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Abstract—It is becoming increasingly difficult to implement
effective systems for preventing network attacks, due to the
combination of the rising sophistication of attacks requiring more
complex analysis to detect; the relentless growth in the volume
of network traffic that we must analyze; and, critically, the
failure in recent years for uniprocessor performance to sustain
the exponential gains that for so many years CPUs enjoyed. For
commodity hardware, tomorrow’s performance gains will instead
come from multicore architectures in which a whole set of CPUs
executes concurrently.

Taking advantage of the full power of multi-core processors
for network intrusion prevention requires an in-depth approach.
In this work we frame an architecture customized for parallel
execution of network attack analysis. At the lowest layer ofthe
architecture is an “Active Network Interface”, a custom device
based on an inexpensive FPGA platform. The analysis itself is
structured as an event-based system, which allows us to find many
opportunities for concurrent execution, since events introduce
a natural asynchrony into the analysis while still maintaining
good cache locality. A preliminary evaluation demonstrates the
potential of this architecture. The abstract goes here.

I. I NTRODUCTION

The performance pressures on implementing effective net-
work security monitoring are growing fiercely in multiple
dimensions. First, the adversarial nature of network security
gives an evolutionary impetus to the entire problem: “at-
tacks never get worse, only better.” The power of simple
signature matching—looking for specific strings or regular
expressions within packets or reassembled byte streams—has
drastically dwindled due to the major problems of false pos-
itives, polymorphism, and zero-day attacks. Moving beyond
signature-matching requires sophisticated analysis of protocols
(i) at higher semantic levels, and(ii) incorporatingcontext
correlated across multiple connections, hosts, sensors, and
over time. For such analysis, the monitor must both perform
much more computation and, crucially, undertake sophisticated
management of large quantities of complexstate.

Second, the needs to alter traffic (“normalization” [16]) to
eliminate broad classes ofevasionthreats, and, even more crit-
ically, to progress beyond simply detecting attacks to instead
realizing intrusionpreventionsystems, forces the analysis to
move beyond the domain of passive processing of network

streams, and into the forwarding path itself. With suchin-line
processing, computationally intensive analysis systems run the
risk of imposing direct limits on the performance of production
network traffic.

Third, traffic volumes and rates continue to race forward,
incessantly shrinking the processing budget available forcom-
puting a given type of network analysis. Thus, even if we
could stick with the computational simplicity of signature-
matching, we would find our processing capabilities stretched
increasingly thin.

Finally, we have lost our traditional ace-in-the-hole, Moore’s
Law for uniprocessors. Starting around 2002, the performance
scaling curve for single CPUs has slowed precipitously. Over
the fifteen prior years, uniprocessor performance increased 50–
60% per year. But by 2006, performance was afactor of three
slower than had the pre-2002 curve continued.

When single processors can no longer track the necessary
growth curve, one naturally turns to multiple, concurrent
processing. Until recently, this has meant embracing either
expensive custom design (ASICs) or diminished (network
processors) or alternate (FPGAs) execution models. Such
hardware offers the raw parallelism necessary to addresshalf
of the problem, namely the incessant growth of network
traffic volumes and rates. But the highly deliberate, customized
programming they require is directly at odds with the other
half of the problem: the inexorably growing need to perform
more and more sophisticated forms of analysis.

To perform such analysis, it would be hugely advantageous
if we could somehow draw upon the flexibility and inexpensive
system costs of using general-purpose CPUs. Recently, hard-
ware vendors have begun delivering commodity CPUs that
again reflect Moore’s Law-style scaling, with the paralleliza-
tion gains coming from multi-core/multi-thread architectures.

Today one can buy dual-core [9], dual-core dual-thread [2],
quad-core [4], six-core [5], and 8-core with 8 threads/core[25]
CPUs. These designs promise to continue scaling into the
future; for example, there are already specialized 64-core
processors for network processing [7] and upcoming x86-
based many-core architectures that may contain 64 discrete
x86 cores with vector extensions [36].



The aggregatedthroughput of such processors does in fact
still follow Moore’s law. However, to exploit the full power
of a modern multi-core hardware platform, we must explicitly
structure our applications in a highly parallel fashion: dividing
the processing into concurrent tasks while minimizing inter-
task communication.

