIFFIOEN, J., AND CALVERT, K. L. Building multicast services from
unicast forwarding and ephemeral state. In Proceedings of the IEEE OpenArch 2001
(Anchorage, Alaska, USA, April 2001).

Wong, T., AND KATZ, R. An Analysis of Multicast Forwarding State Scalability.
In Proceedings of the 8th IEEE International Conference on Network Protocols (ICNP
2000) (Osaka, Japan, November 2000).

WongG, T. H.-T. Multicast Forwarding and Application State Scalability in the
Internet. PhD thesis, University of California at Berkeley, 2000.

YAVATKAR, R., GRIFFOEN, J., AND SUDAN, M. A Reliable Dissemination Protocol

for Interactive Collaborative Applications. In Proceedings of the Third International
Conference on Multimedia "95 (San Francisco, CA, USA, November 1995).

Yu, H. Design Issues in Large-Scale Application-Level Routing. PhD thesis, Univer-
sity of Southern California, August 2000.

ZEGURA, E. W., CALVERT, K. L., AND DoNAHOO", M. J. A Quantitative Com-
parison of Graph-based Models for Internet Topology. IEEE/ACM Transactions on
Networking 5, 6 (1997), 770-783.

ZHANG, L., MICHEL, S., NGUVYEN, K., ROSENSTEIN, A., FLOYD, S., AND JA-
COBSON, V. Adaptive Web Caching: Towards a New Caching Architecture. 3rd
International WWW Caching Workshop (June 1998).

ZHUANG, S. Q., ZHAO, B. Y., JosEPH, A. D., KATZ, R., AND KUBIATOWICZ, J.
Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area Data Dissemina-
tion . In Proceedings of Eleventh International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV 2001) (Port Jefferson, New
York, USA, June 2001).

206

Appendix A

Multicast Address Allocation

A.1 Introduction

Unlike unicast addresses which are assigned permanently by a central authority, IANA [52],
the TPv4 multicast addresses (224.0.0.0-239.255.255.255 for total of 22® or 270 million ad-
dresses) are not assigned using the same procedure. Some of the addresses in the multicast
address space are designated as “link-wide” or “administratively-scoped,” other addresses
are assigned for some particular applications, but a majority of the addresses are not pre-
assigned.

One possible long-term impediment to the deployment of global multicast is a multicast
address allocation strategy. Statically pre-allocating multicast addresses to domains may
lead to poor utilization of the overall address space. Some have proposed circumventing
the need for multicast address allocation by changing the multicast service model [50, 91];
discussion of these alternatives is beyond the scope of this work. We believe that it is at
least plausible to consider the allocation strategy where multicast addresses are dynamically

assigned to group initiators. A multicast address is used to uniquely identify a multicast

207

session, and if a multicast session is not in use (e.g., a one-time teleconference meeting

session is over), its multicast address can be reused by another session.

By carefully

assigning the multicast addresses “on demand,” such that each address has a fixed lifetime,

the addresses that are not in use can be re-allocated.

MASC (TCP)

AAP (Multicast)

Domain 1

N@P ADCAP N@P
MADCAP (UDP/

Figure A.1: The malloc architecture.

The work of IETF malloc [76] working group is focused on creating a multicast address

allocation architecture that can manage and dynamically allocate the addresses. The malloc

architecture [117] is modular and is separated into three layers: host-server, intra-domain

server-server, and inter-domain address allocation (see Figure A.1). At the inter-domain

level blocks of addresses are allocated among the domains (the Autonomous Systems),

based on the needs of each domain. Within each domain, the addresses allocated to that

domain by the inter-domain allocation layer are controlled and managed by a number of

208

servers. Whenever a host needs one or several multicast addresses to create a new multicast
session, one of those servers is used to allocate the addresses to that host.

By separating the architecture into three layers we can use different mechanisms to
address the particular problems we may have at different scale. For example, the host-
server address allocation mechanisms can be designed to minimize the allocation latency,
while the inter-domain address allocation mechanisms can be designed for better utilization
of the multicast address space.

In this appendix we describe MASC, the Multicast Address-Set Claim Protocol that has
been adopted by IETF malloc working group for inter-domain multicast address allocation.
MASC is designed for robustness, scalability, address space availability, and efficient address
space utilization. MADCAP, the host-server protocol in the malloc architecture, and AAP,
the intra-domain server-server protocol are described in [46] and [44] respectively. The
MASC protocol itself is specified in [97].

