
Exploiting Independent State For Network Intrusion Detection

Robin Sommer

TU München

sommer@in.tum.de

Vern Paxson

ICSI/LBNL

vern@icir.org

Abstract

Network intrusion detection systems (NIDSs) critically

rely on processing a great deal of state. Often much of this

state resides solely in the volatile processor memory acces-

sible to a single user-level process on a single machine. In

this work we highlight the power of independent state, i.e.,

internal fine-grained state that can be propagated from one

instance of a NIDS to others running either concurrently or

subsequently. Independent state provides us with a wealth

of possible applications that hold promise for enhancing the

capabilities of NIDSs. We discuss an implementation of in-

dependent state for the Bro NIDS and examine how we can

then leverage independent state for distributed processing,

load parallelization, selective preservation of state across

restarts and crashes, dynamic reconfiguration, high-level

policy maintenance, and support for profiling and debug-

ging. We have experimented with each of these applications

in several large environments and are now working to inte-

grate them into the sites’ operational monitoring. A perfor-

mance evaluation shows that our implementation is suitable

for use even in large-scale environments.

1 Introduction

Network intrusion detection systems (NIDSs) of any so-

phistication rely on managing a significant amount of state.

The state reflects the NIDS’s model of the communications

currently active in the network and also the NIDS’s analy-

sis over time, both in the past (previous activity by hosts or

users, suspicion levels, relationships between connections)

and in the future (timers used to model protocol interac-

tions and to drive detection algorithms). Managing this

state raises significant issues, among which are its sheer

volume [7]. Another issue that to date has received less

attention, concerns the degree to which the state is often

tied to a single executing process. That is, often much of a

NIDS’s state resides solely in the volatile processor mem-

ory accessible to a single user-level process on a single ma-

chine. Generally, any state that exists more broadly than

in the context of a single process is a minor subset of the

NIDS process’s full state: either higher-level results (often

just alerts) sent between processes to facilitate correlation or

aggregation, or log files written to disk for processing in the

future. The much richer (and bulkier) internal state of the

NIDS remains exactly that, internal. It cannot be accessed

by other processes unless a special means is provided for

doing so, and it is permanently lost upon termination of the

NIDS (which, due to a crash, may happen unexpectedly).

In this work we argue for the great utility of incorpo-

rating independent state into intrusion detection systems.

The goal is to enable much of the semantically rich, de-

tailed state that hitherto could exist only within a single ex-

ecuting process to become independent of that process. We

consider two basic types of independent state. Spatially in-

dependent state can be propagated from one instance of a

NIDS to other, concurrently executing, instances. Tempo-

rally independent state continues to exist after an instance

(or all instances) of a NIDS has exited. For both types of

independence, the state essentially exists “outside” of any

particular process.

Our contribution is not the fundamental notion of state

that can be shared between processes or accessed over

time—that already appears in numerous existing systems—

but rather the benefits of doing so within a framework that

(i) is unified, i.e., it covers all of the systems’ state in the

same way, and (ii) encompasses fine-grained state. This

second is particularly important: by keeping fine-grained

state, rather than only aggregated state such as alerts or ac-

tivity summaries, we can continue to process the indepen-

dent state using the full set of mechanisms provided by the

system. We explore such a framework by implementing in-

dependent state for the Bro intrusion detection system [16].

Bro is a highly stateful NIDS. Its basic model has two

main layers: event generation and policy script execu-

tion. Events are generated by an event engine which per-

forms policy-neutral analysis of network traffic at differ-

ent semantic levels. For example, there are events for

attempted/established/terminated/rejected connections, the

requests and replies for a number of applications, and suc-

cessful and unsuccessful user authentication. The user

writes policy scripts using a specialized, richly-typed high-

level language. These scripts execute on the events gener-

ated by the event engine and codify the actions the NIDS

should take: updating data structures describing the activity

seen on the network, sending out real-time alerts, record-

ing activity transcripts to files, and executing programs as

a means of reactive response. Thus, both the event engine

layer and the policy script layer generate and manage a great

deal of state. In this work, we strive to convert all of this

state into independent state.

Independent, fine-grained state provides us with a wealth

of possible applications that hold great promise for en-

hancing the power of a NIDS. These include coordinating

distributed monitoring; increasing NIDS performance by

splitting the analysis load across multiple CPUs in a vari-

ety of ways; selectively preserving key state across restarts

and crashes; dynamically reconfiguring the operation of the

NIDS on-the-fly; tracking the usage over time of the ele-

ments of a NIDS’s scripts to support high-level policy main-

tenance; and enabling detailed profiling and debugging. We

have implemented all of these and will discuss them in

depth.

As a first example, consider a set of NIDSs at different

locations of a network, each able to identify suspicious ac-

tivity in its segment. Traditionally, either each NIDS works

independently of its peers, or there is an explicit mechanism

to send, receive and incorporate alerts. With independent

state, it is possible to transparently leverage the others’ re-

sults. We simply tell the systems what state should be syn-

chronized among them. This state can span the range of

individual analysis variables, low-level (e.g., packet signa-

ture match) or high-level (e.g., successful SSL negotiation)

events, large tables storing accumulated context, or oper-

ator alerts. We further emphasize that this is only one of

many applications for independent state, as we will develop

subsequently.

In the next section, we give an overview of previous work

related to our efforts. In §3 we then discuss the design and

implementation of independent state within our architec-

ture. We examine in §4 the powerful features and applica-

tions mentioned above that fine-grained independent state

enables. In §5 we evaluate the communication performance

of the architecture, and we summarize in §6.

2 Related Work

While the unifying concept of independent state has not

been previously formulated in network intrusion detection

research, some of its aspects can be found in earlier NIDSs.

A number of NIDSs facilitate distributing the detection pro-

cessing across multiple locations in a network. They em-

ploy different approaches to do so, but distribution implic-

itly requires the exchange of state.

NetSTAT [26] describes attack scenarios using state tran-

sition diagrams. If, due to the characteristics of an at-

tack scenario, a single NetSTAT probe is unable to de-

tect an attack solely by itself, it is configured with a par-

tial scenario and communicates its analysis to other probes,

thereby transferring state. MetaSTAT [27] adds dynamic

reconfiguration capabilities to the STAT framework.

Emerald [17] hierarchically organizes monitors which

exchange messages to propagate results and subscribe to

services. GrIDS [23] models large-scale attacks by activ-

ity graphs. Its components monitor traffic at multiple loca-

tions and communicate by sending or requesting informa-

tion. AAFID [22] builds on autonomous agents which com-

municate their results to hierarchically organized monitors.

AAFID’s design specifically addresses dynamic reconfigu-

ration and acknowledges the utility of persistent state, al-

though the prototype does not implement it.

The “Intrusion Detection Message Exchange Format”

(IDMEF [9]) aims at defining a standard format to exchange

alerts between different NIDSs. It differs from our work

by its focus on interoperability and its restriction to the ex-

change of high-level state.

By setting up a network of communicating NIDSs, we

are building a distributed system. The mechanisms that we

employ (e.g., serialization, persistence, and synchroniza-

tion) are well-established in other areas (see, e.g., [24, 21]).