In previous work with colleagues [30], we have argued that
we can extract a potentially enormous degree of parallelism
from the task of network security monitoring. However, do-
ing so requires rethinking how we pursue the parallelism.
Historically, parallelization of intrusion detection/prevention
analysis has been confined to coarse-grained load-balancing
(with little or no fine-grained communication between the
analysis units) and fast string-matching. These approaches buy
some initial speed-ups, but Amdahl’s Law prevents significant
gains for more sophisticated analyses that require fine-grained
coordination.

Taking advantage of the full power of multi-core processors
requires a more in-depth approach. Obviously, we need to
structure the processing into separate, low-level threadsthat
are suitable for concurrent execution. To do so, however, we
need to address a number of issues:

• To provide intrusionpreventionfunctionality (i.e., active
blocking of malicious traffic), we must ensure that pack-
ets are only forwarded ifall relevant processing gives
approval.

• To perform global analysis (e.g., scan detection [18], [52],
worm contact graphs [12], stepping-stone detection [55],
content sifting [38], botnet command-and-control [11])
we must support exchange of state across threads, but
we must minimize such inter-thread communication to
maximize performance.

• Similarly, we must understand how the memory locality
of different forms of analysis interacts with the ways in
which caches are shared across threads within a CPU
core and across cores. We need to be able to express
the analysis in a form that is independent to the memory
and threading parameters of a given CPU, so we can
automatically retarget the implementations of analysis
algorithms to different configurations.

• We must ensure that our approach is amenable to analysis
by performance debugging toolsthat can illuminate the
presence of execution bottlenecks such as those due to
memory or messaging patterns.

In this work we frame an architecture customized for
parallel execution of network attack analysis. The goal is
to support the construction of highly parallel, inline network
intrusion prevention systems that can fully exploit the power of
modern and future commodity hardware. Ultimately, we aim to
prove the power of such designs in terms of enabling network
intrusion prevention to reap both the benefits of executing
on general-purpose commodity hardware, and the exponential
scaling that Moore’s Law for aggregate parallel processing
continues to promise.

We start with a high-level overview of our architecture in
§ II. Next we argue for the large potential of parallel processing
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Fig. 1. Structure of architecture for parallel execution ofnetwork attack
analysis.

for network security analysis in§ III. In § IV we discuss our
architecture in more concrete terms and outline we how plan
to implement and evaluate a full NIPS built according to the
approach. In§ V, we evaluate the potential of a crucial part
of our architecture with real-world network traffic. In§ VI,
we present the prototype implementation and its performance
measurements.§ VII covers the rich related work in this area.
We conclude in§ VIII.

II. OVERVIEW

We begin our discussion with an overview of the architec-
ture we envision; Figure 1 illustrates its overall structure. At
the bottom of the diagram is the “Active Network Interface”
(ANI). This component provides an in-line interface to the
network, reading in packets and later (after they have been
approved) forwarding them. It also serves as the front-end for
dispatching copies of the packets to the analysis components
executing in different threads.

The ANI drives its dispatch decisions based on a large
connection table indexed by packet header five-tuple. The table
yields a routing decisionfor each packet: either(i) which
thread will analyze the packet,(ii) that the ANI should drop the
packet directly without further processing, or(iii) that the ANI
should forward the packet directly (to enable some forms of
off-loading, as discussed below). There is an analogous table
indexed by IP addresses to provide per-host blocking, and also
default routing for packets not found in either table.

The analysis components populate the ANI’s table entries
to control its dispatch procedure. For example, a component
can install adrop action to cut off a misbehaving connection,
or alter the thread associated with a connection for purposes
of load-balancing or to improve the locality of reference when
analyzing a set of activity.

The ANI dispatches packets for analysis by writing them
into queues in memory associated with the thread assigned to
analyze the corresponding flow. It also sends a corresponding
descriptors used to subsequently refer to the packets. The ANI



holds copies of the packets locally pending approval to forward
them, which an analysis component can signal by sending a
control message that includes the descriptor back to the ANI.1

Conceptually, the packet queues reside in the processor’s
shared memory. In general, these writes can directly targetthe
processor’s shared L2 cache. On modern multi-core systems,
such a write will invalidate the L1 cache entries local to the
individual cores, enabling the threads executing in that core to
detect that they have a new packet waiting for them and load
it from L2 cache to L1 cache.

An important point is that unlike for the rest of the ar-
chitecture, we make the presumption that the ANI can be
customhardware, specialized for the task. Our previous work
has shown that we can construct such hardware efficiently
and affordably using a simple FPGA design [51]. Because the
functionality has quite limited complexity, can tolerate single-
sided errors, and does not require general CPU-like flexibility,
by employing such hardware we can gain major performance
gains without incurring much of the programmability burden
that using custom hardware for the entire task would cost.

