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ABSTRACT
Off-the-shelf intrusion detection systems prove an ill fit for
protecting industrial control systems, as they do not take
their process semantics into account. Specifically, current
systems fail to detect recent process control attacks that
manifest as unauthorized changes to the configuration of
a plant’s programmable logic controllers (PLCs). In this
work we present a detector that continuously tracks updates
to corresponding process variables to then derive variable-
specific prediction models as the basis for assessing future
activity. Taking a specification-agnostic approach, we pas-
sively monitor plant activity by extracting variable updates
from the devices’ network communication. We evaluate the
capabilities of our detection approach with traffic recorded
at two operational water treatment plants serving a total of
about one million people in two urban areas. We show that
the proposed approach can detect direct attacks on process
control, and we further explore its potential to identify more
sophisticated indirect attacks on field device measurements
as well.

1. INTRODUCTION
Industrial control systems (ICS) monitor and control phys-

ical processes, often inside critical infrastructures like power
plants and power grids; water, oil and gas distribution sys-
tems; and production systems for food, cars, ships and other
products. As these environments differ from traditional IT
systems, they also face unique security challenges that ren-
der effective protection challenging. Off-the-shelf intrusion
detection systems (IDS) prove a particularly ill fit. Classic
signature matching requires precise patterns of anticipated
intrusions—an unrealistic assumption in a setting where at-
tacks remain rare overall, yet may carefully target their
victims—and existing behavioural approaches fail to incor-
porate the domain-specific context of operating in these spe-
cialized environments [18]. While a few network IDS now
include ICS-specific protocol support, their capabilities re-
main limited to finding low-level technical attacks, such as
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protocol violations and buffer overflow exploits. They fail,
however, to address the fundamentally different threat of
malicious changes to a plant’s process control. Stuxnet repre-
sents the most prominent example of such an attack: it ma-
nipulated the speed of centrifuges to run outside of their op-
erational range, eventually causing physical damage. While
Stuxnet demonstrates a level of sophistication that is feasible
only for the most resourceful attackers, SABOT [26] lowers
the bar for similar attacks by recovering the mapping be-
tween the memory of programmable logic controllers (PLC)
and the actual process inputs.

To report process control modifications, an IDS can mon-
itor the status of PLC variables: these attacks manifest as
unauthorized changes to a device’s parametrization (e.g.,
setpoints, status). In practice, however, it proves challeng-
ing to provide an otherwise independent IDS with access to
such process-level PLC activity. The combination of a PLC’s
embedded nature, its critical role in a plant’s operation, and
its often proprietary internals, all but prohibits creating a
direct interface to an external monitor. It turns out, how-
ever, that an alternative approach can provide the relevant
information without touching the device: as any configura-
tion changes must reach the PLC through the ICS’ network
infrastructure, one can passively monitor the network traffic
for the corresponding update commands. Doing so proves
non-obtrusive and, hence, easy to deploy and scale: it re-
quires just a standard network tap that provides the IDS
with a copy of the PLCs’ traffic.

In this work we develop such a semantic, network-based
IDS. Our system extracts process operations from a PLC’s
raw network packets, and then constructs a corresponding
time series for each process variable to understand its ex-
pected activity. We derive variable-specific forecasting mod-
els that partially borrow from the process safety commu-
nity’s established domain expertise, and we assess their pre-
dictive power with an initial objective to understand where
they work well, yet also cases that fail to yield a stable base-
line. For our analysis we use Modbus traffic recorded over
two-week periods at two operational water treatment plants
serving a total of about one million people in two urban
areas.

Our results show that this approach allows for straight-
forward detection of direct attacks on process control: they
manifest as changes to variables that normally would stay
stable, enabling to detect the corresponding attacks that the
recent literature discusses. We further explore the potential
for extending this approach to indirect process control at-
tacks, which reflect only as deviations in field measurements,



either because of tampering with sensors or due to a direct
control change through an unobservable channel. At first, we
find that here the real world introduces artefacts that limit
the power of our initial models. However, when we investi-
gate a series of illuminating cases in more detail, we identify
possible improvements that can significantly increase their
prediction capabilities.

Overall, we consider this work as a step towards non-
obtrusive, semantic security monitoring for ICS networks.
To the best of our knowledge, no prior work has yet ex-
amined operational industrial processes to a similar level
of detail from a network vantage point. We structure the
remainder of this paper as follows. In §2 we discuss pro-
cess control attacks in more detail. In §3 we present our
monitoring approach, along with a testbed scenario (§3.2)
that we use for demonstrating the capabilities of the pre-
sented techniques. §4 summarizes our implementation, and
§5 evaluates our approach. In §6 we present related work,
and §7 provides concluding remarks.