Applying them to network intrusion detection provides us

with a wide variety of new applications.

3 Design and Implementation

We first discuss our main tool for implementing

independent-state: a serialization framework. We next turn

to how the user interacts with the framework by discussing

its script-level interface, and finish with a discussion of ad-

dressing the need for secure and robust communication be-

tween concurrent NIDS processes.

3.1 Serialization Framework

For Bro, there are two main layers of operation, each of

which stores a significant amount of state. The C++ event

engine layer analyzes network traffic in a policy-neutral

fashion, producing a stream of events reflecting the activ-

ity present in the traffic stream. The activity encompasses

different semantic levels: individual packets, byte-stream

signatures, connections, applications, and interrelationships

between connections (e.g., stepping stones [28]). While

the event engine’s operation is tunable by redefining user-

visible parameters, its algorithms—and therefore the types

of state it stores—are fixed. On the other hand, the pol-

icy script layer, which executes scripts written in a custom

language over the stream of events, allows the user to ar-

bitrarily change and extend the standard set of scripts (and

in fact the user is expected to do so, to express site-specific

policy). Since this layer equips the user with a full script-

ing language providing a rich set of control constructs and

compound data types, the corresponding types of state are

only determined when the scripts are loaded at run-time.

There are four main types of internal, event-engine state

in Bro: connection state, analyzer state, timers, and control

state. The policy script layer includes six types of state:

the scripts themselves, data stored by the scripts, operations

on this data (see below for why we term these a form of

“state”), event generation, function calls, and byte-level sig-

natures.1

The main mechanism for making the state independent

is a serialization framework that enables us to convert all

of Bro’s main data structures into a self-contained binary

representation and back. Once we have this, we can, for

example, make state temporally independent by serializing

it into a file at the termination of a Bro instance. A new

instance can then read it back upon start-up. Similarly, to

make state spatially independent, we can send it over the

network to some remote instance.

Making object-oriented data structures serializable is,

by itself, fairly straightforward and well-established prac-

tice [21]. However, adding full serializability to a com-

plex system like Bro, which was not designed with this in

mind, raises numerous subtle issues we must address. One

of the basic problems that arise is the time needed to serial-

ize state. Bro is a realtime system that must keep up with a

high-volume stream of packets. If it spends too much time

on other things than processing packets, it risks dropping

packets. Therefore, we implemented incremental serializa-

tion: serialization proceeds in steps intermixed with packet

processing. In this way, it takes more time to finish the seri-

alization, but our ability to keep pace with the packet stream

improves.

Due to limited space we must omit further discussion

of a number of other issues (e.g., incremental serializa-

tion, restoring references to shallow-copied objects, using

process-independent object names to synchronize multiple

processes, locally rescheduling timers instantiated by other

instances of the NIDS). See [19] for more details.

3.2 Using Independent State

The framework presented in the previous section is in-

ternal to Bro’s event engine and hidden from the user, while

the interface to the framework is defined via new seman-

tics expressed at the policy script level. The development

of the elements of the interface has been mainly driven by

the needs of particular applications, and thus will continue

1We do not discuss signatures further due to limited space.

to be extended as we gain more experience with using it.

We note that having the general serialization framework in

place, the semantic interface was quite easy to add, and we

expect this to hold for future extensions, too.

First, we illustrate how the user can create temporally-

independent state, which essentially means writing differ-

ent elements of the NIDS’s state into files and reading them

back again later, possibly after having first modified them

using other instances of the NIDS. We then discuss control-

ling spatially-independent state, which is done in the con-

text of communication between multiple instances of the

NIDS. All the language constructs and functions are acces-

sible at the script-level. To ease their use, we have also

developed standard scripts to accomplish a number of com-

mon tasks.

3.2.1 Temporally Independent State

To make state temporally independent, we store it in files.

These files can then be read by another instance at a later

point of time.

The most obvious use of temporally independent state
is to make data persistent. The data is stored into a set of
files just before a Bro process terminates, and re-read when
a new instance starts up. Instead of storing all global data
per default, we let the user selectively define which script-
level data to save by adding an attribute &persistent to
its type declaration. For example,

global saw_Blaster: set[addr] &persistent;

declares a set of addresses for which any changes to the
set will be propagated to future invocations of Bro. Such a
set is useful, for example, in tracking which addresses have
already generated alerts in the past in order to reduce the
volume of future alerts. Furthermore, because temporally-
independent state includes its associated timestamps and
timers, we could also use:

global saw_Blaster: set[addr]

&persistent &create_expire=30days;

and Bro will delete each set element 30 days after it was

added, so we will be reminded of all still-active Blasters

once a month.

The reason we structure the interface so that the user ex-

plicitly marks which state to keep persistent, with all other

state by default remaining non-persistent, is both that the

volume of the entire set of state can be very large, and also

that we find that policy scripts are often written in a style

that presumes that state exists only during the execution of

a single instance of Bro. We return to this point when dis-

cussing checkpointing in §4.1.

Along with &persistent, we also added a function

make connection persistent, which tells Bro to

store the associated state of a particular connection. In ad-

dition to automatically writing all persistent state at termi-

nation, the new script function checkpoint can be called

anytime during operation. It uses incremental serialization

to avoid packet drops and can be called by another stan-

dard policy script to save Bro’s state at regular time inter-

vals. Similarly, the new function rescan state reads

state back from disk. One application here is to transfer

data between two Bro instances. Another is more powerful:

By copying a state file into that of a running instance, we

can change its configuration on-the-fly—both the values of

its global variables and also the values of its functions and

event handlers, i.e., we can dynamically change the code it

executes.

Along with script variables and function definitions, we

also developed a way to make event generation temporally-

independent. By calling the function capture events,

our policy script can tell Bro to write all events raised during

run-time into a file. One use is to later replay these events

in another instance of Bro for debugging and exploring al-

ternate analyses.

Alternatively, we can simply print the data, either in a

“pretty-printed” human-readable form, or encoded as XML

(although this latter is not fully implemented at this point).

This provides us with a more abstract view of network activ-

ity than raw packets, and we expect this to be highly useful

for traffic analysis.

3.2.2 Spatially Independent State

For spatially-independent state, we need to transfer state
from one NIDS instance to another running concurrently.
We do so by establishing network connections between
the instances. One of the instances calls the new function
listen, which opens a port on the local host waiting for
connections from other instances. Once a connection is es-
tablished, there are several ways to exchange state. Figure 1
shows how we integrated them into Bro’s architecture. Us-
ing the script-function request remote events one
side can subscribe to a set of events, meaning that whenever
the other side generates one of the events, it automatically
forwards the event to the other side:

Request all HTTP events from peer.

request_remote_events(10.0.0.1,

47756/tcp, /http_.*/);

At the receiving end the event looks the same as one gener-

ated locally (though it’s possible to test whether a particular

event did indeed originate locally, or remotely).
In addition to sharing events, multiple Bro instances may

share data, too. When a global script-level identifier is de-
clared as &synchronized, modifications to its value will
be propagated to all peers for which the identifier is also de-
clared &synchronized. For example:

global saw_Blaster: set[addr] &synchronized;

Figure 1: Integrating independent state into Bro.