We design the functionality to be conceptually straightfor-
ward and amenable to execution in parallel if the processor
fabric supports sufficiently fast packet delivery and automatic
load balancing, as there are no inter-packet dependencies.
Thus, if a multicore fabric includes embedded network inter-
faces [25], [7], we envision that the ANI functionality could
also be realized in a small program running on one or more
cores without needing to access data beyond the processor
caches.

We structure the analysis components as anevent-basedsys-
tem. We have extensive experience with the power of applying
an event-based approach to network security analysis, as it
forms the heart of our “Bro” intrusion detection system [31].
As we will develop, the focus on an event-oriented architecture
allows us to find many opportunities for concurrent execution,
since events introduce a natural, decoupled asynchrony into
the flow of analysis. By associating events with the packets
that ultimately stimulated them, we can determine when all
analysis for a given packet has completed, and thus it is safe
to forward the pending packet, assuming none of the analysis
elements has previously signaled that the packet should instead
be discarded.

Parallelizing event execution requires care, however. First,
temporal relationships exist between events, which means
that their subsequent handlers cannot execute in arbitrary
order. Second, event handlers tend to share a large amount of
state, and thus need to access the same memory, potentially
blocking execution of other threads. Our architecture envisions
addressing these issues by introducing multipleevent queues
which collect together semantically related events for in-order
execution. Because the events are related, keeping them within

1As shown by the solid line from CPU Core 1 to the ANI in the figure, the
analysis components can also rewrite pending packets. Thisfunctionality is
necessary to supportnormalization, which may require altering the contents
of packets [16]. The ANI cannot normalize packets itself because it lacks
sufficient state to perform the necessary analysis.

a single queue localizes memory access to shared state. Thisin
turn allows for efficient threaded execution of events sincethe
threads can efficiently communicate (and lock data structures,
when necessary) by exploiting the per-core memory caches.
We discuss event scheduling in more detail in§ V-A.

The analysis proceeds in stages. The initial stages concern
low-level tasks such as TCP stream reassembly and normal-
ization, suitable to a single thread of execution. This stage re-
quires very little inter-thread communication. It outputsevents
parameterized with parsed packet headers (since normalization
already requires header analysis) and payload byte streams
(for TCP). The next stage performs application-layer protocol
parsing. As we will develop below, this stage can significantly
benefit from parallelizable execution. The outputs from this
stage are events reflecting application-level control information
(requests and responses) with associated protocol data units.
Finally, these events are consumed by multiple high-level
analyzers that detect attacks both within application dialogs
and across multiple connections and hosts.

In the figure, we do not show these stages, but only the ab-
stract structure of how the core’s coordinate their processing to
achieve them. Each core has two queues associated with it, one
for receiving packets from the ANI and one for managing the
events that its analysis generates and consumes. (The queues
are shared across all of the threads within the core, since
using per-thread queues rather than per-core risks thrashing
the limited L1 cache.) Communication between threads occurs
either via the shared memory or by passing events. Events
exchanged between threads executing in the same core gener-
ally use the core’s event queue, while communication across
cores can use separate per-core queues (e.g., “Core 1 MSG-
Event-Q” in the figure). The figure shows Core 1 inserting
elements into the queue for Core 2, and reading from its own
MSG-Event-Q. Similarly, the system can receive externally
generated events (e.g., from a host-based IDS) and send events
to external agents (e.g., a global management console such as
HP OpenView) via “External MSG-Event-Q”.

As discussed above, a thread of execution can signal the
ANI to forward a pending packet, or alternatively to discard
it regardless of the outcome of further analysis. A thread can
also update the connection and host tables in the ANI to alter
the dispatching associated with a given flow or address, as
shown by the dashed line from Core 1 to the left-hand part of
the ANI in the diagram.

III. U NCOVERING PARALLELISM IN NETWORK SECURITY

ANALYSIS

In this section we discuss how the task of performing
high-level network security analysis exhibits a great dealof
potential parallelism. To effectively extract it, however, we
must take care in how we structure the workflow of the
analysis.