2. DETECTING PROCESS ATTACKS
A typical ICS includes a number of common components,

including a human-machine interface (HMI), supervisory in-
frastructure, field devices, and communication infrastruc-
ture. For our work we focus on programmable logic con-
trollers (PLCs), which constitute embedded devices that run
custom code to control the field devices (e.g., regulate the
speed of a pump). For an attacker, the PLCs provide the
most effective point to penetrate, as they control the target
processes. To better understand the spectrum of possible
network-based attacks on PLCs, we surveyed plausible sce-
narios carried out over the Modbus TCP protocol as a case
study. In Table 1 we aggregate the attacks into three cat-
egories. Basic Level 1 attacks operate at the IP or TCP
level, such as manipulating packet sizes. Level 2 attacks
violate semantics of the Modbus protocol at the payload-
level, such as breaking the protocol conventions or trans-
mitting values outside the range of either the protocol spec-
ification or what the receiving side supports (e.g., invalid
function codes). Finally, Level 3 attacks represent activity
that is legal at the protocol level, yet violates semantic con-
straints that a process imposes, including both semantically
incorrect messages (e.g., conflicting commands) and oper-
ations that lead the site into an undesirable state (e.g., a
command to open a pump when it must remain shut). We
distinguish three subtypes of such process attacks: (i) recon-
naissance (e.g., discovering process configuration), (ii) direct
control (e.g., modifying process setpoints) and (iii) indirect
control (e.g., tampering with exchanged variable values to
trigger undesirable reaction). Level 3 represents the most
challenging target for detection, and three recent examples
of (primarily) direct control attacks demonstrate the funda-
mental limitations of current systems to report them. First,
Carcano et al. [10] present a proof-of concept malware that
manipulates values be generating Modbus packets carrying
syntactically correct commands, yet with inverted values.
Second, SABOT [26] performs a semi-automated analysis
of PLC code and high-level process descriptions to iden-
tify key variables for then crafting malicious attacks that
divert a process; in contrast to the work of Carcano, this
attack assumes a highly knowledgeable attacker. Finally,
Stuxnet constitutes the most prominent real-life attack on
process integrity. By attacking PLCs, it crossed a boundary

as the first publicly known malware that injected semanti-
cally meaningful commands into a highly specific plant en-
vironment. Stuxnet managed to divert a process by gener-
ating malicious yet technically valid control commands that
changed the behaviour of centrifuges. Additionally, Stuxnet
had an indirect component tampering with the flow of in-
formation presented to the operators, causing them to miss
the attack’s progress.

All three examples manifest as illegitimate write opera-
tions that update process settings to harmful values. How-
ever, monitoring PLCs for such changes externally proves
challenging as hardly any site will allow an IDS to inter-
face with the devices directly. In this work we pursue an
indirect, passive way of tracking PLC activity by recreating
process semantics from their network communication. In
the following we show that doing so enables inferring pro-
cess behaviour at a level sufficient to detect the three direct
attacks we discuss above. We further demonstrate the po-
tential of network-level semantic monitoring for finding in-
direct process control attacks as well. Our approach does
generally not depend on the attacker’s knowledge about the
plant. For direct attacks we assume that the logic for issuing
PLC updates remains uncompromised, whereas for indirect
attacks we do not impose any constraints.

3. APPROACH
We now present our approach to detect attacks that aim to

manipulate the process control, both direct and indirect. It
proceeds in three main phases: (i) extraction distills current
variable values out of network traffic; (ii) characterization
divides the observed process variables into three categories
that we examine separately; and (iii) modelling and detec-
tion derives behavioural models for each variable and reports
when new observations deviate from what they predict. We
discuss these phases individually in §3.3–3.5, after first in-
troducing technical background in §3.1 as well as a small
testbed setup in §3.2 that we use for illustration.

3.1 Background
Conceptually, we find two semantic groups of network

communication between ICS components: (i) process aware-
ness, and (ii) process control. Awareness propagates status
information about the controlled process across devices (also
referred as annunciators in [26]). In particular, the ICS su-
pervisory infrastructure requests regular updates from the
PLCs to report the current plant status to its operators. In
addition to escalating critical updates for timely reaction,
awareness also collects trending data for long-term process
analysis. A typical update cycle spans a few seconds. PLCs
also propagate awareness information across themselves to
ensure that each device learns sufficient information about
critical variables before entering the next process stage (e.g.,
PLC 1 might require information about the state of a field
device connected to PLC 2 before starting a subsequent pro-
cess stage). Process control is generally exercised in one of
two ways: (i) by PLCs according to their embedded logic;
and (ii) by operator commands that override PLC internal
logic. In either case it is the PLC that carries out the action,
and hence will reflect the process change as an update to its
internal state.

PLC’s process variables characterise the current operation
state. Examples of typical variables include the setpoint
(i.e., configuration setting) for a physical process, the cur-



Table 1: Summary of plausible attacks against PLC implementations: Modbus example

Level Impact Attack description Example

1 Data integrity Corrupt integrity by adding
data to the packet.

Craft a packet that has a different length than
defined in parameters or in spec [2].

2
IT

System

Reconnaissance
Analyse functionality a PLC
implements. Probe FC, listen for responses and exceptions [2].

Integrity

Exploit lack of specification
compliance.

Manipulate application parameters within spec (e.g.,
offset) or outside of spec (e.g., illegal FC) [2, 9, 37] .

Perform unauthorized use of
an administrative command.

Use FC 8-0A to clear counters and diagnostics au-
dit [2].

Denial of service

Perform MITM to enforce
system delay.

Send exception codes 05, 06 or FC 8-04 to enforce
Listen mode [2].

Perform unauthorized use
of administrative command.

Use FC 8-01 to restart TCP communication [2, 9].

3 Process

Reconnaissance
Analyse structure of
memory map.

Probe readable/writable points. Exceptions tell pro-
cess implementation details [2].

Direct control Perform change on process
variable.

Write inverted or min/max values [10]. Modify key
setpoint variables [14, 26].

Indirect control Tamper with process values. Replay values [14].

FC: Function code defining the type of functionality in Modbus. MITM: Man-in-the-middle attack.

rent value of a valve sensor, and the current position in a
cycle of program steps. Process variables serve as input to
the PLC code. For example, a variable value representing
a high pressure level might trigger the start of a draining
stage. Likewise, the PLC carries out operator commands by
writing into corresponding variables. For example, a com-
mand to open a valve would update a variable that the pro-
gram code is regularly checking; once it notices the update,
it outputs the corresponding analogue signal to the physical
device.

