Aggregate-Based Congestion Control

Ratul Mahajan, Steven M. Bellovin, Sally Floyd,
John loannidis, Vern Paxson, and Scott Shenker*

ICSI Center for Internet Research (ICIR)

Abstract

Recent events have illustrated the Internet’s vulnerability to
both denial of service (DoS) attacks and flash crowds in which
links (or servers) in the network become severely congested.
In both DoS attacks and flash crowds, the congestion is nei-
ther due to a single flow, nor due to a general increase in traf-
fic, but to a well-defined subset of the traffic — an aggre-
gate. This paper proposes aggregate-based congestion con-
trol (ACC) to protect the network from such aggregates. Our
approach involves mechanisms for detecting and controlling
high-bandwidth aggregates at the congested router, and a co-
operative mechanism pushback, using which these aggregates
can be controlled upstream. These mechanisms, while cer-
tainly not a panacea, should provide some relief from flash
crowds and flooding-style DoS attacks.

1 Introduction

The current Internet infrastructure is highly vulnerable to both
denial of service (DoS) attacks and flash crowds. During
these, all traffic traversing the congested links experiences sig-
nificantly degraded service over an extended period of time.
In this paper, we view flooding-style DoS attacks and flash
crowds as congestion events, and propose protection mecha-
nisms to minimize their adverse impact.

The goal of a DoS attack is to impact a resource such as a
link, a router, or a server in a way that service to legitimate
users is denied or degraded. Flooding-style DoS attacks di-
rect large amounts of traffic at the resource to overload it. The
Internet is particularly vulnerable to distributed denial of ser-
vice (DDoS) attacks, in which the attack traffic comes from a
large number of sources. A series of DDoS attacks occurred
in February 2000 to considerable media attention, resulting in
a high packet loss rates for several hours [7, 15]. DDoS at-
tacks have also been directed against network infrastructure
rather than against individual servers [16].

Flash crowds occur when a large number of users try to access
the same server simultaneously. Apart from overloading the
server itself, the traffic due to flash crowds can also overload
the network links and thereby interfere with other, unrelated
traffic on the Internet. For example, degraded Internet perfor-
mance was experienced during a Victoria’s Secret webcast [2]
and during the NASA Pathfinder mission. The “Slashdot ef-
fect” often leads to flash crowds.

While the intent and the triggering mechanisms for DDoS at-
tacks and flash crowds are quite different, from the network’s

*Ratul Mahajan is at University of Washington (work done while at ICIR);
Steven M. Bellovin and John loannidis are at AT&T Labs — Research; Sally
Floyd, Vern Paxson and Scott Shenker are at ICIR.

AT&T Labs — Research

perspective these two events are quite similar. The persistent
congestion is neither due to a single well-defined flow, nor due
to an undifferentiated overall increase in traffic. Instead, there
is a particular aggregate of packets causing the overload, and
these offending packets may be spread across many flows.

Congestion caused by aggregates cannot be controlled by con-
ventional flow-based protection mechanisms [3, 12, 14, 20]
because the aggregate can be composed of numerous flows,
each of which possibly being low-bandwidth. In this paper
we propose aggregate-based congestion control (ACC) that
operates at the granularity of aggregates, which falls between
the traditional granularities of flow-based control (classifies
packets into flows) and active queue management (does not
differentiate between packets at all).

More specifically, an aggregateis a collection of packets from
one or more flows that have some property in common. This
property could be anything from the destination or source
address prefix to a certain application type (e.g., streaming
video). Other examples of aggregates are TCP SYN packets
and ICMP ECHO packets. An aggregate could be defined by
a very broad property such as TCP traffic, or a very narrow
one such as HTTP traffic to a specific host.

ACC mechanisms enable a congested router to identify the
responsible aggregate(s) and control its throughput; this helps
prevent service degradation experienced by other traffic. The
congested routers can also use pushback, a cooperative ACC
mechanism to control an aggregate upstream. Pushback pre-
vents upstream bandwidth from being wasted on packets that
are only going to be dropped downstream. In addition, for a
DDosS attack, if most traffic is concentrated at a few upstream
links, pushback can protect other traffic within the aggregate.