Real−time notification

Policy scripts

Policy Layer

Event control

Event stream

Packet stream

Network

Exchanged with peers

Event Subscriptions

Packet Filter

Configuration

User State

Connections

Packet filter

Event Engine

Packets

Events

will cause the script variable saw Blaster to be synchro-

nized across each active Bro process. Any change made by

one of them to the set will be transparently reflected in the

value of the set as seen by the others.

We implemented synchronized tables by propagating

changes to the data in terms of descriptions of the opera-

tions to perform on the data rather than the full (and prob-

ably mostly unmodified) data itself. For example, when we

insert an element into a large set, we propagate “insert ele-

ment ‘foo’ into set ‘bar’ ”. This can in some circumstances

however lead to race conditions. Avoiding them would re-

quire mutually-exclusive data operations, for example by

using a token-based reservation system [24], but this would

violate Bro’s realtime processing constraints due to having

to wait for access before performing an operation. For fur-

ther details, see [19].

3.3 Robust and Secure Communication

Clearly, inter-NIDS communication requires robust and

secure operation. Regarding robustness, a key point is that,

from the perspective of the NIDS process’s main function-

ality, inter-NIDS communication should be unobtrusive. In

particular, inevitable networking difficulties such as time-

outs or unexpected termination should not perturb the main

operation. Therefore, rather than adding a network commu-

nication component directly into the current event engine /

script interpreter structure, we instead spawn a second pro-

cess exclusively dedicated to handling the communication

with peers. The two processes communicate by means of

a Unix pipe. (We did not use threads in order to keep their

address spaces separate.) On multi-processor systems, us-

ing two processes has the additional advantage of making

use of more than one CPU. Subsequently, we refer to the

two processes as main process and communication process,

respectively.

One key element of our design was to base it on se-

mantically unidirectional communication. This means that

Bro’s processing never expects one side to reply to some-

thing the other side sent. While doing so restricts er-

ror detection and handling somewhat, it also significantly

eases implementation by avoiding having to deal with unre-

ceived replies (which would require timeouts and a failure-

recovery scheme). We believe that the decrease in complex-

ity wins more in terms of robustness than we lose in terms of

error processing. Yet, we note that the unidirectionality only

affects the core-level communication. It is still quite possi-

ble to build a script-level handshake mechanism by passing

a sequence of events between two peers.

In §3.2.2 we discussed how the NIDS’s realtime con-

straints leads us to abide impure synchronization seman-

tics, i.e., the possibility of race conditions. Similarly, our

communication design does not make any timing guaran-

tees for the communication. For example, transferring large

amounts of data may delay the reception of an event. Also,

while all state from one endpoint will always arrive in the

order in which it was sent, state from multiple endpoints

may be received intermixed.

Along with designing for robust communication, we also

need to secure the communication, i.e., provide for confi-

dentiality and authentication. We do so via SSL (imple-

mented using OpenSSL [15]). See [19] for a discussion of

such security aspects.

3.4 Integrating External State

While we performed our initial implementation of inde-

pendent state in the context of the Bro NIDS, the concept

applies more generally to other applications as well. In

principle, any system, not just other NIDS instances, may

choose to make its fine-grained internal state accessible to

peers.

As a major step in this direction, the lightweight, highly

portable Broccoli2 library [4] enables arbitrary applications

to partake in the exchange of Bro’s state. Broccoli is

an independent implementation of (parts of) the serializa-

tion/communication protocol that we have developed for the

Bro system. Broccoli nodes can request, send, and receive

events just like Bro instances can. In [8], we demonstrate

some of the power of such NIDS-external independent state

by supplying the Bro system with host-based application

context.

4 Applications

We now describe several powerful applications of inde-

pendent state in network intrusion detection. We first show

how we can use independent state to greatly enhance Bro’s

2Broccoli is the healthy acronym for “Bro Client Communications Li-

brary.”

traditional model of regular checkpointing, including sup-

port for robust crash recovery. Then we discuss distributed

intrusion detection, concentrating on the utility of spatially

independent state. Finally, we show how independent state

can be used for dynamic reconfiguration, profiling, and de-

bugging.

We implemented each of these applications. Given in-

dependent state, combined with the NIDS’s flexibility, we

found all rather easy to achieve. Although at first blush each

might seem to be yet-another-extension of Bro’s generally-

extensible functionality, the ease of implementation proves

the power of the approach.

Our experiences with these applications come from mon-

itoring the access links in several large environments: the

Münchner Wissenschaftsnetz (MWN; research network in-

cluding two universities and other institutions; Gbps, heav-

ily loaded), the University of California, Berkeley (UCB;

Gbps, heavily loaded), and the Lawrence Berkeley National

Laboratory (LBNL; Gbps, medium load).

4.1 Checkpointing

IDS’s face fundamental state management problems. Ei-

ther the system uses a static allocation of state for its anal-

ysis, in which case it becomes vulnerable to easy forms of

attacker evasion; or it allocates different types of state dy-

namically, in which case managing and reclaiming that state

becomes a major burden. While Bro provides a variety of

timers for use in state management, from operational ex-

perience we have found that state still inexorably accrues,

in part due to our reluctance to assign timers to every data

item because it’s hard to determine good a priori settings

for these, or even identify all of them (there are hundreds of

script-level variables).

To date, Bro’s only support for large-scale state recla-

mation has been the brute force approach of simply start-

ing over from scratch. That is, to run Bro 24x7 we (and

other Bro users) resort to checkpointing, which in this con-

text means periodically starting up a new instance of Bro

and killing off the old one. The frequency with which

this is done ranges from daily (LBNL) to every few hours

(MWN, UCB).

For Bro, the two main types of state lost when check-

pointing are internal connection state (including analyzer-

specific state and attached timers) and script-level data.

However, the concept of persistence described in §3.2.1

now enables us to individually choose connections (by

calling make connection persistence) and script-

level data (via &persistent declarations) to transform

into independent state, thus enabling a new Bro instance

to use them as part of its initial state. Doing so allows us

to continue longer-running forms of analysis uninterrupted,

such as tracking slow scans, long-lived interactive connec-

tions, usernames, inferred software versions, alerts already

generated, and addresses that Bro has blocked in the past

using its dynamic blocking facility.

While temporally-independent state thus enables us to

keep key state across restarts, implementing it soundly also

requires a dynamic handover mechanism. The problem

here is that the currently executing instance of Bro has to

save its persistent state at some specific point in time, after

which the new instance can begin executing. If we have to

wait for the new instance to start up, we will incur a mon-

itoring outage. We solve this problem by using not tem-

porally independent state, but spatially independent. We

implement dynamic handover by starting up the new in-

stance and having it connect via a (local) network connec-

tion to the old instance, requesting its current set of persis-

tent state. After this has been successfully transmitted, the

old instance terminates itself, and the new one starts pro-

cessing.