Within the device, process variables map to PLC memory
cells through the data model of the PLC. The data model
determines the representation of the process data both in-
side the PLC’s memory and on the network level, usually
tying in directly with the communication protocol that a
vendor opts to use. The actual mapping is determined by
a PLC programmer and thus remains specific to each PLC
instance. Examples of data models in different protocols in-
clude: Modbus using memory maps of 16-bit registers and
1-bit coils; Profinet defining slots, subslots, and channels;
and MMS using objects to address process variables [21].

3.2 Testbed Scenario
In §5 we validate our approach using network traffic from

water purification operational plants as our work-load. How-
ever, to illustrate capabilities in a controlled environment,
we here set up a small testbed consisting of one PLC and
one HMI workstation, using a simplified version of a demon-
stration kit from a corresponding ICS vendor.

The process under control comprises six plant compo-
nents (see Figure 1): a tank, a heater, two valves, a level
sensor, and a temperature sensor. The process consists of

Valve 1 

Valve 2 
Heater 

Temperature 
sensor 

Level 
sensor 

Figure 1: Process setup of the testbed environment

three operations that repeat continuously: tank filling, wa-
ter heating, and tank draining. The HMI collects nine vari-
ables for measurements (tank level and water temperature),
control (e.g., valve status, tank level setpoint), and report-
ing (tank level alarm). Table 2 shows the relevant parts of
the PLC’s memory map.

As a safety constraint, we implement an alarming sys-
tem that triggers when process variables reach undesirable
values. To illustrate the detection, we use two attack sce-
narios: (i) changing the level setpoint to overflow the tank;
and (ii) sending the PLC tampered measurement informa-
tion to trigger process changes or mislead operator aware-
ness. These attacks closely relate to the surveyed attacks
from the literature: the first resembles direct process attacks
(e.g., SABOT and Stuxnet-like attacks) while the second
corresponds to indirect process attacks (e.g., measurement
tampering by Stuxnet).



Table 2: Testbed PLC memory map
Reg. Name Type Desc
HR0010 V1On bool Status of valve 1
HR0011 V2On bool Status of valve 2
HR0012 HeaterOn bool Status of the heater
HR0020 TankLevelSP fixpoint SP tank level (L)
HR0021 TankLevel fixpoint Level of the tank (L)
HR0022 TempSP fixpoint SP water temp.
HR0023 Temp fixpoint Water temp (celsius)
HR0030 TankLevelAl enum Alarms tank level
HR0031 TempAl enum Alarms water temp.

SP: setpoint

3.3 Data Extraction
The data extraction phase is a preprocessing step that dis-

tills the values of process variables out of ICS network traffic.
It consists of two subparts: (i) parsing the application-layer
network protocol to extract the relevant commands, includ-
ing all their parameters; and (ii) constructing shadow mem-
ory maps inside the analysis system that track the current
state of all observed process variables, providing us with a
mirror of the PLCs’ internal memory.

For this work we focus on parsing Modbus, in which each
command comes with a set of parameters as well as a data
section. Basic parameters include function/sub-function codes
that define the operation, an address reference specifying a
memory location to operate on, and a word size giving the
number of memory cells affected. The data section includes
the actual values transmitted, i.e., the current value for a
read operation and the intended update value for a write.
We maintain shadow memory maps by interpreting each ex-
changed message according to its semantics, updating our
current understanding of a PLC’s variables accordingly.

The following (simplified) commands from our testbed
setup (see §3.2) illustrate the extraction step.

Time 1: PLC 1, UID: 255, read variable 21, value: 10
Time 2: PLC 1, UID: 255, read variable 21, value: 14
Time 3: PLC 1, UID: 255, read variable 21, value: 18

After processing the messages, the shadow memory map
will report 18 as the current value for variable 21. As we
know from the testbed’s configuration, that variable corre-
sponds to the tank level and, hence, will reflect three distinct
types of behaviour: an increasing trend during filling, a con-
stant value during heating, and a decreasing trend during
the draining phase. Indeed, our extraction step confirms
this expectation: The following list represents a small ex-
cerpt from variable 21’s values, as extracted from actual
network traffic inside the testbed:

...490,492,494,496,498,500,500,500,500,500,500,

...496,492,488,484,480,476,472,468,464,460,456, ...

We have confirmed that these extracted values indeed
match what the PLC stores internally over time.

3.4 Data Characterisation
Next, we perform a characterization phase that separates

PLC variables into different categories. Based on inter-
views with plant engineers, we identify four general groups:
(i) control : variables for configuring plant operation (e.g.,
device setpoints, configuration matrix); (ii) reporting : vari-
ables for reporting alarms and events to operators through
HMI or other PLCs (e.g., pump load is too high); (iii) mea-
surement : variables reflecting readings from field devices

and sensors (e.g., current tank level, current water flow),
(iv) program state: variables holding internal PLC state
such as program counters, clocks, and timeouts. While the
character of variables varies with their groups, we observe
three cases that suggest specific models for predicting future
behaviour: most variables either (i) change continuously,
and gradually, over time; (ii) reflect attribute data that
draws from a discrete set of possible values; or (iii) never
change. The first is typical for sensor measurements; pro-
gram state and reporting tend to use the second; and the
third proves common for process settings (e.g., setpoints).
Taking a specification-agnostic approach, there is no defi-
nite resource to directly tell what type of data a variable
reflects—recall from §3.1 that memory maps are specific to
each PLC instance. Thus, we apply heuristics to categorize
process variables according to the behaviour we observe. In
our testbed we can directly cross-check if the results indeed
match the configuration.