ACC mechanisms are intended to protect the network from
persistent and severe congestion due to a rapid increase in traf-
fic from one or more aggregates. We envision that these mech-
anisms would be invoked rarely, and emphasize that they are
not substitutes for either adequate provisioning or flow-based
congestion control. We believe that introducing control mech-
anisms at the granularity of aggregates would provide impor-
tant protection against flash crowds, flooding-style DDoS at-
tacks, and other forms of aggregate-based congestion.

The organization of this paper is as follows. In Section 2, we
present an overview of the ACC mechanisms. We describe
our current design in Section 3. Section 4 shows the utility
and dynamics of the ACC mechanims using simulations. We
discuss related work in Section 5, and conclude in Section 6.



2 ACC Mechanisms

The ACC mechanisms can be thought of as taking the follow-
ing sequence of decisions:

1. Am | seriously congested?

2. If so, can | identify the responsible aggregate(s)?

3. If so, to what degree do | limit the aggregate(s)?

4. Do | also use pushback?

5. When do | stop?

Each of these questions requires an algorithm for making the
decision, mostly independent of each other. Each is also a nat-
ural point to inject policy considerations. The class of possible
policies is very large; in this paper we assume simple policies
in order to develop and understand the basic mechanisms. In
this section we focus on the important considerations for an-
swering each of these questions, and in the next we present a
possible design.

2.1 Detecting Congestion

The ACC mechanisms should be triggered only when the out-
put queue experiences sustained severe congestion. One can
detect this by monitoring the loss rate at the queue, and look-
ing for an extended high loss rate period. History of the loss
rate pattern at the router can also be employed to distinguish
between typical and unusual congestion levels, maybe even
taking into account the time of day.

2.2 ldentifying Responsible Aggregates

Since no preset definition of aggregates that may cause con-
gestion exists, we need to identify them once serious conges-
tion is detected. This is a tricky problem to solve in a general
fashion for three reasons. First, there are many possible di-
mensions in which traffic may cluster to form aggregates: by
source or destination address (a server experiencing a flash
crowd), address prefix (a flooding attack targeting a site), or
a specific application type (a virulent worm that propagates
by email). Second, if the congestion is due to a DDoS at-
tack, the attacker may vary her traffic to escape detection.
Third, there may exist no offending aggregate at all, because
the congestion is undifferentiated, such as that caused by an
under-provisioned network or routing around a failure.

Analogous to the term attack signature for describing vari-
ous forms of malicious activities, we use the term congestion
signatureto denote the aggregate(s) identified as causing con-
gestion. If the congestion signature is too broad, such that
it encompasses traffic beyond that in the true high-bandwidth
aggregate, then we refer to the signature as incurring collat-
eral damage. To minimize the collateral damage, identifying
a narrow congestion signature is an important goal.

We propose that routers identify aggregates by applying clus-
tering to a random sample of their traffic. Clustering should
be based only on the fields in the packet header that can be
trusted at the congested router. Moreover, the clustering al-
gorithm should not identify any aggregate during undifferen-
tiated congestion.

’ — heavy traffic flow
- - = pushback message

Figure 1: Pushback takes rate-limiting closer to the source(s).

Traffic history can also be used to verify that a particular ag-
gregate is in fact responsible for the recent congestion. There
are links in the network that are dominated by a particular ag-
gregate in the normal case, and these links may remain domi-
nated by that aggregate even during severe congestion caused
by failures or other aggregates. The ISP can also use policy if
it wants to protect such aggregates.

2.3 Determining the RateLimit for Aggregates
We now turn to the question of to what degree the router
should limit an aggregate. We argue that there is no useful,
policy-free equivalent of max-min fairness when applied to
aggregates; for example, we cannot give each destination pre-
fix an equal share of the bandwidth. We also cannot com-
pletely shut off the identified aggregate unless we are sure it
is a DDoS attack and that the congestion signature contains
no legitimate traffic. \We make protecting the other traffic on
the link be the basis for deciding the rate-limit. The rate-limit
for the identified aggregate(s) should be chosen such that a
minimum level of service can be guaranteed for the remain-
ing traffic, for example, by bounding the loss rate.