The rest of this appendix is organized as follows. In Section A.2 we describe MASC,
including the claim-collide mechanism it uses, as well as some of the other algorithms. In
Section A.3 we present and discuss the simulation results from evaluating MASC. Related

work and conclusions are is in Section A.4 and Section A.5 respectively.

A.2 MASC Description

MASC is the protocol used by the multicast address allocation architecture [76] to dynam-
ically allocate multicast addresses at the inter-domain level across Internet. It allocates a
set of addresses to each domain. The amount of addresses allocated to a domain is based
on the needs of that domain. The allocation is dynamic and has lifetime after which it

209

expires. The allocated addresses are used by the multicast address-allocation servers within
that domain for allocation to the hosts that also belong to that domain.

In Section A.2.1 we begin with an overview of MASC and some of its requirements. In
Section A.2.2 we describe the claim-collide mechanism used by MASC for address alloca-
tion. In Section A.2.3 we describe some of the algorithms that can be used with MASC to

achieve efficient address allocation.

A.2.1 MASC Overview

TLD 1
225.0x.X.X

Parent 2
225.64.x.X
Child 2 Child 3
225.0.128 225.64.0.

Figure A.2: MASC association of group ranges with AS’s.

225.X.X.X

TLD 2
225.1X.X.X

Parent 4
225.192.x.x

Parent 3
225.128.x.X

Parent 1
225.0.x.X

Child 4
225.128.0.

Child 5
225.192.0.x

MASC performs the following functions: (a) allocates sets of addresses to a MASC do-
main (typically, a MASC domain is congruent with an Autonomous System); (b) advertises
those sets to the intra-domain multicast address allocation servers [44, 46], so addresses
from those sets can be allocated to the end users/hosts, and, (c) injects the “prefix-domain”
associations into the inter-domain routing protocol (e.g., BGP4+ [102]). These associa-
tions are used by inter-domain multicast routing protocols such as BGMP [115] to construct

210

P-C: Parent-Child Relation
S-S: Sibling-Sibling Relation
I-P: Internal-Peer Relation

Figure A.3: MASC topology example.

211

multicast data distribution trees. Each allocation has a fixed lifetime, and after the lifetime
expires, the addresses can be reused by other domains.

MASC domains can be configured into a hierarchy (see Figure A.2). At each level in
the hierarchy, siblings coordinate to allocate multicast address space that belongs to their
common parent. The top-level domains in the hierarchy allocate addresses from the global
multicast address space. A MASC domain can have a number of child domains. A child
domain allocates addresses from its parent’s address space. To improve address availability,
a MASC child domain can have more than one parent domains, and can allocate addresses
from the address space of any of them (see Figure A.3). For robustness, each MASC
domain can be associated with several MASC servers connected in a virtual mesh. The
addresses allocated by the MASC servers within a domain are associated with that domain.
If a domain has no children domains, all of its address space is used by the intra-domain
allocation servers for allocation to the hosts within that domain, otherwise only a part of
that space is used for internal allocation.

Some of the requirements for MASC are:

e Addresses should be allocated in an aggregatable manner, because the sets of ad-
dresses will be distributed for routing purpose, and scaling the routing information

is essential.

e The allocation should be robust, and should not be affected by the network conditions.
This requirement is the primary reason for MASC to use the claim-collide based

mechanism described in Section A.2.2.

212

e The allocation latency for the MASC clients (the domain internal servers that use
AAP [44] and MADCAP [46] to allocate addresses to hosts) should be nearly zero
most of the time, so that clients are not subjected to the claim waiting time for every
request for multicast addresses. Only if there is sudden and unusual increase of the

demand for addresses, the allocation can be longer.

e Hierarchical allocation and prefix-based address allocation (see below) can result in
poor resource utilization. Carefully performed bottom-up demand-driven allocation

is required to achieve good utilization.

e Because clients cannot often correctly predict the duration of their multicast sessions,
MASC must give clients a reasonable expectation that their allocation’s lifetime can

be extended, if necessary.

The above requirements conflict with each other, and MASC needs to allocate addresses
very carefully to satisfy all of them. Below we describe the mechanisms used by MASC to

achieve the desired allocation.

A.2.2 Claim-Collide Mechanism Description

In this section, we describe the claim-collide mechanism used by MASC for Internet-wide
dynamic address allocation. First we describe the mechanism and how it is used in MASC,
and then we present an example that justifies the waiting time used by the claim-collide
mechanism.