More specifically, our heuristics leverage an observation—
corroborated by plant engineers—that reporting variables
are typically encoded in bitmaps that, depending on the
number of distinct reporting events, map to discrete set of
values. We use this as criteria for differentiating between the
three categories by counting the number of distinct values
we see for each variable across a training set. If we observe
only a single value, we consider the variable to represent a
constant value. We consider a set of up to 2k distinct values,
for a chosen k, as an attribute series. If we see more than 2k

values for a variable, we assume it holds a continuous range.
In our testbed environment, we set the parameter k = 3.

Running the characterisation with 2 hrs of its network traffic
leads to classifying 4 of the 9 variables as constant, 3 as
attributes, and 2 as a continuous—which aligns correctly
with their actual semantics.

3.5 Data Modelling and Detection
Now that we can distinguish between constant, attribute

and continuous time series, we proceed with building be-
havioural models.

Modelling. To model constant and attribute data, we
derive a set of expected values (i.e., the enumeration set
for attribute data; the one observed value for constant se-
ries). To model continuous data, we leverage two comple-
mentary techniques, autoregression modelling and control
limits. Since we do not tailor our model to any specific
process description, we choose to leverage techniques that
are (i) relevant to the context (i.e., commonly used in safety
monitoring) and (ii) do not pose strong assumptions on the
monitored time-series. Autoregressive modelling represents
a common technique to capture the behaviour of a corre-
lated series, such as successive observations of an industrial
process [38]. An autoregressive model of order p states that
xi is the linear function of the previous p values of the series
plus a prediction error term [8]:

xi = φ0 + φ1xi−1 + φ2xi−2 + ...+ φpxi−p + εi

where φ1, ..., φp are suitably determined coefficients and εi is
a normally distributed error term with zero mean and non
zero variance σ2. Using the autoregressive model, we can
make one-step estimations for future values of the process
variable underlying the time series. This way, the model
can be used to detect stream deviations. However, as for
any regression, a set of small changes can take the stream



outside of its operational limits without exhibiting regression
deviations [38]. To address this, we apply a complementary
strategy, namely Shewart control limits [38]. The control
limits represent a pair of values {Lmin, Lmax} that define
the upper and lower operational limit of the process variable.
Typically, the limits are calculated as values that are three
standard deviations from the estimated mean.

While the presented techniques are generally deployed in
time series analysis, including specifically in the safety do-
main, our application approach is (i) broader, applied in-
discriminately on the full spectrum of exchanged messages
(i.e., data series) and (ii) more generic, posing no assump-
tion on the expected behaviour of the analysed data se-
ries. While necessarily exhibiting a lower accuracy than ap-
proaches would that tailor specifically to the semantics of
individual variables, our modelling enables building a com-
prehensive network monitor for a wide range of processes.

Detection. For constant and attribute series we raise an
alert if a value in a series reaches outside of the enumeration
set. To detect deviations in continuous series, we raise an
alert if the value (i) reaches outside of the control limits or
(ii) produces a deviation in the prediction of the autoregres-
sive model. More specifically, for estimating the deviation in
the autoregressive model, we compare the residual variance
(observed during training) with the prediction error variance
(observed during testing). A prediction error variance that
is significantly higher than the residual variance implies that
the real stream has deviated from the estimated model, and
thus we should raise an alert [19].

To illustrate the detection capabilities in a controlled en-
vironment, we test our approach on two semantic attacks
crafted for the process operating in our testbed. The first
attack effectively consists of a command that changes the
tank level setpoint (HR0020 in Figure 2). As a result, the
tank’s filling phase (HR0021 in Figure 2) continues until
the water level overflows the tank capacity. Results show
that this attack is detected as (i) a deviation in the setpoint
variable and (ii) a value reaching the maximal control limit
Lmax. The second attack consists of a set of commands that
tamper with the value for the temperature level (HR0023
in Figure 3). As a result, the tank’s filling phase terminates
early, the heating process begins but immediately stops, and
then the draining process starts. As a consequence, both the
heater and the boiler may get damaged. In this second sce-
nario no alarm is generated by the PLC (since the observed
levels never reach any undesirable value), yet our approach
detects a deviation in the behaviour.

Our results demonstrate the expected capabilities (and
limitations) of both approaches [38]. In particular, an au-
toregressive model is effective for detecting sudden changes
(e.g., detection of the second attack) while control limits are
generally a good strategy for maintaining the specific mean
level of a process variable (thus, can detect the process drift
in the first attack). In relation to the known attacks, the re-
sults demonstrate that our approach can in principle detect
direct control modifications (our first attack closely resem-
bles the corresponding semantic attacks in [10, 14, 26]). In
the testbed we also show detecting indirect control attacks
(the second attack manipulates measurements). However, as
any operational ICS setting will pose more challenges than
our small controlled environment, we analyse the feasibility
of our approach with data from two real-world plants in §5.

Figure 2: Illustration of the configuration change

Figure 3: Illustration of measurement tampering

4. IMPLEMENTATION
We implemented a prototype of our approach using a

combination of Bro [31] and custom C++ code. Bro per-
forms the initial data extraction step. We developed a Mod-
bus analyser for Bro that extracts the main protocol com-
mands from network traffic and makes them available to
scripts written in Bro’s custom policy language. We leverage
Bro’s BinPAC [30] parser generator to automatically gener-
ate much of the Modbus-specific code from a correspond-
ing grammar. The Bro project has integrated our Modbus
analyser into Bro 2.2. We use a custom Bro script to record
the parsed Modbus commands into an ASCII-based log file,
which we then process with external C++ code implement-
ing the characterisation, modelling, and detection phases.
After a preliminary analysis testing different values of k for
the data characterisation phase, we choose k = 3 for our
tests with real environments as that value showed the least
mismatches. For modelling continuous series, we build the
autoregressive model and derive process control limits. We
leverage an open source implementation of the autoregres-
sive model.1 To estimate autoregressive coefficients, we use
Burg’s method [19]. To estimate the order of the model, we
use the common Akaike information criterion [34]. As con-
trol limits, we implement Shewart control limits following
the description in [38]. For each continuous series we de-
rive and estimate the behaviour with both the autoregressive
and control limit models. Finally, for detecting deviations in
continuous series via the autoregressive model, we use two
variance hypothesis tests (commonly known as F-test). For
both tests we set p = 0.05% as their significance level.