Figure 2, taken from our previous work [30], illustrates the
parallelism potentially available across a pipeline of increas-
ingly higher levels of network security analysis. A crucial
point is that we need to extract parallelism at each stage of the
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Fig. 2. The spectrum of parallelism present in a high-level network security analysis pipeline.

pipeline to gain the maximal performance gain. In the figure,
vertical boxes reflect different types of analysis, increasing in
semantic level and breadth from left to right. The progression
of arrows indicate how information flows from one level to
the next, with the thickness of an arrow indicating the relative
volume of data within the flow. Thinner arrows thus indicate
fewer threads of analysis that need to execute at the next
stage relative to the previous stage; hence if the later stage
offers less opportunities for parallel execution, butalso will
be presented with fewer flows to analyze, then we can still
“keep the pipeline full” as we analyze flows at increasingly
high levels. Of particular note is the large degree oftask-
level parallelism, which can easily be leveraged by multi-core
and multi-threaded processors. Even at the highest level of
global analysis, there are potentially tens to even hundreds of
independent tasks.

Fanout of arrows indicates multiple analyses that for a given
flow can be executed in parallel with little conflict between
the threads of processing. Fan-in indicates multiple sources of
information flows being analyzed together at a higher level.
Finally, the numbers shown such as “≈ 104 instances” convey
an order-of-magnitude sense of the volume of parallelism
available if we are monitoring a busy link with a capacity
of 1–10 Gbps. (We use these numbers to convey a sense of
opportunity, rather than as concrete values.)

We work through the figure as follows. The first stage
(“Stream Demux”) demultiplexes incoming packets to per-flow
processing. This is the only fully sequential task, which we
assign to a custom front-end, the Active Network Interface
(ANI), as discussed in§ II. On a link of 1–10 Gbps, after
processing this stage we have now decomposed the problem
into, say,104 concurrent flows, and thus we can then paral-
lelize and/or pipeline the process of TCP stream reassembly
and normalization amongst these104 independent streams. In
a multi-core context, now each core only works on a subset
of the streams.

After performing TCP stream reassembly, we then forward
the resulting flows for protocol analysis. Perhaps surprisingly,

even this state exhibits a large degree of parallelism, as
we developed in [11]. To reliably determine the application
protocol in use for a given flow, it insufficient to just consider
the transport-layer port numbers (as in fact most systems
still do). Instead, for a variety of reasons—some benign,
some malicious—many flows explicitly avoid the use of well-
known ports [54]. However, per our previous work, a powerful
means to analyze application protocols without relying on
port numbers is torun all the possible application parsers in
parallel to determine which parser finds the flow syntactically
and semantically correct. Thus, as the Figure shows, here we
have fanout as execution tries a plethora (10 in the Figure) of
different application parsers, and then fan-in as only one of
those parsers actually accepts the flow.

The output of the application analysis is a series of “events”
reflecting a distillation of application-level activity such as the
parameterization of requests, items and status codes associated
with replies, error conditions, signature matches, and so on.
We then analyze these events on a per-flow basis, maintaining
the earlier parallelism we gained during the demux stage.

Next, a subset of these events, gathered across multiple
flows involving a given host or a given flow type, feed into
analyses that executes at an aggregate level. For example, for
scan detection we assess to how many different servers a given
host has attempted to connect, and with what success. The
parallelism available here is a function of how many such
analyses we perform, and to what degree they can execute
without conflict.

Finally, at a higher level of aggregation we execute analyses
that use events drawn across not only multiple flows but also
multiple hosts. An example at this level would be “content
sifting” [38], which needs to analyze elements of the contents
of disparate traffic flows in order to detect the propagation of
a network worm.

An important observation about the parallelization potential
is that many related tasks share the same basic working set.
Thus, although we may have 10 different application parsers
decoding the same TCP stream, these 10 threads share a



great deal of state. On the other hand, the events spawned
by differentflows will have largely disjoint working sets.

This observation fits well with the multi-core model, as
each core has its own memory cache. Thus, we can achieve
good memory performance by scheduling threads that share
the same working set onto the same core, while executing
unrelated threads on another core.

IV. BUILDING SCALABLE PARALLEL INTRUSION

PREVENTION SYSTEMS

Given the context presented in the previous sections, we
now revisit the architecture sketched in§ II to develop it in
greater detail, including specifics of the concrete instance of
such a system. Recall that the architecture consists of two key
components: a frontend, the Active Network Interface (ANI);
and a backend, the analysis engine that executes on a multi-
core/multi-threaded hardware platform. We discuss each in
turn.