As already discussed, we do not simply make all state

persistent. Doing so would defeat the purpose of check-

pointing. But having the tools now to selectively make state

persistent, the next step is to identify the state for which

this makes sense. For our operational environments, we

keep internal connection state for interactive services that

tend to have long-lived connections: FTP, SSH, telnet, and

rlogin connections. For script-level data, we took Bro’s de-

fault policy scripts (as of version 0.8a57) as representative

for the usage of state in Bro scripts. Our first observation is

that nearly all of the scripts store their relevant data in tables

or sets. We found five basic usages: (1) remembering mes-

sages already logged to avoid duplication, (2) remember-

ing hosts which have done “something” (e.g., propagating

a worm), (3) associating additional state with connections

(e.g., which FTP data connections have been negotiated by

a control channel), (4) holding configuration data, such as

particular hosts allowed to do “something”, (e.g., connect to

a certain host; this data is more or less fixed), (5) remember-

ing additional data derived from the script’s analysis (e.g.,

software installed on a host).

Taking the MWN environment as a test case, we made all

tables belonging to the first group persistent. Most of these

tables are low in volume,3 and suppressing unnecessary log

messages is a vital NIDS capability [2, 10]. For the second

group, we differentiate between short-term (minutes or less)

and longer-term data. The former is often quite large in vol-

ume and often not worth keeping. For example, the script

recognizing the Blaster worm [3] by its scanning activity

keeps two tables: one tracking hosts that have communi-

cated over TCP port 135 within the last five minutes, and the

second remembering all already-identified worm sources.

We decided to make only the latter persistent.

3With the notable exception of the table weird ignore recording all

the “crud” [16]. In large networks, we see tons of crud.

The third group (associating additional state) is more

problematic. Ideally, we would like to keep information for

all persistent connections, but discard all the rest. But to do

so the scripts would need significant restructuring, as their

semantics vary too much to automatically deduce which in-

formation is associated with persistent connections. There

are some tables, though, which we know always correspond

to state for persistent connections (e.g., the FTP analyzer

script remembers FTP connections). We made these persis-

tent, but left all other tables unmodified (i.e., ephemeral).

We also left the fourth group untouched, as configura-

tions are mostly static and better changed manually if the

need arises. Finally, for the last group we found we needed

to make case-by-case decisions. For example, to keep vul-

nerability profiles [20] one of the scripts detects the soft-

ware used by different hosts, an excellent example of infor-

mation we declare &persistent so we do not lose it.

4.2 Crash Recovery

A related application of independent state is better re-

covery from crashes. Three main reasons for the crash of

a NIDS are resource exhaustion, attacks, and programming

errors [16]. In most systems, including Bro, in each case we

lose all the state so far collected by the system. By using the

checkpoint function (see §3.2.1) regularly, however, we

can significantly mitigate the effects of crashes, so that we

only lose data accumulated since the last checkpoint.

Our experience is that crash recovery is invaluable. This

is not only the case when actively developing the IDS, but

also in a production environment, where crashes are still a

fact of life, particularly due to resource exhaustion. Not

only does crash recovery allow us to continue operating

with only a minor loss of state (in terms of the importance

of the state), but the checkpoint also allows us to analyze

the particularly significant state post mortem (cf. §4.4).

4.3 Distributed Analysis

Once we’ve provided a means for a NIDS to communi-

cate its state, we can then use that mechanism to distribute

its analysis. To date, distributed NIDS have generally im-

posed a specific model on the form of distribution. For ex-

ample, DIDS [18] pioneered the sensor model, gathering

low-level data remotely while performing higher level se-

mantic analysis centrally. On the other hand, Emerald [17]

constructs a hierarchical structure to propagate information

up to the root level.

Independent, fine-grained state opens up new degrees of

flexibility for distributed analysis. In this section we look

at three different models, all of which we have been able to

implement and experiment with by having added indepen-

dent state to Bro. The first model supports load-balancing

for monitoring high-volume links. The second supports the

well-known “distributed sensor” model. The third looks at

propagating information between decoupled systems.

4.3.1 Load-balancing

On today’s high-volume links,4 it is exceedingly difficult

to analyze the full packet stream with a single NIDS (unless

one utilizes custom hardware [14]). One strategy for coping

with such a load is to distribute the analysis across several

machines, each doing only a part of the work. A key ques-

tion then is how to coordinate their operation. Currently,

using Bro operationally we do this by running several inde-

pendent instances on different slices of the network traffic.

But without any state sharing, this loses important informa-

tion. Thus, our goal is to retain the depth of analysis a single

Bro could in principle achieve if it could cope with the load.

To this end, we first need to decide how to divide the

traffic between the multiple systems. We can either do so

statically (each system gets all packets matching some fixed

criteria) or dynamically (e.g., for each connection we de-

cide individually which system will analyze it). Our initial

efforts have focused on static approaches due to their sim-

plicity, distributing based on: (i) the local IP space, or (ii)

application protocol.

Dividing by IP space: Fruitfully spliting up the local

IP space requires knowledge of the network to find a di-

vision so that individual NIDS receive comparable loads.

From our operational experience, measuring the volume

and leveraging the expertise of the network’s administra-

tors to do so is not hard. The main advantage of distribution

based on dividing the IP space is the ease of further dis-

tributing the load by introducing additional systems. The

main disadvantage is that, without any communication, we

cannot correlate traffic between different subnets anymore,

such as detecting scans.

To assess this approach, we examined the Bro 0.8a53

policy scripts to determine the degree of communication

they would require. We found that there is one dominant

case where without communication we would lose infor-

mation: several scripts store information about individual

hosts, usually of the form “host a.b.c.d did something [n

times]”. For example, the worm detection script keeps a

table storing all already-known worm infectees. Not prop-

agating this state among the concurrent Bro’s would have

two effects: (i) each of the instances would alert individ-

ually if it recognizes the worm, and (ii) more importantly,

if an instance cannot identify the worm by itself, it obvi-

ously cannot use this information in other contexts (e.g.,

treat signatures matching a known worm infectee different

from other matches).

4E.g., the traffic level in the MWN (UCB) environment sustains more

than 250 (400) Mbps averaged over an entire day.

With spatially independent state, however, we can

easily solve these problems by declaring the tables

&synchronized (per §3.2.2). Now each instance propa-

gates its state to the peers.

Dividing by application: To divide the load by appli-

cation, we delegate applications that make up a significant

share of the load to dedicated systems. If, for example, there

is a large fraction of HTTP traffic, we could exclude HTTP

processing from the main system and move its analysis to

another machine. This is in fact what we do operationally at

LBNL. But this approach lacks general scalability: the load

is only significantly reduced if the NIDS does indeed spend

quite some time processing the particular application. For

Bro, this is true for HTTP (due to Bro’s detailed analysis of

the HTTP sessions), and also for a few other applications,

but these total only a handful.

Again we examined the scripts to assess where divi-

sion by application would require inter-Bro communication.

While usually for application-specific analysis no commu-

nication is needed, one exception is the FTP analyzer be-

cause it parses the PORT negotiation of FTP data connec-

tions. A more general problem concerns analyzers that need

to see traffic from all applications, such as Bro’s scan de-

tector. To detect vertical port scans, it counts connection

attempts to different ports (applications) per host. Other ex-

amples include the ICMP analyzer correlating ICMP “un-

reachable” messages with corresponding connections, and

the analyzer that derives vulnerability profiles [20].