In MASC, a server that uses the claim-collide mechanism (on behalf of a MASC domain)

proposes to use some set of addresses by selecting a particular subset of the available

213

T2: C propagates A’s claim to other children: B, D, E
T ot e e
1
T1: A claims fropC 2
T3: A listens for colliding
claims and if none, advertises
claimed space to its MASC children,

@ to MAAS and in G-RIB @

T4: F claims from A

Figure A.4: MASC claim-collide mechanism.

addresses of its parent space (or the global space for the top-level MASC domains), and then
sends a claim to all other servers that may claim the same set of addresses. In particular,
a claim from a child is sent to the parent, and then to all siblings of the originator of the
claim. If no other server opposes the claim (i.e., there is no collision due to another server
requesting the same set of addresses at the same time), the originator of the claim assumes
that it has successfully allocated the claimed addresses.

Figure A.4 contains an example of the claim-collide mechanism used by MASC. When
A wants to allocate more addresses, it selects an unused set of addresses from its parent
space (224.x.x.x owned by C). Child A claims the selected set of addresses by sending a
claim to its parent C. Parent C' propagates the claim from A to the rest if its children, B,
D, and E. After A originated the claim, it waits for sufficient amount of time (see below)

and listens for conflicting claims by some of its siblings (B, D, and F). If no such claim is

214

received, i.e., if there is no collision, then A assumes that it can use the set of addresses it
has claimed. If a colliding claim is received, then A would eventually back-off by selecting
a new set of addresses and initiate a new claim. After A has allocated a set of addresses,
this set is announced to its own children (F' in this particular example), and then those
children can claim themselves.

The amount of time to wait after a claim should be sufficient enough such that there is
time for a claim to propagate to all siblings that may claim the same set of addresses, and
for a colliding claim, if any, to come back. Network partitions may prevent a claim from
reaching all siblings, therefore the claim wait period should be sufficiently long enough to
outlive potential network partitions. Because MASC is designed to be used in an envi-
ronment with non-negligible probability for network partitioning, its claim period has the
conservative value of 48 hours. In most cases it takes less than 24 hours for an Internet
Service Provider to fix a network-related problem such as intra or inter-domain partition-
ing. Hence, waiting for 48 hours should be long enough to ensure the end-to-end claim

propagation, and therefore the uniqueness of the allocation.

1. Partitioning

_ 2. Partitioning fixed 4. A’s claim reaches B
1. Send claim (after Tp) (A is the loser)

(L (3

6. After total of 5. Partitioning 3. Send claim

2*Tp Areceives fixed (after Tp)
B’s (winning) claim

4. Partitioning

Figure A.5: An example of collision detecting latency that takes 2 x 7}, time units.

215

The reason that the wait time after a claim (the claim wait time) is 48 hours, i.e.
twice the worst amount of time it would typically take to fix a network partition, can be
explained by the example in Figure A.5. If A sends a claim toward B, and if it takes up to
T, time units to fix a partition, it can take up to T}, for that claim to reach B (we assume
that either A or the intermediate MASC nodes can detect a partition, and a claim is resent
after the partition is healed). However, a claim originated by B can also take up to T}, to
reach A, therefore if there are two partitions in the network, one after another, it may take
up to 2T}, for A to receive a colliding claim from B. Obviously, there is no guarantee that
a network partition will disappear within some period of time, but for practical reasons a
conservative value of 24 hours would be reasonably sufficient.

An alternative solution to claim-collide would be to use request-response mechanism
where allocation can be considered successful only after explicit acknowledges are received
from all siblings. Indeed, if there is no network failure, request-response based allocation
may be faster than a claim-collide based allocation. However, a sibling failure may block
the allocation process, therefore robustness of allocation becomes a complicated issue.
On contrary, claim-collide can be used to achieve better robustness by trading-off longer

allocation latency, and by simplifying significantly the allocation mechanism.

A.2.3 MASC Algorithms

A MASC server needs to use some local algorithms to carefully select the addresses to
claim. By using such algorithms and by pre-allocating addresses, a server can reduce the
collision probability (and therefore the allocation latency as well), and at the same time

can maintain reasonable address space utilization.