2.4 Pushback

Pushback is a cooperative mechanism that can be used to con-
trol an aggregate upstream. In pushback, the congested router
asks its adjacent upstream routers to rate-limit the aggregate.
Since the neighbors sending more traffic within the aggregate
are more likely to be carrying attack traffic, this request is sent
only to the contributing neighbors, i.e., those that send a sig-
nificant fraction of the aggregate traffic. The receiving routers
can recursively propagate pushback further upstream.

Apart from saving upstream bandwidth through early drop-
ping of packets that would have been dropped downstream at
the congested router, pushback helps to focus rate-limiting on
the attack traffic within the aggregate. Figure 1 illustrates this.
Assume that LO is highly congested due to a high-bandwidth
aggregate, and RO identifies the responsible aggregate. Local
ACC can protect the traffic not belonging to the aggregate, but
not the (likely) legitimate traffic within the aggregate coming
from L1. In this case pushback will propagate from RO to R2
and R3, and subsequently to R4 and R7,* thus protecting traf-

1The path taken by pushback is the reverse of that taken by the aggregate,
incidentally providing a form of traceback.



fic from L1, L5 and L6.

Pushback is an optional mechanism, whose invocation is es-
pecially useful in two situations. First, when the sending rate
of the aggregate remains much higher than the imposed limit.
This implies that the router has not been able to control the
aggregate locally by increasing its loss rate in an effort to en-
courage end-to-end congestion control. Second, when there is
an indication that a DDoS attack is in progress. For instance,
if most packets within the aggregate are destined for a noto-
rious UDP port, the router can be fairly certain that it is not
witnessing a flash crowd but a DDoS attack. Pushback can
also be invoked by a router on the behest of a directly con-
nected server, which can use application level information to
distinguish between attacks and flash crowds [10].

Before invoking pushback, the ACC mechanism divides the
rate-limit for the aggregate among the contributing neighbors.
In the general case, all the contributing neighbors do not con-
tribute the same amount; a link carrying more traffic belong-
ing to the aggregate is more likely to be sending attack traffic;
hence more traffic should be dropped from it. After deter-
mining the limit for each contributing neighbor, a pushback
request message is sent to them. The recipients begin rate-
limiting the aggregate with the specified limit. Pushback is
propagated further upstream in a similar manner.

It is not necessary that all traffic in the congestion signature
at an upstream router be traversing the congested router. For
example, assume that the congestion signature determined by
the congested router is traffic destined for 12.0.0.0/8; it is pos-
sible that an upstream router does not send all traffic in the /8
towards the congested router but only a subset of it. Hence,
when propagating pushback, the congestion signature should
be restricted (using the routing table) only to the traffic that
traverses the congested router [13].

2.5 Reviewing Rate-limiting

Rate-limiting decisions are revisited periodically, to revise the
limit on the rate-limited aggregates based on the current con-
ditions, and to release some aggregates altogether if they starts
to behave. These decisions are easy when rate-limiting is
purely local (no pushback), as the router can continuously
monitor its congestion as well the aggregates’ arrival rate.
However, we do need to worry about an attacker predicting
this decision in order to evade ACC.

For pushback, however, the decision is more difficult; the
router must distinguish between not seeing much traffic from
the aggregate due to upstream rate-limiting, and the aggre-
gate ceasing to be high-bandwidth. Disambiguating these
two cases requires feedback from upstream, by the congested
router estimating the real sending rate of the aggregate. Start-
ing from the routers that did not propagate pushback, each
rate-limiting router sends feedback to the downstream router
reporting the arrival rate estimate for that aggregate. Routers
that propagated pushback receive feedback from their up-
stream neighbors, which they consolidate to get an estimate

Rate-Limiter
[independent drop decision
for each aggregates]

Packets surviving
the rate-limiter
Output Queue

Information on

Yes
identified aggregates

e ACC
Agent

Figure 2: Architecture of an ACC-enabled router.

of the arrival rate where they are located. This estimate is
propagated downstream. Finally, the congested router takes
rate-limiting decisions based on the feedback from its adja-
cent upstream routers.