It appears clear that the communication for these anal-

yses can be addressed using spatially independent state,

and we expect to gain operational experience in doing so

at LBNL, where it has long been desired to coordinate the

separate HTTP Bro.

4.3.2 Sensor Model

A well-established architecture for distributed network in-

trusion detection is the sensor model [1], in which we

place sensors at different points in the network, usually per-

forming low-level analysis like protocol-decoding or byte-

signature matching. The sensors then send their results to

an analyzer which correlates the data from all of its input

sources.

Bro is conceptually well-suited for this kind of deploy-

ment. Its architecture already clearly separates between

low-level and high-level analysis by means of its division

into event engine and policy script interpreter. The main

interface between these two layers are the events. So, the

most obvious way to apply the distributed sensor model to

Bro is to spatially separate the event engine from the script

layer (i.e., run them as separate processes). This becomes

easy to achieve using spatially independent state.

However, as we will discuss in Section 5, propagat-

ing large volumes of data comes at a non-negligible cost.

Therefore, while propagating all of the event layer’s infor-

mation will work well for smaller setups, it does not scale

to high-volume networks. Hence, in such environments it

is more promising to partition the processing a layer up.

That is, the sensors would perform the usual script-level

analysis in addition to their event engine processing, with

those scripts synchronized as discussed in §4.3.1, and then

we would dedicate an additional CPU to correlating their

combined output at a meta-level, for example by using cor-

relation methods such as presented in [6, 13, 25].

As a first step in this direction we implemented a sim-

ple but operationally very fruitful extension: combining all

log messages coherently in a single place. In the MWN

setup, a central server receives all output in realtime. We

note that while this is available in other distributed NIDSs,

their communication is often restricted to the exchange of

log-like messages. With our architecture, centralized log-

ging is an almost trivial application: each script-level log

statement generates an event which gets propagated to the

central server.

4.3.3 Propagating Information

Another potentially valuable application of spatially inde-

pendent state is using it to tell other systems some facts

about our analysis. We discuss two examples here, the

first (intensifying analysis for suspicious hosts) of which we

have already experimented with, and the second (propagate

IPs that we have chosen to dynamically block) of which we

plan to set in place in the near future.

Suspicious hosts: As mentioned above, due to the large

load on a high-volume link, a single system cannot run de-

tailed analysis on the full traffic. One solution is to run only

coarse-grained analysis on all of the traffic, but to intensify

the inspection for hosts found to be conspicuous. For exam-

ple, often administrators observe that attackers first perform

scans of the network before actually targeting some hosts.

Large scans are easily detectable using coarse-grained anal-

ysis. After identifying a scanner, we can then look at the

packets coming from the same source in more detail.

We implemented this by running two instances of Bro.

The first instance watches a large fraction of the traffic but

only runs a modest set of policy scripts (most notably the

scan detector). When it generates an alert for some host, it

also sends an event containing the host’s IP address to the

second Bro instance. By default, the second instance does

not see any traffic at all. But if it receives such a suspicious

address, it modifies its analysis to include all packets com-

ing from that source. In addition to using more scripts and

a large set of signatures, it saves the complete set of packets

to disk.

Propagating blocked hosts: Our LBNL environment

currently runs several Bro’s at different entry points into the

network. As discussed in [11], LBNL’s security policy in-

cludes dynamically blocking scanners detected by Bro by

modifying the border router’s access control list. Because

not infrequently a scanner first probes a set of addresses cor-

responding to one entry point and then later another set cor-

responding to a different entry point, there is considerable

operational interest in enabling the different Bro’s to com-

municate their blocking decisions to one another.

4.4 Reconfiguration, Profiling and Debugging

A final set of applications for independent state leverage

the broader notion of independent state encompassing not

only data values but also functions and policy script event

handlers. Such independent state allows us, first, to both

tune and retarget the system without having to restart it; and,

second, to inspect the system’s state during run-time in sev-

eral different ways.

Dynamic Reconfiguration: We can use the indepen-

dence of broader forms of state (functions and event han-

dlers) to dynamically reconfigure a running Bro. Doing so

supports both operational flexibility and tuning. In terms

of operational flexibility, frequently during daily operations

the need arises to change the configuration of the NIDS in

response to a newly perceived threat or problem. For exam-

ple, we have detected a break-in and now want to alert on

any return by the attacker; or, we have learned a new attack

signature and want to immediately start using it; or, a new

source of benign traffic has appeared which is overwhelm-

ing the NIDS and we want to skip processing it for now.

These all can occur in a fire-fighting mode, i.e., we really

need to deploy the change immediately. With independent

state, we can introduce such changes—including modified

function and event handler definitions—directly, without in-

curring the loss of fine-grained state that would occur using

our enhanced checkpointing.

Another use of dynamic reconfiguration is to support

tuning, i.e., optimizing the NIDS’s configuration for the

local environment. From our experience, one of the most

common problems with making configuration changes for

tuning is that the effects of the changes often do not show

up immediately. Until now, making such changes has re-

quired restarting the NIDS, with the consequent loss of the

system’s state. In addition, the effects of many changes

are only visible when the system has built up a significant

amount of state, which can take a long time after a con-

ventional restart. This is particularly true for configuration

parameters like timeouts and thresholds. We can ameliorate

this problem by collecting traffic traces and testing against

them off-line, but such traces can be huge and unwieldy to

work with.

While our enhanced checkpointing can help, it does not

fully solve the problem. Often when making many small

changes in a short time, we do not actually want the con-

trolled loss of state which checkpointing achieves, but pre-

fer to keep all state. We want ideally to have the system

just pick up the changes and keep running, similar to the

fire-fighting changes discussed above.

The way we do such on-the-fly changes in practice is as

follows. Consider an already-running Bro whose configura-

tion we would like to change in some respect. We first make

the modification to the configuration, i.e., edit the scripts.

We then convert the full configuration into persistent state,

stored in a file, as described in §3.2.1. Finally, we copy

the file into a directory regularly checked by the running in-

stance, which notices the update, loads it, and switches to

using it. No other state is lost.

Profiling and Debugging: Another significant problem

when operating a NIDS is understanding its behavior during

operation. When developing policy scripts, we find they can

work in unexpected ways, due to either programming er-

rors, or to encountering network traffic with different char-

acteristics than we expected. These kinds of problems are

very hard to track down, as often they only manifest them-

selves after a considerable amount of run-time.

We find it is a great help if we can take a look at Bro’s

current state. With independent state, this becomes easy to

achieve, since the files generated by checkpoint contain

all the necessary information. In Figure 2(a), for example,

we see the table containing all currently known port scan-

ners at a given point of time. Included in the output are

timestamps when the entries were last accessed. In Fig-

ure 2(b), we see the same table from about 1.5 hours later.

For larger tables, the differences may be hard to see, but the

ASCII output formats are suitable for processing with Unix

utilities such as sort and diff, as illustrated in Figure 2(c).