216

To reduce the allocation latency, a MASC server can (a) use pre-allocation, and (b)
avoid collisions. The basic idea behind pre-allocation is that a server claims resources in
advance, so a client will not need to wait to obtain the resource. The pre-allocation strategy
must, however, be carefully designed. If the server pre-allocates too many addresses without
using them the address space utilization will be very low. If the server does not claim
enough addresses in advance, many clients will still have to wait for long time.

One simple pre-allocation strategy that we discuss here attempts to keep ahead of
client demand by dynamically tracking client request patterns. A MASC server constantly
monitors the demand for addresses from its children (or intra-domain servers), and attempts
to predict what would be the address usage after 48 hours, the MASC claim wait time.
Only if the available addresses will be used up within 48 hours, the server claims more
addresses in advance, so it would be prepared to meet the demand later.

Designing a pre-allocation strategy is not sufficient. Collisions can result in allocation
failures and can increase significantly the latency. To reduce the probability for collisions,
a server needs to keep state about addresses that are currently not in use. For reasons of
scale, this state needs to be aggregatable. To reduce the amount of state, the addresses
allocated by MASC are aggregated into prefixes (e.g., the set of all 256 addresses that
start with 224.1.2 are described with address 224.1.2.0 and mask 0xffffff00, also noted as
224.1.2/24). Alternative solutions, such as using address ranges or non-contiguous masks
are more complicated and may require changes to the routing protocols.

The first prefix a MASC server chooses is selected at random. If a server chooses
to allocate another, smaller prefix, then, instead of doubling the size of the first one, a

second “neighbor” prefix is chosen. For example, if prefix 224.0/16 was already allocated,

217

and the server needs 256 more addresses, the second prefix to claim will be 224.1.0/24.
If it needs more addresses, the second prefix will eventually grow to 224.1/16, and then
both prefixes can be automatically aggregated into 224.0/15. Only if 224.0.1/24 could not
be allocated, a server will choose another prefix (eventually random among the unused
prefixes). The particular prefix selection algorithm used in MASC is the so called reverse-
bit expansion algorithm.! For example, if we had 3-bit address space, the addresses assigned
in reverse-bit ordering are 000, 100, 010, 110, and so on. Therefore, if we had A4, B, and C
claiming/allocating one address at a time, the addresses allocated to each of them would
look like:2

3-bit space: xxx

A: 000
B: 100
A: 00x
B: 10x
C: 010
C: 01x

To increase the resource utilization, a prefix is implicitly returned to the parent after
its lifetime expires. If the demand for addresses does not decrease, then a MASC server re-
claims the prefixes it has allocated before their lifetime expires. If the demand for addresses
decreases, the server implicitly returns the unused prefixes, or re-claims some smaller sub-

prefixes. Also, because every prefix is a power of two, if a node tries to allocate just a

!Courtesy of Dave Thaler; inspired by Kampai [121].
2An alternative scheme called Cyclic Block Allocation is proposed in [74].

218

single prefix, the utilization at that node can be as low as 50%. To improve the utilization,
a server can have more than one prefix allocated at a time (typically, each of them with
different size).

If the number of allocated prefixes increases above some threshold, and none of them can
be extended when more addresses are needed, then, to reduce the amount of state, a MASC
server claims a new larger prefix and stops re-claiming the older non-expandable prefixes.
This, obviously, increases the prefix flux. Similarly, if a server tries to keep the utilization
at some very high level by allocating a large number of prefixes (each with different size), a
smaller increase or decrease of the demand would result in allocating or “releasing” prefixes.
A large number of allocated prefixes also creates additional fragmentation, hence a server
should allocate just few prefixes.

Figure A.6 shows an example of how the addresses for allocation are selected. When
the demand for addresses increases, the MASC server would try to add the new prefixes
incrementally, by doubling and aggregating the address prefixes it already owns (see Fig-
ure A.6(a)). If the existing prefixes cannot be doubled in size, a MASC server may choose
to select a new, large enough prefix that can accommodate the current demand. Then the
server would gradually “move” older allocations to the new prefix by not renewing those
older prefixes (see Figure A.6(b)), therefore effectively reducing the space fragmentation.
Similarly, if the currently allocated address prefix is under-utilized, the MASC server may
try to aggregate the used addresses by “moving” the fragments within a single block (see

Figure A.6(c)).

219

0 4/24 224 0.4/23

(a) Incremental increase

/---

+ 1024

(b) Adaptive increase

Reducing .0/22 | :Active
24.0.0/ fragmentation, 224.0.4/22 | : Deprecated

(c) Adaptive decrease

Figure A.6: Increasing and decreasing the allocated addresses.