A. Active Network Interfaces

In contrast to conventional network interface cards, the ANI
is a stateful device whose functionality can be dynamically
refined by the backend analysis engine. The ANI is responsible
for (i) routing copies of packets to the appropriate analysis
threads;(ii) retaining packets until signaled by the analysis
engine to either forward or drop them; and(iii) supporting
alteration of packet content. We discuss these tasks below.

Our overall goal is to facilitate the development of
high-performance, highly flexible,inexpensivenetwork in-
trusion prevention systems. To this end, we keep the one
non-commodity component of our architecture—the ANI—
structurally simple, to enable implementing it in relatively low-
cost specialized hardware. In [14], we present an implementa-
tion of a more restricted version of the ANI, and we envision
the use the same NetFPGA platform [50] here. A single unit
should cost roughly $2,000. We find this an acceptably low
price, since the functionality it provides enables us to build the
rest of our system using off-the-shelf commodity hardware.

In addition, the algorithms used in the hardware imple-
mentation can also run in pure software. Depending on the
development of the commodity-hardware market, this may
enable us at some point to forgo having any custom hardware
in the system, and instead rely solely on general-purpose
CPUs. For example, the Sun Niagara 2 [25] includes, in
addition to its 8 CPU cores, two directly attached 10 Gbps
Ethernet controllers, and the Tilera Tile64 processor [7] has
similar features. Since our ANI algorithms should exhibit
predictable and bounded memory access patterns, such a
processor might prove capable of delivering enough general-
purpose performance to execute the ANI using one or more
of its cores directly attached to its high-performance network
interfaces.

1) Thread-aware Routing:As shown in Figure 2, the first
task of the parallel analysis pipeline is flow demultiplexing:
routing packets to analysis threads. We assign this task to the
ANI. For each packet, it first decides which thread(s) is in

charge of the corresponding flow. The ANI then appends a
copy of the packet to the packet queue of the core running that
thread. Technically, the NIC does so by directly copying the
packet into the thread’s memory (i.e., the corresponding core’s
L2 cache). This is highly efficient as it avoids the need to have
the operating system move the packets from a single queue
over to the proper thread. The resulting savings in memory
bandwidth are substantial, eliminating one of the two main
packet transfers.

The ANI needs to determine to which thread to route a
packet. A simple approach is to use astatic scheme, e.g.,
hashing the flow into a thread identifier. We have used such a
scheme very successfully for building aNIDS cluster [46],
a set of commodity PCs jointly analyzing a high-volume
network stream that is load-balanced across them by a high-
performance frontend system. However, the drawback of such
a static scheme is that the backend engine cannot influence the
decision, for example to route a flow to a thread analyzing re-
lated communication on demand.Dynamicapproaches, based
on the ANI maintaining a table of per-flow routing decisions,
offer far more flexibility. If a packet arrives that corresponds
to a flow already having an entry in the table, the ANI will
directly route it to the appropriate destination. If the ANIdoes
not find a corresponding table entry, it forwards the packet to a
dispatcher thread that computes which thread should assume
responsibility for packet-level analysis of the corresponding
flow. The dispatcher thread then updates the ANI’s table for
direct routing of further packets belonging to the flow.

In a previous effort [51] we developed an architecture
that demonstrates the effectiveness of such an approach. An
important performance observation from that work is that the
tables the ANI uses need not be “perfect”. That is, we can view
the ANI’s tables as caches rather than full data structures;we
can then tolerate occasional inconsistent entries in the tables,
if the result of those entries is that packets are forwarded to the
dispatcher thread, as it can then correct the inconsistent entry
without detriment to the security analysis of the packet. This
form of “one-sided” error means we can use more aggressive,
cache replacement-style policies to manage the ANI’s tables,
rather than requiring that they always perfectly match the
routing requested by the backend; this approach in turn allows
us to significantly simplify the hardware implementation (for
example, the ANI does not need to worry about implementing
lengthy hash chains to deal with hash collisions).

2) Selective Packet Forwarding:The ANI is an in-line
element that for a given packet either forwards it or drops
it. The ANI itself does not decide which (unless its initial
table lookup for the packet explicitly indicates such an action).
Instead, the forward-or-drop decision is made by the backend,
with the ANI holding each packet until the backend signals
how to treat it. To avoid requiring the backend to transmit
entire packets back to the ANI for forwarding, when the ANI
routes a packet to a thread, it includes a packet descriptor that
the backend can subsequently use to refer to the particular
packet.