Now the differences become obvious; we can actually see

the scan detector working.

Along with data values, our implementation of indepen-

dent state provides timestamping for script functions, too.

Figure 2(d) shows a checkpoint of the check hot func-

tion from the default scan detection script. The different

basic blocks in the code are annotated with timestamps in-

dicating the last time they were executed, and with counts

of how many times they have been executed. These annota-

tions can be invaluable for profiling, assessing code cover-

age, and detecting stale script elements. We can again use

tools like diff to dynamically track which portions of the

code are being executed, and how frequently.

5 Performance Evaluation

To examine the performance of our architecture in more

detail, we assessed the communication system, as this en-

compasses most of the other components (e.g., the serial-

ization framework). First, we used synthetic stress-tests to

gauge the maximal throughput. Then we turned to real-

world traffic captured in the MWN environment to assess

the system’s performance on realistic data.

For all of our experiments, we used two machines, act-

ing as sender and receiver. For most of the measurements,

the systems ran a Linux 2.6.x kernel. For the experiments

involving live-capture of network traffic, we used hosts run-

ning FreeBSD 5.2.1. In both cases, the sending systems

were dual-Xeons, 3Ghz, with 2GB of RAM; the receivers

were dual-Opterons, 1.8Ghz, with 2GB of RAM. Senders

and receivers were connected by a 100Mb/s switch.

5.1 Benchmarks

First, we instrumented the sender to emit events at con-

figurable rates. Starting with no output at all, we in-

creased the rate by 1000 events every 5 seconds until ei-

ther the sender or the receiver could not handle the load

anymore. Simultaneously, the sender sent out ping mes-

sages every second to which the receiver responded with

pongs, measuring the lapsed interval as a ping-time. At

the time the sender’s main process sees the pong, the

ping/pong combo has traversed four different processes

(sender’s main, sender’s communication, receiver’s com-

munication, receiver’s main, and back). Thus, the ping-time

is a measure for the lag which the communication intro-

duces. The smaller the ping-times, the faster events (and

other information) are propagated. If the ping-times start to

increase, it is a sign that some queue on the path is filling

up, i.e. a limit has been reached.

Figure 3(a) shows the rate of emitted events as well as

the ping-times. We see that with increasing output the ping-

times were roughly constant (with a median of 2ms) un-

til the sender’s rate got to about 44,000 events per second

(which comprise a volume of 8.3MB per second). At this

point, the ping-times exceeded 0.1s for the first time and

continued to increase. It turned out that it was the receiver

that became overloaded. For every received event, its main

process had to call a (empty) script-level handler, which be-

came too much of a burden eventually. In our synthetic

benchmark, the sender itself did not raise the events but only

sent them out. Therefore, event handling was not a problem

on its side.

Events have different types of arguments. The events

used for Figure 3(a) carried two parameters: a string and a

compound connection type, which is rather complex, con-

taining more compound objects itself. If we reduce the

complexity of the arguments we are able to achieve higher

rates, up to more than 100,000 events per second when

sending events without any parameter at all.

We conducted similar benchmarks with

state-propagating operations (as triggered by

&synchronzized script variables; see §3.2.2) and

Figure 2: Visualizing state (addresses randomized)

ID reported_port_scans = {

[165.11.184.36, 148.126.197.84, 100] @01/21-12:11

[138.112.68.194, 108.45.144.114, 1000] @01/21-11:00

[138.112.68.194, 108.45.144.114, 100] @01/21-10:59

[138.112.68.194, 108.45.144.114, 10000] @01/21-11:01

[138.112.68.194, 108.45.144.114, 50] @01/21-10:59

[165.11.184.36, 148.126.197.84, 50] @01/21-12:11

}

ID reported_port_scans = {

[138.112.68.194, 108.45.144.114, 50] @01/21-10:59

[138.112.68.194, 108.45.144.114, 10000] @01/21-11:01

[138.112.68.194, 108.45.144.114, 1000] @01/21-11:00

[163.184.146.140, 146.74.170.189, 50] @01/21-13:16

[165.11.184.36, 148.126.197.84, 100] @01/21-12:11

[165.11.184.36, 148.126.197.84, 50] @01/21-12:11

[138.112.68.194, 108.45.144.114, 100] @01/21-10:59

[163.184.146.140, 146.74.170.189, 100] @01/21-13:16

}

(a) Subset of reported port scans at time T (b) Subset of reported port scans at time T + 1.5 hr

[138.112.68.194, 108.45.144.114, 1000] @01/21-11:00

[138.112.68.194, 108.45.144.114, 100] @01/21-10:59

[138.112.68.194, 108.45.144.114, 50] @01/21-10:59

+ [163.184.146.140, 146.74.170.189, 100] @01/21-13:16

+ [163.184.146.140, 146.74.170.189, 50] @01/21-13:16

[165.11.184.36, 148.126.197.84, 100] @01/21-12:11

[165.11.184.36, 148.126.197.84, 50] @01/21-12:11

ID check_hot = check_hot

(@01/21-12:23 #4715580)

{

local id = c$id;

local service = id$resp_p;

if (service in allow_services ||

c$service == "ftp-data")

(@01/21-12:23 #2932175)

return (F);

if (state == CONN_ATTEMPTED)

(@01/21-12:23 #1138955)

check_spoof(c);

[...]}

(c) diff of (a) and (b) (d) Script function from scan.bro with timestamps.

full network packets. We omit the corresponding plots

here as they look similar to Figure 3(a). For state

operations, we sent table assignments of the form

t[index]="string". We could send up to 58,000

such operations before the ping-times exceeded 0.1s. Again

it was the receiving main process which was not able to

keep up. To measure sending raw packets, we transfered a

trace captured in the MWN environment. The ping-times

began exceeding 0.1s when the transmission rate hit 16,000

packets per second. The data rate corresponded to more

than 11 MB/s, approaching the maximum bandwidth of the

link.

We repeated the benchmarks with SSL encrypted ses-

sions, finding that the amount of objects that could transmit

decreased noticeably. Figure 3(b) shows a fall-off to 11,000

events per second for when the ping-times crossed the 0.1s

limit.

To summarize, our architecture can transfer tens of thou-

sands of objects per second, and, therefore, seems suitable

for use in high-performance environments. However, we

note that these benchmarks represent a best-case: the Bro

system is concentrating solely on communication. Thus,

we now evaluate performance with additional packet input.

5.2 Performance on Realistic Data

The benchmarks presented in §5.1 suggest that the com-

munication framework is not going to be a bottleneck.

However, in a high-volume environment, the packet pro-

cessing itself is already a very demanding task. Thus, we

will now examine how well the communication blends in.

Pseudo-realtime: First, we need a methodology to per-

form reproducible measurements. A common approach to

evaluate the performance of a NIDS is to capture a packet

trace and run the NIDS offline on it with different configu-

rations. However, to evaluate communication performance,

this approach does not work well: the NIDS can process a

trace more quickly than the corresponding realtime. This

leads to its analysis time being “compressed” (we term this

trace time). Yet, the communication, located in a separate

process, is decoupled from trace time; it is performed in

realtime.