To prevent attacks that send traffic intermittently to evade
ACC mechanisms, it is imperative that the aggregate release
time be much larger than the detection time.

3 Design
In this section, we present our preliminary design of the ACC

mechanisms. We present a brief description here; the details
are documented in [13].

Figure 2 shows the architecture of an ACC-enabled router.
Upon arrival, packets belonging to the identified aggregates
go through the rate limiter, where some of them are dropped
to enforce the rate limit. Other packets go directly to the out-
put queue.

The ACC agent monitors congestion and identifies aggregates
when it detects severe congestion. It also makes rate-limit
refresh decisions. Since it does not sit in the fast forwarding
path, it can be implemented in a box attached to the router
rather than the router itself.

The rate limiter enforces the rate limit using a virtual
queue [8] with a service rate equal to the specified limit. It
also estimates the arrival rate of each rate-limited aggregate
using exponential averaging [20], which is used in making
refresh decisions. The rate limiter can also work more intel-
ligently. Suppose it observes that the rate of a particular type
of packets (ICMP ECHO, for example) within the congestion
signature is significantly above normal. It is very likely that
these packets are being used to launch the attack; the rate lim-
iter can drop such packets more aggressively thus providing
relief to other packets within the aggregate.

Our current design uses very simple algorithms for each of the
problems specified in Section 2. Severe congestion is detected
if the drop rate over the last T, onitor S€CONdS goes above a
configured threshold of pp;gh.

Instead of installing a separate packet sampling mechanism,
we use the RED [6] drops for aggregate identification because
RED provides a reasonably fair distribution of drops [5]. Cur-
rently, we use only destination addresses for aggregate iden-



tification since most attacks and flash crowds have a common
destination (prefix): that of the victim. Aggregates are iden-
tified by first clustering the commonly seen destination ad-
dresses (32-bit) in the drop history into 24-bit prefixes,? and
then getting a longer prefix that contains most of the drops
(to minimize collateral damage). This gives us a list of high-
bandwidth aggregates, which we sort based on their sending
rate (estimated using the number of drops seen for an aggre-
gate) and the RED loss rate.

From the list of aggregates obtained above, we rate-limit one
or more of them. The number of aggregates to control and
their limits are computed such that enough traffic is shed-
ded from the rate-limited aggregate(s) to bring down the RED
loss rate (experienced by the other traffic) below a configured
threshold of pyarge:. Moreover, this limit cannot be less than
the throughput of any non-rate-limited aggregate. \We cur-
rently do not have a technique to disambiguate between undif-
ferentiated and aggregate-based congestion; instead, we place
a bound on the number of aggregates that can be rate-limited
simultaneously.

The ACC agent invokes pushback for an aggregate if the loss
rate suffered by the aggregate in the rate limiter is very high.
With the help of the rate limiter, the ACC agent estimates
the arrival rate from each upstream neighbor and sends push-
back requests to the contributing neighbors after dividing the
rate limit among them. We divide the total rate limit, after
adjusting for the non-contributing neighbors, among the con-
tributing neighbors in a max-min fashion based on an estimate
of their individual contribution. For example, assume that
there are three contributing links with arrival rates of 2, 5, and
12 Mbps, the total incoming rate from all the non-contributing
neighbors is 1 Mbps, and the rate-limit is 11 Mbps. Setting
aside 1 Mbps for the non-contributing neighbors, we divide
the remaining 10 Mbps among the three contributing links as
2, 4, and 4 Mbps. The upstream routers rate-limit the aggre-
gate and decide whether to propagate pushback using similar
algorithms, and periodically send feedback downstream.

The rate-limiting decisions are reviewed every Ty fresp SEC-
onds. Using the arrival rate from the rate limiter for local
ACC or the feedback messages for pushback, along with the
current RED loss rate level, the ACC agent decides on a new
rate limit for each rate-limited aggregate. The new rate limit
is used by the rate limiter and also pushed upstream after di-
vision if pushback is being used. If the arrival rate of an ag-
gregate stays well below the limit for a small number of re-
fresh intervals, the aggregate is released altogether. Note that
continuing to rate-limit after the aggregate stops being high-
bandwidth does not hurt, since no packets would be dropped
by the rate limiter.