220

Finally, we should note that the same algorithms can be used in a hierarchy if the
amount of state becomes a scalability issue, or if there are other reasons such as man-
agement or administrative control. In the hierarchy, the servers at the lower level of the
hierarchy are clients of the servers at the higher level. In the next section we show through

simulations how the allocation performs in a flat topology, and in a hierarchy.

A.3 Simulation Results

Our primary goal was to evaluate the design of the claim-collide mechanism and the set
of algorithms that are used in MASC. In our evaluation we were interested primarily in
the allocation latency and address space utilization, and how robust the architecture is to
network partitions. We also wanted to evaluate MASC in term of amount of state and
state flux. As part of our evaluation we considered hierarchical allocation as well.

The simulator we used is based on our MASC implementation [96]. In fact, the MASC-

specific part of the implementation was used without modification in the simulator.

A.3.1 Methodology

We evaluated three different allocation topologies: a flat topology, one in which servers form
a two-level hierarchy, and one in which they form a three-level hierarchy. For simplicity,
each child node had only one parent. We expect that, if nodes have more than one parent,
the overall allocation latency would be less than the latency observed in our simulations.
This is because a child would be more likely to acquire addresses from the least address-
constrained parent. Because the allocation algorithms (see Section A.2.3) are applied

independently with regard to each parent, the utilization at each child will be similar as if

221

it had only one parent. The flat topology had 100 nodes; the two-level hierarchy had 10
parent nodes and each parent had 10 children; the three-level hierarchy had 5 nodes at the
top, each with 5 children, and each of those 25 children had 4 children on its own. Hence,
all topologies had the same number of leaf nodes.

The same type address demand pattern for multicast addresses, parameterized by re-
quest size, request lifetime, and inter-request time, was applied to each leaf node. In the
simulation runs we dynamically varied these parameters to simulate varying demand. Each
request lifetime was fixed to 32 days and each request size had a fixed value that could
change over time. The inter-request time was always a random value between 0 and twice
the average inter-request time, which also changed over time. The parameters were changed

according to Table A.1.

Time (hours) 0 | 500 | 1000 | 1500 | 2000 | 5000 | 15000
Request size 1024 | 1024 | 1024 | 2048 | 2048 | 1024 | 2048
Ave. inter-request 32 24 16 32 24 24 24
time (hours)
Lifetime (days) 32 32 32 32 32 32 32

Table A.1: Demand parameters change over time.

We were interested primarily in the allocation latency among all MASC servers, and in
the long term overall resource utilization (the amount of all addresses allocated to the clients
vs. the amount of all addresses allocated by all servers). We also measured parameters
such as the average number of prefixes allocated to a server, and the average number of
prefix changes. The former defines the amount of state in the servers and the address
space fragmentation; the latter defines the flux of the addresses allocated to the users, or

the change in associated routing information. In our simulations we defined prefix change

222

as the allocation of a new prefix, or the expansion or shrinking (including complete release)
of an already allocated prefix, hence the results are closer representation of the flux in the
association of set of addresses with a MASC domain.

Figure A.7(a) shows the shape of the overall demand pattern. Because we wanted to
stress the allocation, initially we started increasing the demand rapidly, later at time 5000
we suddenly decreased it by half, and finally at time 15000 we increased it twice. Finally,
on average, every 5 hours, a random link would go down for 23 hours. Because a child
node was connected by a single link to its parent, and all top-level nodes were connected in
a star, a single link failure could partition the topology. By using a relatively high rate of
link failures, and by using topology that is not robust against partitioning, we wanted to
stress the robustness of the allocation mechanism, and wanted to investigate how network
failures would affect the allocation latency.

In our simulations the address utilization target was 70-90% per node; the target num-
ber of prefixes was three prefixes per node. A higher utilization target could make the
pre-allocation less efficient, and would increase the allocation latency. A higher target
number of prefixes would increase the state per node; a lower target number would de-
crease the utilization per node, because, within each prefix there is a likelihood of a 50%

internal fragmentation.