1Available at https://github.com/RhysU/ar.git



5. EVALUATION
Our work represents an initial step towards modelling

the semantics of process variables from a network vantage
point. To the best of our knowledge, we offer the first study
analysing, at this level, week-long network traces from op-
erational plants, where each PLC operates with thousands
of process variables. As such, we are primarily interested in
understanding properties of the setting that impact seman-
tic approaches to security monitoring, and less in specific
true/false positives rates. With that perspective, we evalu-
ate our memory map modelling with two overarching objec-
tives: (i) understand the degree to which our approach can
successfully predict typical process behaviour; and (ii) gain
insight into the underlying activity that improves, or weak-
ens, its accuracy. In particular, we do not aim to evaluate
detection rates, due to the inherent difficulty of achieving
meaningful results in a realistic setting. As process attacks
remain both novel and rare, we cannot expect our traces
to contain malicious activity (and as far as we know, they
do not). Yet it also remains unrealistic to inject crafted
attacks into the traces, as we would remain limited to triv-
ial, direct control cases like those already demonstrated in
§3.5—which our detector would find for the same reasons
as discussed there. It is hard to see how one could possibly
inject indirect control attacks into existing, static traces, as
these would normally trigger a chain of effects that only a
full simulation of the plant could reproduce.

In the following we first introduce our two real-world envi-
ronments in §5.1. Then in §5.2 we present the results of the
characterisation and modelling phases. We do not analyse
in depth the data extraction here as it constitutes primarily
a pre-processing step.

5.1 Environments and Data Sets
Our data comes from two real-life water treatment plants

that serve a total of about one million people in two urban
areas; they are part of a larger system of over 30 sites con-
trolled by one company. The two plants are of comparable
size, and they perform semantically similar tasks (e.g., water
pumping, purification, ozone treatment). Nevertheless their
setups look quite distinct. They deploy different numbers
of PLCs (3 vs. 7), and chose different strategies to divide
processes among them. The PLC memory maps differ both
between the two environments, and also among PLCs of the
same site. While both plants use equipment from the same
vendor, they deploy different software versions.2 We have
access to one 3-day and one 14-day long packet trace from
the two plants, respectively, both containing the complete
network traffic captured from mirroring ports of switches
that connect the PLCs and the ICS servers. The traces
include 64GB and 101GB of network traffic, respectively,
with bandwidths varying between 9 and 360 packets/sec
during the recorded periods. We find two ICS protocols
in use: Modbus (between PLCs and ICS servers) and a ven-
dor proprietary protocol (between ICSs server and HMI).
In addition, we see six further non-ICS protocols in use by
servers and workstations: VNC, SSL, FTP, HTTP, SMB,
and DCOM. The non-ICS protocols constitute an negligible
fraction of the overall network trace. Of the 20 and 28 hosts
active in the two traces, 7 and 11 exchange Modbus mes-

2According to agreements with the two sites, we cannot
name the equipment vendor.

sages. While we see the vendor proprietary protocol in use
among hosts that are part of the supervisory infrastructure,
we observe only Modbus for all communication involving
PLCs. We see three types of read/write Modbus messages
in the traces (function codes 3, 16 and 23).

To present our results, we select 5 PLCs taken from both
plants, namely: all 3 PLCs from the first plant, and 2 PLCs
from the second plant. The second plant operates with 7
PLCs in total, of differing complexity: the number of pro-
cess variables goes as low as 135 for three of them and as
high as 3500 in one; each of the remaining four PLCs op-
erates with approximately 2200 variables. We select two
PLCs representing the most simple and the most complex
setup, respectively. The plant operators also provided us
with project files that describe each PLC’s memory map
layout, exported by PLC programming environments in the
form of CSV files holding information on addressing, data
type, and process role for each process variable defined by
a PLC. These files closely resemble the information shown
by the example in Table 2, as well as in [32]. We do not use
the project files for modelling but, instead, leverage them
for explaining observed deviations at a later stage.

5.2 Data Characterisation and Modelling
First we run the characterisation (described in §3.4) on

3 days of network traffic from the first plant’s PLCs. We
find that it classifies 95.5% of all variables as constant se-
ries, 1.4% of variables as attribute, and 3.1% as continuous
series. Further analysis with different batch choices shows
that these results remain consistent over time for any inter-
vals longer than one day. Next, to evaluate our modelling
approach, we first generally measure the quality of our mod-
els. In the second, more interesting step, we then dig deeper
into the results and focus on understanding the underly-
ing reasons and situations in which our approach (i) indeed
models process activity correctly; and (ii) fails to capture
the plant’s behaviour, flagging benign deviations as alarms.
Our objective here is to gain insight into the capabilities
and limitations of our approach applied in real life environ-
ments, as well more generally into potential and challenges
of modelling process activity at the semantic level.