2This is based on the observation that most sites operate within a small
range of IP addresses. Multiple aggregates may be identified for sites with a
spread-out IP address range.

20 30
Number of bad flows
local ACC ‘

Number of bad flows

pushback

Figure 4: Throughput of different aggregates.

4 Evaluation

In this section, we illustrate the basic underlying functionality
of ACC using simulations done with an ns [17] implemen-
tation of the design outlined in Section 3. We used the fol-
lowing values for configured thresholds: T',onit0-=1 Second,
Phigh=10%, Piarget=5%, and Tyefresn=5 seconds. These
simulations do not pretend to use realistic topologies or traffic,
but are intended as a first step toward a more rigorous design
and evaluation of the mechanisms.

We use the following informal terminology to describe the
simulation setup. The bad sources send attack traffic to their
victim. The poor sources send legitimate traffic to the victim.
Thus, the poor traffic incurs collateral damage when all traffic
going to the victim is identified as the responsible aggregate.
The good sources send traffic to destinations other the victim.

4.1 ACC Mechanisms

Figure 3 shows the topology for a simulation intended to
show the dynamics of the ACC mechanisms. Each good and
poor source generates traffic using seven infinite-demand TCP
flows. The bad source uses a UDP flow with an on-off sending
pattern with equal on and off times, chosen randomly between
0 and 40 seconds. Each bad flow sends at 1 Mbps during the
on periods. A collection of these flows is a variable rate non-
congestion-controlled traffic, harder to tackle because of its
unpredictable sending rate. The number of bad flows is varied
to model different levels of aggressiveness of the bad aggre-
gate.

Figure 4 shows the results of the simulation without ACC (de-
fault), with only local ACC, and with pushback. In the default



Figure 5: The topology used for DDoS attack and flash crowd
simulations. R1.0 — R0.0 is congested.

- various destinations

100 e 100 diffuse
80 80
2 e 2 ;bad
5 40 5 poor
< s X mgood
20 20
O Gefailt loca pustback O default Tocd pushback

Figure 6: Bandwidth allocation at the congested link during
DDosS attacks.

case, the bad aggregate consumes most of the bandwidth, and
the good and the poor traffic suffer as a result. Local ACC
controls the throughput of the bad aggregate to protect the
good traffic, but fails to protect the poor traffic. Because lo-
cal ACC cannot differentiate between the two, it penalizes the
poor traffic along with the bad traffic. In contrast, pushback
protects not only the good traffic, but also the poor traffic by
pushing rate-limiting upstream where the bad and the poor
sources can be differentiated.

4.2 DDoS Attacks

The simulations in this section illustrate the utility of ACC
in the face of DDoS attacks, with both sparsely-spread and
highly-diffuse attack sources. We use the topology shown in
Figure 5. The link capacities are such that, apart from the
congested link itself, congestion is limited to the access links.

Ten good sources and four poor sources are picked at random
in the topology, each of which spawn Web-like traffic (using
the Web-traffic generator in ns). The number of bad sources
depends on the simulation scenario. The sparse-attack sce-
nario contains four randomly chosen bad sources, each send-
ing on-off UDP traffic (as above) but with an on-period send-
ing rate of 2 Mbps. The diffuse attack scenario contains 32
UDP sources with an on-period sending rate of 0.25 Mbps.

Figure 6 shows the results for both the simulation scenarios.
The horizontal lines represent the throughput of the good and
the poor traffic in the absence of any bad traffic. Without
ACC, the bad aggregate gets most of the bandwidth in both
scenarios. Local ACC protects the good traffic but not the
poor traffic. Pushback protects the poor traffic also, but that
ability is reduced in the face of diffuse attacks; the poor traf-
fic manages about 50% less throughput in the diffuse-attack
scenario than in the sparse one. This is mainly because when
the attacks are diffuse, even pushback cannot differentiate be-

0.8 _

0.6 |- R
04 | '
0.2

Default-Good --------
Pushback-Flash - i
‘ Pushback-(}ood

0 5 10 15 20
Time to complete the request (in seconds)

Fraction of requests

Figure 7: Time to complete a request during a flash crowd.

tween the poor and the bad sources. In fact, it is possible to
launch a highly diffuse attack in which each bad source gen-
erates less traffic than an average poor source, making it hard
to distinguish between the two.