223

Number of addresses

Allocation latency (hours)

Number of prefixes

Overall resource demand

7e+06 T T T T -
6e+06 1
5e+06 q
4e+06 1
3e+06 1
2e+06 q
le+06 1
0
0 5000 10000 15000 20000 25000 30000
Time(hours)
(a) Overall resource demand pattern
Average allocation latency
200
150 1
100 1
50 1
. L |
0 5000 10000 15000 20000 25000 30000
Time(hours)
(c) Average allocation latency
Average number of prefixes per node
6
5 4
4 4
3 4
2 4
1 4
0
0 5000 10000 15000 20000 25000 30000

Time(hours)

(e) Average number of prefixes

Resource utilization

1
100 nodes 1-level hierarchy ——
10x10 nodes 2-level hierarchy -
0.8 5x5x4 nodes 3-level hierarchy
c 4
o
T
N
3 i
0
0 5000 10000 15000 20000 25000 30000
Time(hours)
(b) Overall resource utilization
Average allocation latency (frequency distribution)
100
80]
D
Q
£ e]
>
o
=
[}
2 40 q
o
w
20]
0 Mmﬂmwu

100 150 200 250 300

Allocation latency (hours)

0 50

(d) Average allocation latency (frequency distri-
bution)

Accumulative number of changes per node

100

40 1

20 1

Accumulative number of changes

15000 25000 30000

Time(hours)

0 5000 10000 20000

(f) Prefix changes (accumulatively)

Figure A.7: Flat topology of 100 nodes.

224

A.3.2 Simulation Results

Figure A.7(b) shows the overall resource utilization for flat topology, two, and three level
hierarchy. The long-term utilization in the flat topology is within the target of 70-90%. Ob-
viously, each additional level in the hierarchy will multiplicatively decrease the utilization
by 70-90%, hence the utilization for the two and three-level hierarchy is lower.

Figure A.7(c) shows the average allocation latency among all requests for the flat topol-
ogy averaged with time window of 1 hour. The frequency distribution is shown in Fig-
ure A.7(d). Without pre-allocation we would expect that the allocation latency will always
be 48 hours plus the time to resolve collisions. Because of pre-allocation however, most of
the time the allocation latency is close to zero. Only when there was sudden change of the
demand, the allocation latency was non-zero, simply because such changes are difficult to
predict. One explanation is that the particular utilization targets we chose did not have
enough slack to accommodate the surge in demand. We do expect that in practice the
demand will gradually increase, and if there are such sudden changes of the demand, they
would be triggered by predictable events (e.g., release of extremely popular multicast appli-
cation). In that situation, the system administrators can take some actions in advance such
as reducing the target utilization so the MASC servers will pre-allocate more addresses.

We should note that only during the startup the amount of collisions were significant
such that the allocation latency of some requests was longer than 48 hours. This is primarily
because of two factors. First, a network partition increases the collision discovery latency,
hence it took longer to back-off and claim a new prefix. Second, when the nodes that had
backed off claimed new, non-adjacent prefixes, they both used an identical, deterministic

algorithm for this (the reverse-bit ordering algorithm described in A.2.3). As a result, they

225

selected the same prefix again. Small randomness should be used to significantly reduce
the collision probability, and therefore the allocation latency.

The average allocation latency results for two and three-level hierarchy are shown in
Figure A.8 and Figure A.9 respectively. It is not a surprise that the allocation latency
is longer than the flat topology. If we ignore the collisions, we would expect that the
allocation latency would be no longer than HierarchyDepth x 48hours, hence for the two
and three-level hierarchy it should be 96 and 144 hours respectively. Indeed, with few
exceptions, this was the case. We visually observed that during the startup period, and
at time 15000 in case of three-level hierarchy, there were few occasions of latency higher
than expected. As in the flat topology, collisions were one of the reasons, but there were
two more factors. First, if a child server needed to claim more addresses from its parent’s
space, but the link to the parent was down, the child did not originate the claim before
the link comes up; that added up to 23 hours to the allocation latency. The second reason
applies only to the three-level (or any hierarchy with more than two levels) hierarchy. If a
parent’s allocation is behind the demand, a child might send a claim-hint for more space to
that parent. For simplicity of implementation, and to reduce the multi-level dependency,
this hint had only one-time meaning to the parent. The parent immediately claimed more
space based on that hint, but it might itself had to send a claim-hint to the upper level
(level 1) server. However, after the level 1 server obtained and advertised more space
to the level 2 servers, our parent could not immediately claim more space, unless it had
received more claims from its children (including claim-hints). Hence, a leaf child server
should periodically resend claim-hints to its parent, until the parent has enough space. In

our simulations the leaf servers were sending the claim-hints once in 48 hours, hence this

226

Average allocation latency Average allocation latency (frequency distribution)

=
o
o

200

[y

u

o
o]
o

D
o

B
o

Allocation latency (hours)
=
o
o
Frequency (times)

ol

o
N
o

0 5000 10000 15000 20000 25000 30000 0 50 100 150 200 250 300
Time(hours) Allocation latency (hours)
(a) Average allocation latency (b) Average allocation latency(frequency distri-
bution)

Figure A.8: Two-level topology with 100 leaf nodes nodes.

additionally increased the allocation latency. Investigating the relationship between this
frequency and the allocation latency is part of our future work.