In addition, some extensions to this basic scheme can short-



cut the process. For example, if the backend wants to block
a flow completely, it instructs the ANI to mark the flow
appropriately in its connection/flow table as an immediate-
drop for all subsequent packets matching the flow. Similarly,
the backend might instead conclude that a flow is benign and
does not require further inspection (for example, it corresponds
to a URL that the backend has already analyzed, or to a TLS
connection that has now negotiated encryption for which the
NIPS lacks the session key), in which case it instructs the ANI
to forward all of its future packets directly without dispatching
them for analysis. Our previous work showed that in some
environments such cut-through for partially analyzed flowscan
allow a security monitor to skip over a great deal of its total
traffic volume [14].

Similarly to caching per-flow decisions, the ANI can also
remember decisions at other granularities. For example, itcan
use a table of IP addresses to immediately drop all traffic
from certain sources (or, alternatively, “white-list” them). As
for flows, we can implement such tables as imperfect caches,
provided the default action (no entry in the table, i.e., a cache
miss) results in again forwarding the packet to the dispatcher
to ensure its proper disposition.

3) Normalization: The ANI needs to also support packet
normalization, i.e., removing ambiguities from network traffic
that can undermine effective security analysis [16]. Normal-
ization can require altering the header or payload contentsof
packets. Similarly to determining forwarding/dropping deci-
sions (see the previous section), the ANI does not perform such
packet manipulation itself, but instead provides a mechanism
by which the backend can instruct it to alter packets cached in
its pending queue and potentially re-dispatch them for repeated
analysis now that they have been rendered unambiguous.

B. Parallelized Network Analysis

As outlined in § III, there is an enormous potential of
parallel processing inherent in analyzing network traffic.How-
ever, if we want to adapt traditionally-serialized monitoring to
effectively use multi-core CPUs to exploit this potential,we
must address several challenges. We need to:

• structure the dataflow in a fashion that can fully take ad-
vantage of the multi-core CPU’s potential, by identifying
the optimal thread granularity, and considering the effects
of the hardware architecture;

• devise scalable communication schemes between threads
for correlation of global activity;

• factor in intrusionpreventionfunctionality: with concur-
rent packet processing, it is significantly more difficult
to resolve go/no-go decisions in a timely and reliable
fashion; and

• support effective evaluation, profiling and debugging of
such systems, to identify and remove performance bot-
tlenecks.

We now discuss these areas in turn, assuming that: the
number of threads is not tied to the number of CPU cores; we
may have fewer, equal, or more threads than we have cores
running at any specific time; and that initially there is exactly

one thread responsible for the packets of a particular flow.
This initial thread is the one to which the ANI dispatches the
flow’s packets; however, the thread may delegate work to other
threads, either for follow-on analysis (after it has completed
its own analysis) or to replace its own analysis. In this latter
case, the initial thread may redirect dispatch for the flow by
updating the corresponding table in the ANI if does not want
to process any subsequent packets itself first.

We note that in practice, to achieve optimal performance
we might want to limit the number of threads to the number
of available CPU hardware threads, especially if we optimize
memory access patterns as outlined below. In this model
we would statically associate one thread with each core (for
single-threaded cores) or for each hardware thread (for multi-
threaded cores), which would multiplex its processing across
all tasks it gets assigned.

1) Architecturally-aware Threading:Assuming that a sin-
gle thread initially processes each flow’s packets, there are
two orthogonal ways to optimize the processing performance.
First, the flow’s analysis may involve tasks that can execute
concurrently, and thus would benefit from delegation to ad-
ditional threads. Second, we can reap significant performance
gains by optimizing the state management across these threads
to best match the underlying memory system.

Protocol Analysis. Per the discussion in§ III, the first
stages of analyzing a flow consist of relatively fixed blocks of
functionality, such as reassembling a TCP stream or decoding
a particular application-layer protocol. It is fairly straight-
forward to structure these blocks into individual threads by fol-
lowing the data-flow of the processing, which proceeds along
the edges of ananalyzer tree[11]. For example, the packets
of a TCP connection are first passed to the IP analyzer; then
to the TCP analyzer which tracks connection state transitions
and performs stream reassembly; and finally to one or more
analyzers which decode application-layer protocols.2

Assuming a supply of inexpensive threads, the natural
approach promises the greatest gain: one thread per analyzer
will exploit the benefits of both data pipelining (for serial
components of the dataflow, e.g., TCP decoding after IP
decoding) and parallel processing (for computations that we
can perform concurrently, e.g., running multiple application-
layer analyzers). In general, at this point we do not require
any inter-thread communication between threads working on
different flows. However, threads come at a cost, and thus one
thread per analyzer might not be the best choice. Generally,
we need to find a processing granularity that gives us the best
trade-off between the benefits of pipelining/parallelizing and
the overhead imposed by additional threads—and also taking
into account changes in memory access behavior (see next
below).