4.3 Flash Crowds

This section shows a simulation with a flash crowd, using
again the topology shown in Figure 5. The “flash” traffic
comes from 32 randomly picked sources, each sending Web-
like traffic to the same destination. The good traffic comes
from ten sources, each sending Web-like traffic to different
destinations.

Figure 7 shows the cumulative distribution function of the
transfer completion time for the good and the flash traffic
in the default case without ACC, and in the pushback case
with pushback and local ACC. The hump around the 6-second
mark is due to timeout for transfers whose SYN or SYN/ACK
packet was lost. With pushback, 80% of the good transfers
complete within a few seconds, compared to less than 40% in
six seconds in the default case. The use of ACC and push-
back significantly benefits the good traffic, while resulting in
only a moderate degradation for the flash traffic. With push-
back, the drop rate for the good traffic is reduced from 30%
to just 6% (piqrget=5%), While the drop rate for the flash traf-
fic is increased only by 3%, to 33%. Because this simulation
has much more flash traffic than good traffic, even a small in-
crease in the drop rate for the flash traffic frees up a significant
amount of link capacity.

5 Related Work

Two common mechanisms to counter DDoS attacks are
ingress filtering [4] and traceback [1, 18, 19]. ACC is orthog-
onal to both of them; the focus of ACC is neither to stop the
attacks as in ingress filtering nor to find the sources of these
attacks as in traceback, but to control the damage while the at-
tack is in progress, whether or not the attack relies on spoofed
source addresses.

Web-caching infrastructures, content distribution networks
(CDNs), and multicast are powerful mechanisms for prevent-
ing flash crowds from congesting the network. However, even
a combination of these techniques may not be sufficient to
prevent all occurrences of network congestion due to flash
crowds. The ACC mechanisms can provide additional pro-



tection whenever congestion is caused by flash crowds.

The goals of flow-based congestion control (FCC) [3, 20, 12,
14] are similar to those of ACC. In fact, we have borrowed
several ideas from various FCC mechanisms. Pushback, in
particular, is similar to credit-based flow control [11] in that
both mechanisms send messages specifying how much traffic
within a certain category the upstream should send. How-
ever, FCC operates at a different granularity, and cannot con-
trol aggregate-based congestion because an aggregate could
be composed of many low-bandwidth flows.

6 Conclusionsand Future Work
Congestion caused by aggregates differs in some fundamen-
tal aspects from that caused by individual flows, and hence
requires different control mechanisms in the network. We
have proposed both local and cooperative mechanisms for
aggregate-based congestion control. Initial simulations have
shown that these mechanisms are promising directions to con-
trol both DDoS attacks and flash crowds.

Much needs to be investigated about the ACC mechanisms.
Apart from evaluating the trade-offs involved in various de-
sign choices to implement them, we need to understand the
pitfalls and limitations of ACC itself. For example, pushback
can potentially hurt innocent sources close to an attack source
if it is not propagated upstream enough to differentiate be-
tween the two.

Other open issues include implementation complexity and
deployability of ACC. A complex mechanism with high re-
source requirements can become a DoS mechanism itself.
A technique to incrementally deploy pushback is presented
in [13]; a prototype implementation can be found in [9].

Empirical answers to various issues are required to guide the
design and evaluation the ACC mechanisms. These issues
concern the ability to accurately identify aggregates in the
network, distinguish between flash crowds and DoS attacks,
and distinguish between undifferentiated and aggregate-based
congestion. Pushback is most effective when the attack tree
(the union of links used by the attack traffic) has a low branch-
ing factor, as this enables better localization of malicious
sources. A study of DDoS attack trees observed in practice
would be very useful in this context.