Figure A.7(e) shows the average number of address prefixes per server for the flat
topology. We can see that the number of prefixes is within our target of three prefixes per
node. Figure A.7(f) shows the accumulative number of average prefix change per node.
We do not have a hard-number target for the prefix changes, because this number depends
primarily on the dynamics of the resource request demand pattern (in particular, a sudden
increase of the demand). If we exclude the changes during the startup, we can compute
that the average change of prefix was relatively low: on the order of one change in 50 days.
The results for the two and three-level hierarchy were similar, except that the average
number of changes at the leaf nodes were respectively two and three times higher.

The results of running the same set of simulations, but without links failures were
similar, except that during largest contention for resource (during startup and at time

15000) was slightly shorter. This is primarily due to the smaller probability for collision.

227

Average allocation latency (frequency distribution)

Average allocation latency

=
o
o

200

[y

u

o
o]
o

D
o

B
o

ol
o

Allocation latency (hours)
=
o
o
Frequency (times)

N
o

0 u\hh‘ I h‘m ot b o

0
0 5000 10000 15000 20000 25000 30000 0 50 100 150 200 250 300
Time(hours) Allocation latency (hours)

(a) Average allocation latency (b) Average allocation latency(frequency distri-
bution)

Figure A.9: Three-level topology with 100 leaf nodes nodes.

We also run the same simulations using exponential and Pareto inter-request time
distribution instead of uniform random distribution.? The results with exponential inter-
request time distribution were similar to the results with uniform time distribution, except
that the overall address utilization was a little bit lower, and the accumulated allocation
latency was approximately 15-25% more. With Pareto distribution however, the overall
address utilization was approximately up to 15% lower (e.g., for the three-level hierarchy
hierarchy the overall resource utilization was approximately 20%, compared to 35% with
uniform inter-request time), and the accumulated allocation latency and the prefix flux were
in some cases three times more. This is not a surprise, because the variation of Pareto is
much larger, and it is much more difficult to predict such variations of the demand and
allocate enough addresses in advance without compromising the address utilization.

In our simulations each request lifetime was fixed at 32 days. Because the allocation

is completely demand driven, if the lifetime was longer, the servers would allocate the

3We should note that the inter-request time defines primarily the demand for addresses, and increasing
or decreasing its average value is equivalent to increasing or decreasing the demand.

228

resources for longer lifetime. Longer allocation lifetime however means that it will take
longer to expire a prefix that is not in use. Hence, if the demand suddenly decreases (as in
time 5000 in our simulations), it would take longer for the servers to “release” the unused
resources, and therefore the utilization will be below the target for longer period of time. If
each request lifetime was much shorter, then the unused addresses will be released sooner,
and the utilization will not be compromised, but then the allocation is more sensitive to

short-term demand variations, and the flux of the allocated addresses will be much larger.

A.4 Related Work

In [24] the authors classify distributed resource allocation mechanisms into two classes:
pessimistic and optimistic approaches. If there is a network failure, the pessimistic approach
simply prevents the servers from allocating resources. In contrast, the optimistic approach
allows them to allocate resource even if some of the other servers are not reachable; the
assumption is that conflicting allocation will be rare, but if it happens, it can be resolved
after the partition heals. The claim-collide mechanism for address allocation we describe
in this paper is in some sense a pessimistic approach. It assumes that if there is network
partitioning, it is quite likely that immediate allocation will result in inconsistency. On the
other hand, because a server does not expect explicit positive acknowledgments from the
other servers, it has some similarity with the optimistic approaches.

The Mbone multicast session directory, sdr [43]* is used to create and manage multicast
sessions, and one of its functions is to allocate a multicast address to each session. It is

the first architecture widely used over the Internet that allocates the multicast addresses

*sdr was based on sd (Session Directory), written by Van Jacobson.