Generally, we consider our approach to generate an “alert”
on a process variable when, at any time during testing a
batch of data, an observation deviates from the prediction—
i.e., when observing an unexpected value for constants and
attributes, or a value outside the autoregressive/control limit
models for a continuous time series. We perform 3-fold cross
validation using the rolling forecasting procedure [20] on a set
of 3-day batches of data extracted from the two plant’s net-
work traces. The first two batches of data come from the
first plant, each representing a randomly chosen continuous
range from the first and the second weeks, respectively. The
third batch represents the complete trace from the second
plant (recall that we only have 3 days of network traces avail-
able from that plant). At a technical level, a 3-day batch
size gives us a reasonable volume of data suitable for process-
ing repeatedly with our implementation. At an operational
level, operators confirm to us that one day matches a typical
PLC work cycle.

In Table 3 we summarize the results of the testing across
different behaviour models.



Table 3: Testing model capabilities
Deviating variables across different
types of series (mean %/ st.dev)

Constant Attribute Continuous
PLC 1a 0.5/0.29 19.05/0.2 57.49/5.78
PLC 1b 0.31/0.04 19.80/1.4 44.64/5.41
PLC 1c 0.14/0.02 19.55/4.0 37.58/2.98
PLC 2a 0.64/0.0 26.92/0.0 63.63/0.0
PLC 2b 0.0/0.0 0.0/0.0 0.0/0.0

For each pair of category and PLC, we compute the per-
centage of alerts, showing mean and standard deviation over
the batches. In the following, we discuss the three categories
separately.

5.2.1 Constant Series
Our results show that by far the most variables that we

classify as constant indeed stay stable over time. This cor-
roborates the general perception that ICS configurations do
not change often. Examining the small number of deviating
variables (0.0% to 0.6%) in this category, we observe two
main causes: (i) configuration changes, and (ii) misclassifi-
cations of the variable type. The former confirms that our
approach indeed detects direct control modifications. While
in this case the changes prove legitimate, they remain suffi-
ciently rare that an IDS can generally report them for hu-
man inspection (or whitelisting). Examining the reported
situations in more detail, we see that 60 variables all trigger
at the same time due to an update to a “configuration ma-
trix”, a large data structure that defines an operation mode
in terms of a set of values controlling multiple devices simul-
taneously (as it turns out, it is a single packet from the HMI
that performs a “multiple register write”). We confirm that
this is the only example of such a large configuration change
in the analysed trace.

The second cause for unexpected deviation represents short-
comings of our data classification phase. For example, dur-
ing one of the folds in PLC2a we find that it misclassifies
9 out of 15 measurement variables representing aggregated
flow information as constant due to a lack of activity during
the training period. Similarly, in the same fold we find that 7
out of 18 device statuses (which represent attribute data) get
misclassified as constants. In both cases the values remain
constant for more than 20 hours, yet then change during
the testing period. Interestingly, we see several such situ-
ations that first trigger an alert for a configuration change
(e.g., the status of a filter in PLC1b changes for 15mins af-
ter it has spent 21 hours in a previous state), followed by
a burst of further ones reflecting the change being in ef-
fect now (i.e., variables representing activity linked to that
filter start to deviate from constant behaviour: status, vol-
ume, throughput/hour, total throughput). In this case, the
two main causes of errors are hence linked semantically. As
others have observed, such sequential variations [26] repre-
sent cases that one could handle specifically, for example by
merging into a single event.

Discussions with the plant operators confirm that daily
cleaning activities on that PLC might cause such sudden
changes for a short amount of time. It turns out that the
next fold avoids this misclassification due to its longer train-
ing interval, confirming that when training spans the cor-
responding work cycle, the modelling of constants indeed
works as expected.

5.2.2 Attribute Data Series
Our test shows a higher (0.0% to 26%) but stable num-

ber of deviating attribute series across all tested folds. By
sampling a subset we find that their main cause of alerts
concerns continuous variables which, due to slow process
character, exhibit only a limited number of distinct values
during a training interval, and are thus wrongly labelled as
attribute data (e.g., variables describing time information in
the form of date and hour). Apart from this special case,
variables describing alarms and statuses do not report any
alerts (i.e., there are no new types of alarms and events in
the analysed trace).

With attribute data, sequences can carry important se-
mantic information, as such variables often encode the cur-
rent process state within a series of steps (e.g., alarm type
X raised to operator, operator acknowledged, alarm cleared,
state normal). Omitting specific steps can represent a threat,
however the current analysis cannot capture such cases and
applying a continuous model is counterproductive: while for
attribute data ordering matters, timing does typically not
(e.g., an operator may acknowledge an alarm at any time).
In §5.3 we present an approach for further improving the
analysis of attribute series.

5.2.3 Continuous Data Series
We now summarize results from the two models that con-

sider continuous time series: control limits and autoregres-
sion (with deviations ranging between 0.0% and 63%). We
observe that the autoregressive model generally alerts more
frequently than control limits. In fact, the control limits
contribute to only 28% of all deviations in continuous series.

Control Limits model.
Our results show that, apart from the overlap with the

autoregressive model, control limits report an additional 3%
of the series as deviating. Our inspection reveals that these
variables represent increasing trends over the course of the
whole trace. For such variables, approaches in statistical
process control commonly accept that the series should be
modelled according to their regression nature only, and not
with control limits. This means that these variables should
be whitelisted in this model. An alternative approach would
be to obtain absolute process limits (e.g., from process en-
gineers) and enforce those limits for series control.

Autoregressive model.
Our results show that the autoregressive model has no dif-

ficulty in modelling internal process stages and counter vari-
ables. Different from alarms and commands, which occur
in relation to human interaction, these variables originate
from automated process behaviour with highly correlated
and regular sequences of values, which are straight-forward
to capture. The results indeed show that automated process
logic can be consistently monitored. Of all the deviations,
we only find one related to a counter variable that delayed
an increment for 2 seconds. While most likely such a de-
viation represents just a process irregularity, it could also
indicate a replay attack as performed by Stuxnet.