Nevertheless, we wanted to keep the trace-based evalu-

ation approach for its reproducibility. Hence, we needed

to synchronize network time and realtime. To this end, we

added a pseudo-realtime mode to Bro. If activated, the main

process reads packet input from a trace but deliberately in-

serts delays into its processing. These delays resemble the

inter-packet gaps observed when capturing the trace. That

is, the processing of a new packet is deferred until the cor-

responding amount of realtime has passed.

Given the same input, a pseudo-realtime Bro performs

the same operations as a live Bro, i.e., the two do not differ

in terms of detection. However, the times at which oper-

ations are performed could slightly vary, leading to differ-

ent system and network loads. To ensure that the pseudo-

realtime mode does indeed provide similar results in terms

of load as running on live traffic, we performed an exper-

iment. We started a Bro process on live MWN input and

simultaneously captured the traffic on the same machine,

using the same BPF filter as the Bro process. Then we re-

ran Bro offline on the trace in pseudo-realtime, configuring

it to use its default set of analyzers (plus some reduced time-

outs and including UDP packets). To avoid losing packets,

we excluded two high-volume networks from the analysis.

The resulting 30-minute trace had a volume of 832MB, con-

sisting of 4.9M packets (61.0% TCP, 39.0% UDP). Based

on ports, HTTP and DNS were the most prevalent protocols

Figure 3: Propagating increasing number of events.

0
1

0
0

0
0

3
0

0
0

0
5

0
0

0
0

#
e

v
e

n
ts

/s
e

c

Number of events

0 50 100 150 200 250

0
1

2
3

4

run−time (sec)

s
e

c

Ping−times

(a) Plain connection.

0
5

0
0

0
1

0
0

0
0

2
0

0
0

0

#
e

v
e

n
ts

/s
e

c

Number of events

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

run−time (sec)

s
e

c

Ping−times

(b) SSL connection.

(29.1% and 8.1% of the packets, respectively). The filtered

trace contained 1.4M connections/flows.

During the runs we logged the user-level CPU utilization

of the main process and the number of transmitted events,

both per one-second intervals. Additionally, we measured

ping-times once per second. Then we calculated the rela-

tive errors of the pseudo-realtime figures compared to the

live figures. Figure 4(a) shows the corresponding densities.

For user-time and number of transmitted events, we see a

nearly perfect match. The errors were larger for the ping-

times. The median of the relative errors was 0.16, the stan-

dard deviation was 0.47. That is, in the live run, on average

the pings needed longer than in pseudo-realtime. However,

the median of the absolute errors was 2ms (standard devi-

ation 5ms), i.e. the differences were in fact rather small in

absolute terms. We assume that these discrepancies stem

from the increased system load when running live. In fact,

examining the system times of the main processes, the me-

dian of the relative errors was much larger than for the user

times (0.64 vs. 0.02). This is due to the live packet captur-

ing and filtering which takes place inside the kernel.

All in all, we believe that pseudo-realtime provides us

with reproducible yet realistic measurements. Therefore,

we used it to examine the communication framework in

more detail.

Figure 4: Pseudo-realtime

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6

Relative error

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

User−time
Events transmitted
Ping times

(a) Bro running live vs. pseudo-realtime

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

p
a

c
k
e

ts
/s

e
c

Packets per second

0 1000 2000 3000

0
4

0
0

0
8

0
0

0

run−time (sec)

#
e

v
e

n
ts

/s
e

c

All events
High−level events

(b) Number of (filtered) packets and events on trace.

Measurements: Having the pseudo-realtime mode in

place, we examined three different Bro configurations to

understand the impact of communication. We captured a

one-hour packet trace in the MWN environment. We in-

cluded all packets except those of one high-volume subnet.

To ensure that we do not lose packets, we captured the traf-

fic with a high-performance Endace DAG card [5]. The

trace spanned 1 hour with a volume of 88GB and a mean

rate of 40K pps. It consisted of 5.2M flows, 144M packets,

92.2% TCP and 6.7% UDP, with HTTP and SSH the most

common protocols (50% and 6% respectively).

We first run Bro without any communication at all (using

the same setup as before). Then we configured it to prop-

agate all events to its peer. Finally, we changed the con-

figuration to emit only a subset of events, which consisted

of all but the connection setup and tear-down events (and

their UDP equivalents raised for basic UDP requests and

replies). These events are semantically rather low-level but

comprise 95% of all events in our trace. Figure 4(b) shows

the differences in the number of events over time.

For the three different configurations, in Figure 5(a) we

see the densities of CPU utilization per second. The mea-

sured utilizations are the total sum of user and system time

of both main and communication processes (which is why

on the two-CPU machine the values can exceed 1). We

Figure 5: Different configurations on trace.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
1

2
3

4
5

6

CPU utilization

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

No communication
Propagating high−level events
Propagating all events

(a) Total CPU utilization.

0.00 0.02 0.04 0.06 0.08

0
1

0
2

0
3

0
4

0
5

0
6

0

Ping−time (secs)

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Propagating selected events
Propagating all events

(b) Ping-times

see that when emitting all events the average utilization in-

creased noticably: the median shifts from 0.46 without any

communication to 0.97. Yet, with the subset of events the

performance impact is only marginal (median 0.49). Look-

ing at the ping times (Figure 5(b)), we hardly see a differ-

ence between the two runs which involve communication:

with all events, the median of the ping-times was 19ms

while with the subset it was 18ms. Thus, the communi-

cation system was working well within its capacity limits.

In general, the ping times are pleasantly low, considering

the ping/pong path across four processes which also had to

handle a significant packet and event load.

Based on these results we draw two main conclusions.

First, our architecture works well enough to support prop-

agating thousands of events even when having to handle a

high packet load (which may either represent normal activ-

ity or be due to an attack). However, in such situations it

does incur a noticable overhead: the increased CPU utiliza-

tion is non-negligible. This implies that simply forward-

ing all events will not scale very well in larger installations.

Giving the amount of traffic, this is hardly surprising. How-

ever, we also see that with smaller amounts of events, the

performance overhead is not significant. Thus, distribution

schemes which focus on propagating higher-level events are

a very promising approach for large-scale installations.

6 Summary

In this work we demonstrated the power of exploiting in-

dependent state in network intrusion detection. While tra-

ditionally much of a NIDS’s state resides solely in volatile

memory, we instead argue for making all of a NIDS’s state

exist (potentially) “outside” of any particular process. To

this end, we developed the notions of spatially indepen-

dent state (state that can be propagated from one instance

of the NIDS to another concurrently running process) and

temporally independent state (state that continues to exists

after the termination of all instances, available to future pro-

cesses). The architecture we implemented facilitates inde-

pendent state for the Bro intrusion detection system [16].

It is unified in that it encompasses all of the internal, fine-

grained state of the NIDS. Thereby, we can continue to pro-

cess independent state using the full set of mechanisms pro-

vided by the system.