229

without centralized authority and without explicit acknowledgment messages among the
participants. Sdr also used a claim-collide mechanism, but it operates at the granularity of
a single address and much shorter claim wait time. If the global address space utilization is
low, then sdr can allocate addresses with high probability for uniqueness. Sdr however does
not scale if the address space utilization is high, or if there is a large number of participants.

Announce-listen communication [13] is a paradigm for robust coordination using mul-
ticast. In Announce-Listen, the clients use multicast to announce there requests. The
providers listen to these requests and to the responses of other providers, and take the ap-
propriate actions such as granting or demanding tokens back from the clients. Claim-collide
is an instance of announce-listen communication, to the extent that servers announce their
intent to acquire resources (the multicast addresses), and other servers listen passively to
claims, responding only to generate collisions when necessary.

A claim-collide based mechanism is used for link-local unicast address allocation [120].
Typically, a host that does not have configured IP address will use DHCP [32] to get one.
If there is no DHCP server running, or if it is down, the host can choose an unicast address
at random from some well known range, then use a claim-collide-like mechanism (ARP
“probes”) to ensure that the address is not used by other hosts on the same LAN. The
allocated address then can be used to communicate with the range of that LAN. In this
example claim-collide is preferred because of its simplicity (the hosts are their own servers),
and because it does not need any external servers to operate.

A number of multicast routing protocols ([4, 33, 26, 115]) need to elect a single router-
forwarder on shared LANs to avoid data duplication. A router sends an explicit “claim”

message with metric and preference on a LAN. Other routers might also “claim” the right

230

to forward packets for same (source,group) on that LAN. The router with best metric and
preference is considered the winner; the rest of the routers “back off” by removing the

interface to that LAN from the outgoing interfaces set on the particular forwarding state.

A.5 Conclusions

Due to the scarcity of the IPv4 multicast addresses, it is desirable to use dynamic address
allocation with explicit lifetime. The work of the IETF malloc working group proposes one
such architecture, composed of three-layer allocation scheme: host-server, intra-domain
server-server and inter-domain address allocation.

In this Appendix we describe and evaluate MASC, the Multicast Address-Set Claim
Protocol, that is used for inter-domain address allocation within malloc. MASC uses several
techniques to achieve robust and efficient address allocation. To avoid synchronization-
related issues associated with explicit request-response mechanisms, MASC servers use
claim-collide mechanism to allocate a set of addresses. The advantage of the claim-collide
mechanism is that it is much simpler, and is more robust to network failures. However,
this is achieved by trading-off longer allocation latency. To levigate the impact of longer
allocation latency, MASC servers trace address demand and use pre-allocation. To improve
the address utilization, and at the same time to reduce the amount of state and address
fragmentation, MASC uses a combination of techniques such as prefix-based allocation,
reverse-bit ordering selection algorithm, and multi-prefix allocation per domain.

We use simulations to demonstrate that MASC can perform reasonably well even with
highly unpredictable demand for addresses. In our simulations we use flat MASC server
topology, as well as two and three level hierarchy. The results show that MASC can perform

231

reasonably well, but increasing the levels of the hierarchy reduce the address utilization,
therefore for practical purposes the hierarchy should be limited to two levels.

There are a number of multicast-related deployment issues that need to be solved [30]
to achieve Internet-wide multicast, and multicast address allocation is one of them. On the
other hand, each additional multicast-related protocol adds complexity to the system, which
can be another deployment-related issue. More recently, a simple static multicast address
prefix-allocation mechanism has been proposed for inter-domain address allocation [82],
where the prefix of multicast addresses allocated to an AS is algorithmically derived from
that AS number. Such mechanisms are very attractive because of their simplicity, but they
limit the number of addresses that can be allocated to each domain. If the demand for
multicast addresses is relatively small, then we could use AS number-derived allocation
schemes, and we can avoid the complexity of inter-domain dynamic address allocation.
If the demand for multicast addresses is significant, then we would need some dynamic
allocation mechanism such as MASC. One possible solution is to use a combination of
static and dynamic address allocation. For example, we can use MASC to manage some
fraction of the address space, and the rest of the address space can be divided based on
the AS numbers. Therefore, only domains that have larger demand for addresses would
have to use MASC to obtain more multicast addresses. The rest of the domains would
not be forced to deploy MASC if they do not need more multicast addresses. Thus, the
complexity of dynamic inter-domain address allocation is added to the network only where

it is needed.

232