The remaining deviations refer to high precision measure-
ment variables. By inspecting them more closely, we can
distinguish two groups. A first group of deviations refers
to variables that autoregression fails to model well, inde-
pendently of the training interval. This group accounts for



Figure 4: Representation of single precision floating
point in Modbus

∼ 80% of the deviations (consisting of the same variables
reported consistently across all folds and batches). By sam-
pling these variables, we find 70% exhibiting apparently ran-
dom behaviour with high oscillations, while the remaining
30% remain nearly constant (or exhibit slow trends) with
then sudden peaks. Referring to the project files, it turns
out that they all correspond to floating point measurement
values from the same set of field devices (e.g., measurements
from devices concerning purification in PLC2a). Modbus
represents floating point values with a set of registers. The
vendor specification for our PLCs states that a single preci-
sion floating point is encoded according to the IEEE 754
standard [3] in two registers, which represent the actual
value as a product of sign, exponent and mantissa. Fig-
ure 4 shows how these three components map onto a pair of
registers. Taken independently, the two variables describing
the behaviour of the two registers look quite different; while
one variable can appear random, the second variable looks
nearly constant. To address this problem, we would need
to reconstruct the floating-point values as part of the data
extraction phase. Unfortunately, it is technically challeng-
ing to identify the two halves of a floating point variable, as
vendors use different approaches and even within the same
vendor, programmers might follow different conventions due
to the flat structure of the Modbus data model. Indeed, in
the analysed PLC project files we observe the use of at least
three different conventions: use consecutive pairs of regis-
ters with (i) the register with the even address as the upper
register, (ii) the register with the odd address as the upper
register, or (iii) for a set of variables, put all upper registers
first and then all the lower registers. Working with a more
structured protocol than Modbus (e.g., with IEC 60870-5-
104) would help solve this problem.

The second major group of deviations concerns variables
that behave differently over time. For example, one value
remains nearly constant for 20 hours, then it fluctuates for 15
minutes and then it reverts back to a constant. This group
of variables is the same group which was mischaracterised as
constant series, as we describe in §5.2.1. The data series of
these variables is not stationary in a wide sense, and thus it
is generally not well suited for autoregressive modelling. The
observed deviation further confirms that a unified approach
can hardly address variables with different nature, origin and
role. However, constituting a relatively small subset (up to
10 out of 2200 variables in one PLC), these could be treated
as a special case.

5.3 Exploring Improvements
Summarizing the deviations from previous sections, we

notice three distinct cases that impair our results: (i) char-
acterisation issues, (ii) difficulties modelling attribute data,

and (iii) dependencies amongst variables.
First, we observe that a large fraction of the reported de-

viations in Sections §5.2.1–5.2.3 come from the character-
isation phase. A potential approach for introducing more
semantics into the characterisation phase is the inclusion of
knowledge contained in the project files. To explore the fea-
sibility of this approach in practice, we translate the seman-
tic information of the available project files into labels that
define what we expect the characterisation phase to return.
We assign the labels semi-automatically by constructing a
table that maps keywords commonly found in the descrip-
tions into the three categories. For example, we consider
descriptions including “measurement”, “counter”, or “usage”
to indicate variables holding continuous values; words like
“command” or “alarm” suggest attribute data; “configura-
tion” indicates a constant value. In total, we identify 24
keywords, which allow us to classify all PLC variables de-
fined in the project files. Our analysis shows that we can
cover 35% of all observed variables that way, with the main
limiting factor being implicit definitions of multiple vari-
ables (e.g., PLC programmers use tailored data structures
to define a range of variables by only defining the start-
ing variable in project files). Comparing the labels with
our heuristics, we see an excellent match for constant vari-
ables. However, only about half of the continuous variables
match, and even less in the attribute category (around 30%).
Closer inspection reveals as the main problem ambiguities
in the project file that mislead the keyword-based heuristic.
Generally, the descriptions are not standardised but depend
on the PLC programmer, and hence keywords sometimes
overlap. For example, one PLC has several fields that in-
clude the description “ControlForAlarm”. Yet, we consider
the keyword “control” to indicate a constant variable, and
“alarm” to suggest an attribute series. While this example
could be addressed easily, similar ambiguities would remain.
This difficulty shows that in practice, even if project files
are available, it is not straight-forward to extract meaning-
ful semantic information from them.

Second, in §5.2.2 we point out that the current approach
cannot capture the semantics or sequence of some attribute
series (e.g., process alarms). However, during focus group
sessions with plant engineers, we learned that alarms and
commands are typically encoded in bitmaps, and we indeed
find this reflected in the network traffic. For example, for a
variable that the PLC project file refers to as “various status
notifications from PLC3 to server” , we observe a series of
what, at first, appears like an arbitrary set of values: 40960,
36864, 34816. However, when aligned in binary format, the
values map to:
1010 0000 0000 0000
1001 0000 0000 0000
1000 1000 0000 0000

This representation reveals patterns of bits that are con-
stant (e.g., the first bit indicates that PLC1c is active). If we
integrated this structure into the characterisation step, we
could refine the attribute modelling significantly. In other
words, some variables require a different granularity than
just their numerical value for capturing their semantics.

Third,we find distinct groups of variables that alarm at
the same time. In all analysed cases, the deviations corre-
spond to a limited set of devices with the behaviour that
is (i) related (e.g., a peak of 9 deviating variables in PLC
2a semantically describe different aspects of only one field
device, a pump) or (ii) identical (e.g., we see 10 ozone filters



whose flow is described by the same autoregressive model,
and whose deviation occurred at the same time and thus
resulted in a peak of deviations in one PLC). In either case,
our preliminary analysis shows that the variables could be
clustered (e.g., by performing per “point-in-time” vertical
analysis) and presented as aggregated events.