The main internal mechanism of our architecture is a

serialization framework. While its implementation was

straight-forward in general, the system’s internal complex-

ity gave us a number of subtle issues to solve. Having the

serialization in place, we added a user-level interface driven

by our operational applications. It enables the user to selec-

tively declare state to be independent. To achieve tempo-

ral independence, we serialize state into files, either when

an instance exits, or incrementally as it executes. A sub-

sequent process can then read it back. To achieve spatial

independence, we added secure network communication to

the NIDS, allowing instances to share state across different

locations.

The architecture provides us with a wealth of possible

applications. We enhanced Bro’s traditional model of reg-

ular checkpointing by allowing a controlled loss of state,

added crash-recovery, examined different approaches for

distributing the monitoring and analysis, enabled run-time

policy management, and greatly extended the system’s pro-

filing and debugging facilities. These applications were

driven by our operational experiences, and we experimented

with all of them in several large-scale environments. A

performance evaluation of the communication component

shows that our implementation is suitable for deployment

even in large-scale installations. Our architecture has been

included into the latest Bro development version, and we are

in the process of setting up our monitoring environments

to use independent state operationally. We expect that in

regular operational use, the power of independent state will

soon prove invaluable. Moreover, a client library has been

developed to interface trusted applications to the Bro sys-

tem [4]. With its help, we have already successfully inte-

grated Apache web servers [8] and SSH servers into Bro’s

analysis. In addition, we are working on extending Bro’s

event model to more directly support scalable distributed

event analysis [12]. Furthermore, for users who are less fa-

miliar with the details of Bro’s operation, we are planning to

provide predefined sets of related script-level objects. This

will enable the user to share coherent chunks of state among

instances easily, rather than needing to identify individual

relevant script-level variables and events himself.

7 Acknowledgments

We would like to thank the Lawrence Berkeley Na-

tional Laboratory (LBNL), Berkeley, USA; the Leibniz-

Rechenzentrum, München, Germany; and the University

of California, Berkeley, USA. We would also like to thank

Anja Feldmann for supporting our work and providing feed-

back, and Mark Allman and Scott Campbell for their helpful

comments. Finally, we would like to thank the anonymous

reviewers for their valuable suggestions.

This work was made possible by the U.S. National Sci-

ence Foundation grant STI-0334088, for which we are

grateful.

References

[1] E. G. Amoroso. Intrusion Detection: An Introduction to In-

ternet Surveillance, Correlation, Trace Back and Response.

Intrusion.Net Books, New Jersey, 1999.

[2] S. Axelsson. The Base-Rate Fallacy and Its Implications for

the Difficulty of Intrusion Detection. In ACM Conference on

Computer and Communications Security, pages 1–7, 1999.

[3] CERT Advisory CA-2003-20 W32/Blaster worm.

http://www.cert.org/advisories/

CA-2003-20.html.

[4] Broccoli: The Bro Client Communications Library. http:

//www.cl.cam.ac.uk/∼cpk25/broccoli/.

[5] ENDACE Measurement Systems. http://www.

endace.com/.

[6] H. Debar and A. Wespi. Aggregation and Correlation of

Intrusion-Detection Alerts. In Proc. Recent Advances in In-

trusion Detection, number 2212 in Lecture Notes in Com-

puter Science. Springer-Verlag, 2001.

[7] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Op-

erational Experiences with High-Volume Network Intrusion

Detection. In Proc. 11th ACM Conference on Computer and

Communications Security, 2004.

[8] H. Dreger, C. Kreibich, V. Paxson, and R. Sommer. Enhanc-

ing the Accuracy of Network-based Intrusion Detection with

Host-based Context. In Proc. Conference on Detection of In-

trusions and Malware and Vulnerability Assessment, 2005.

[9] Intrusion Detection Message Exchange Format.

http://www.ietf.org/html.charters/

idwg-charter.html.

[10] K. Julisch. Clustering Intrusion Detection Alarms to Support

Root Cause Analysis. ACM Transactions on Information

and System Security, 6(4):443–471, 2003.

[11] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast

Portscan Detection Using Sequential Hypothesis Testing. In

Proc. IEEE Symposium on Security and Privacy, 2004.

[12] C. Kreibich and R. Sommer. Policy-controlled Event Man-

agement for Distributed Intrusion Detection. In Proc. 4th In-

ternational Workshop on Distributed Event-Based Systems,

2005.

[13] C. Krügel, T. Toth, and C. Kerer. Decentralized Event Corre-

lation for Intrusion Detection . In Proc. Information Security

and Cryptology, volume 2288 of Lecture Notes in Computer

Science, 2001.

[14] C. Krügel, F. Valeur, G. Vigna, and R. A. Kemmerer. State-

ful Intrusion Detection for High-Speed Networks. In Proc.

IEEE Symposium on Security and Privacy, 2002.

[15] OpenSSL. http://www.openssl.org.

[16] V. Paxson. Bro: A System for Detecting Network Intruders

in Real-Time. Computer Networks, 31(23–24):2435–2463,

1999.

[17] P. A. Porras and P. G. Neumann. EMERALD: Event mon-

itoring enabling responses to anomalous live disturbances.

In National Information Systems Security Conference, Bal-

timore, MD, October 1997.

[18] Snapp, S., et al. DIDS (Distributed Intrusion Detection Sys-

tem) – Motivation, Architecture, and an Early Prototype. In

Proc. 14th NIST-NCSC National Computer Security Confer-

ence, 1991.

[19] R. Sommer. Viable Network Intrusion Detection in High-

Performance Environments. PhD thesis, TU München,

2005.

[20] R. Sommer and V. Paxson. Enhancing Byte-Level Network

Intrusion Detection Signatures with Context. In Proc. 10th

ACM Conference on Computer and Communications Secu-

rity, 2003.

[21] J. Soukup. Taming C++ – Pattern Classes and Persistence

for Large Projects. Addison-Wesley, 1994.

[22] E. H. Spafford and D. Zamboni. Intrusion Detection Using

Autonomous Agents. Computer Networks, 34(4):547–570,

2000.

[23] Staniford-Chen, S., et al. GrIDS – A Graph-based Intrusion

Detection System for Large Networks. In Proc. 19th NIST-

NCSC National Information Systems Security Conference,

1996.

[24] A. S. Tanenbaum and M. V. Steen. Distributed Systems –

Principles and Paradigms. Prentice Hall, 2002.

[25] A. Valdes and K. Skinner. Probabilistic Alert Correla-

tion. In Proc. Recent Advances in Intrusion Detection, num-

ber 2212 in Lecture Notes in Computer Science. Springer-

Verlag, 2001.

[26] G. Vigna and R. A. Kemmerer. NetSTAT: A Network-based

Intrusion Detection System. Journal of Computer Security,

7(1):37–71, 1999.

[27] G. Vigna, R. A. Kemmerer, and P. Blix. Designing a Web of

Highly-Configurable Intrusion Detection Sensors. In Proc.

Recent Advances in Intrusion Detection, number 2212 in

Lecture Notes in Computer Science, 2001.

[28] Y. Zhang and V. Paxson. Detecting Stepping Stones. In

Proc. 9th USENIX Security Symposium, pages 171–184. The

USENIX Association, 2000.