Finally, we expect the ACC mechanisms to be heavily influ-
enced by policy. We plan to investigate the kinds of policies
that these mechanisms need to support. Examples include
protecting some aggregate even if it is high bandwidth, pun-
ishing some aggregate as soon as congestion sets in, providing
relative fairness among aggregates, and restricting maximum
throughput of an aggregate.

Acknowledgments

The original idea for pushback came from an informal DDoS
research group consisting of Steven M. Bellovin, Matt Blaze,
Bill Cheswick, Cory Cohen, Jon David, Jim Duncan, Jim El-
lis, Paul Ferguson, John loannidis, Marcus Leech, Perry Met-

zger, Vern Paxson, Robert Stone, Ed Vielmetti, and Wietse
Venema. We also thank Randy Bush, Eddie Kohler, and Ed
Vielmetti for useful feedback.

References

[1] S. M. Bellovin, M. Leech, and T. Taylor. ICMP Traceback

Messages. Internet-draft: draft-ietf-itrace-01.txt, Oct. 2001.
[2] J. Borland. Net Video Not Yet Ready for Prime Time.

CNET news, Feb. 1999. http://news.cnet.com/news/0-1004-

200-338361.html.
[3] A. Demers, S. Keshav, and S. Shenker. Analysis and Simula-

tion of a Fair Queueing Algorithm. In SGCOMM, 1989.
[4] P.Fergusonand D. Senie. Network Ingress Filtering: Defeating

Denial of Service Attacks which employ IP Source Address

Spoofing. RFC 2827, May 2000.
[5] S. Floyd, K. Fall, and K. Tieu. Estimating Arrival

Rates from the RED Packet Drop History, Apr. 1998.

http://www.icir.org/floyd/end2end-paper.html.
[6] S. Floyd and V. Jacobson. Random Early Detection Gateways

for Congestion Avoidance. Transactions on Networking, Vol.
1(4):pp. 397-413, Aug. 1993.
[7] L. Garber. Denial-of-Service Attacks Rip the Internet. |EEE

Computer, vol. 33(4):pp. 12-17, Apr. 2000.
[8] R.J. Gibbens and F. P. Kelly. Resource Pricing and the Evo-

lution of Congestion Control. Automatica, invited paper for

special issue on control in communication networks, 1999.
[9] J. loannidis and S. Bellovin. Implementing Pushback: Router-

Based Defense Against DDoS Attacks. In Proceedings of

NDSS’ 02, Feb. 2002.
[10] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash Crowds

and Denial of Service Attacks: Characterization and Implica-

tions for CDNs and Web Sites. In WWW, May 2002.
[11] H.T. Kung, T. Blackwell, and A. Chapman. Credit-Based Flow

Control for ATM Networks: Credit Update Protocol, Adaptive
Credit Allocation and Statistical Multiplexing. In SGCOMM,

Aug. 1994.
[12] D. Lin and R. Morris. Dynamics of Random Early Detection.

In SGCOMM, 1997.
[13] R. Mahajan, S. M. Bellovin, S. Floyd, J. loannidis, V. Paxson,

and S. Shenker. Controlling High-Bandwidth Aggregates in the

Network (Extended Version). http://www.icir.org/pushback/.
[14] R. Mahajan, S. Floyd, and D. Wetherall. Controlling High-

Bandwidth Flows at the Congested Router. In ICNP, Nov.

2001.
[15] Denial of Service Attacks

trix.Net, Feb. 2000.
news/20000209_dos.html.
[16] D. Moore, G. Voelker, and S. Savage. Inferring Internet Denial
of Service Activity. USENIX Security Symposium, Aug. 2001.
[17] NS Web Page: http://www.isi.edu/nsnam.
[18] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical

Network Support for IP Traceback. In SGCOMM, Aug. 2000.
[19] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones,

F. Tchakountio, S. T. Kent, and W. T. Strayer. Hash-Based

IP Traceback. In SGCOMM, Aug. 2001.
[20] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queue-

ing: Achieving Approximately Fair Bandwidth Allocations in
High Speed Networks. In SGCOMM, 1998.

Disrupt Internet. Ma-
http://www.matrix.net/company/-