6. RELATED WORK
A set of prior work focuses on understanding ICS commu-

nication patterns, showing that communication flows indeed
reflect the regular and (semi-)automated character of pro-
cess control systems [6].

Other efforts focus on analysing security threats in ICS.
For example, some authors analyse protocol vulnerabilities [1,
4, 7], explore the lack of compliance to protocol specifica-
tions in different PLCs [9, 35], and analyse communication
patterns for anomaly detection [22, 36]. However, the effects
that one can find at the flow-level remain limited; detecting
semantic process changes requires inspection of the applica-
tion layer. Consequently, some authors propose to parse net-
work protocols for extracting information that can highlight
changes to the process environment. For example, authors
perform partial protocol parsing to enumerate functional-
ity that Modbus clients use, aiming to detect unexpected
deviations in requests sent to PLCs [12], interpret events
at a higher level [17], fingerprint current device configura-
tion remotely [29, 33], and propose approaches for verifying
PLC software [27, 28]. Düssel et al. [13] propose using ap-
plication syntax (not semantics) for network-based anomaly
detection, but do not further examine ICS-specific protocols.

In terms of classic IDS signatures, DigitalBond provides
Snort preprocessors that add support for matching on Mod-
bus/DNP3/EtherNetIP protocol fields [2].

McLaughlin and McDaniel in [24, 26] leverage PLC code
and process descriptions to reconstruct the mapping of pro-
cess variables in PLCs and thus craft efficient process at-
tacks. In terms of analysis, this work is complementary to
ours—the approach leverages PLC code while we use pas-
sive network monitoring to reconstruct process semantics.
Conceptually, detecting attacks generated via SABOT [26]
are within the scope of our approach. We show that key
process variables (i.e., configuration settings) can be consis-
tently monitored via our approach.

In [25] the authors present stateful policy enforcement
which validates commands sent to physical devices from a
PLC. While this approach can work even when the PLC
gets compromised, the requirement of expert involvement is
inevitable (while our approach requires little or no involve-
ment).

Different authors analyse false data attacks against state
estimation (thus targeting indirect control attacks) [5, 11,
23]. Similarly, yet from a network perspective, others eval-
uate accuracy of detectors on crafted attacks [16] and pre-
configured undesirable states [15] within controlled testbeds
on a set of selected process measurements. These works
focus on understanding the accuracy of the modelling ap-
proach and leverage detailed specifications on the behaviour
of the measurement variables in a controlled environment
(e.g., including the specification of the process and state es-
timation).

By contrast, we perform an exploratory study to under-
stand the behaviour of all process variables (i.e., both field
and internal PLC variables) in a real world plant, provid-

ing insights into challenges for building automated process-
aware, yet specification-agnostic, security detectors.

7. CONCLUSION
Our work ventures much deeper into ICS network traffic

than prior efforts have offered. We monitor the communi-
cation of PLCs in two real-world water plants, extracting
and modelling operational semantics at the level of individ-
ual process variables, to then flag unexpected deviations for
manual inspection. Our motivation comes from recent direct
process control attacks that aim to change static configura-
tion parameters. Our approach detects these by watching
for changes to variables that would normally stay constant.
While that also reports legitimate changes, these generally
either remain sufficiently rare—and, hence, an alert can act
as a useful double-check—or amendable to whitelisting by
staff if more frequent.

Going beyond static variables, we show that our approach
can also detect indirect process control attacks by mod-
elling the expected behaviour of non-constant variables. In
practice, this proves more difficult, though, as real-world
environments exhibit plenty of irregularities, semantic mis-
matches, and corner-cases that need care to get right. We
offer a first step into that direction by focusing for now less
on measuring detection rates, and more on gaining insight
into conceptual capabilities and limitations. Consequently,
we identify a range of reasons for our simple classifiers to fail
in capturing dynamic process variables reliably, including
mismatches between training and activity cycles, failure to
correctly dissect a variable’s data representation, and man-
ual human intervention with the process. However, we also
find that once we understand the root cause for a failure, we
can often lay out a way forward to overcome that particular
shortcoming (e.g., by exploiting the specific structure of a
bitfield).

From a different perspective, when we derive models for
thousands of real-world PLC variables, we find that indeed
about 95% represent generally static configuration settings
that our approach covers well. Including non-static vari-
ables, our approach manages to consistently build models
of over 98% of the process variables. However, out results
also suggest that in practice, due to their individual nature,
one cannot expect a small set of generic classifiers to reliably
capture them all equally well. We hence deem it more real-
istic to tailor a detector’s focus to a smaller set of high-value
variables that are (i) critical for the process and (ii) provide
a complementary picture to any existing safety monitoring.
As particularly interesting candidates we identify clusters
of related variables that represent semantic dependencies
within a process—existing safety systems do typically not
consider them as a group.

Generally, we also plan to leverage further context to
model individual process variables more tightly, including
from more structured protocols (e.g., DNP3 and IEC 60870-
5-104 define specific types for setpoints, counters, etc.) and
further plant configuration files (e.g., Substation Configura-
tion Language (SCL) files as used in IEC 61850 networks,
ICS vendor project files). While generally the specific choice
of variables that prove most valuable to monitor will remain
site-specific, we see an economy of scale at a different level:
one can formalise, and then replicate, the procedure of iden-
tifying and modelling suitable targets in hitherto unknown
network environments.
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