Event Processing. After the initial, fairly fixed stages
of analysis comes the execution of handlers for the events
produced by the protocol parsers. These next stages are

2As noted in§ III, one needs to runmultiple application-layer simultane-
ously analyzers to identify protocols independent of transport-layer ports.



considerably harder to effectively parallelize. Each packet
can stimulate execution of multiple event handlers, and these
handlers can generate further events, or have cause side effects
such as changing global state.

We cannot blithely execute in parallel the event handlers
triggered by an arriving packet because events have atemporal
order among them. For example, event handlers called upon
session establishment must run to completion before handlers
for that session’s tear-down event can execute. It is crucial
to preserve this order, as otherwise we would undermine the
soundness of any stateful analysis.

To control the parallel execution of events, our architec-
ture defines multiple, independentevent queues. Within the
architecture, the semantics of these queues allows processing
of events from separate queues to execute concurrent; but all
events inside a single queue are processed sequentially, in
FIFO order.

In our design, we assign one such event queue to each
CPU core. For each flow, the low-level protocol analysis
will put its generated events into a particular core’s event
queue, and each such core will have an event-processing
thread that dequeues events, serializing the execution of their
handlers. This approach guarantees that core’s process their
events in the order they are raised, while the event-processing
of independent flows can proceed concurrently if the events
associated with the flows wind up allocated to separate cores.

However, event handlers can generate new events which
semantically might no longer be tied to a particular flow
anymore (for example, a synchronicity match between two
SSH sessions for “stepping stone” detection). For these, our
architecture also includes global event queues into which
analyzers can insert such events. Again, we dedicate a thread
to each global queue to oversee the sequential execution of
its corresponding event handlers. This approach allows us to
structure event processing in a very flexible way.

While concurrent event processing already promises a large
gain in performance by itself, there is further, major perfor-
mance consideration: patterns of memory accesses. While a
general-purpose processor presents a single shared memory
to all of its cores and their threads, the system’s cache
hierarchy imposes anonuniform accessmodel. As previous
work shows [19], memory caching has amajor impact on
performance for highly stateful processing. That effective
network security monitoring requires a great deal of dynamic
state [39] makes it particularly susceptible to such effects.

Our architecture’s use of event queues promises to prove
valuable here, too. By processing all events that relate to the
same flow on the same core, we localize memory accesses, and
thus can benefit from that core’s memory cache. Similarly, by
placing related events into the same global event queue, we can
localize access patterns when executing inter-flow analysis.

We can envision further cache optimization of state man-
agement. One possibility regardsevent reordering: if we can
identify event handlers that access the same state working set,
we might see considerable performance gains by executing
them in immediate succession, rather than intermixing their ex-

ecution with that of unrelated handlers. However, as discussed
above we cannot arbitrarily reorder events because we must
ensure avoid violating temporal ordering constraints. Still, by
identifying such constraints (perhaps with the help of user-
provided annotations), we anticipate that such reorderingcan
achieve significant gains.

2) Scalable Communication:Global correlation requires
significant communication between individual threads. In ear-
lier work, we developed and implemented a clusterized version
of the Bro network monitoring system [31] that spreads
its processing of high-volume network streams over a set
of commodity PCs, each analyzing a share of the overall
network traffic and synchronizing state via an interconnection
network [46].

In many ways, the cluster exploits the same parallelism in-
herent in network analysis that we discussed in§ III. However,
we found that the global synchronization of the individual
cluster nodes quickly threatens to become a bottleneck in large
networks. The cluster uses a message-passing approach to state
exchange: the synchronization layer propagates each operation
on a cluster-global state element to all of the cluster nodes. For
some forms of analysis, this rapidly leads to messages traffic
that scales asO(n2) for n state updates. Mitigating this effect
required switching to a star topology, introducing a relay node
that takes charge of broadcasting updates. However, now the
proxy can become a bottleneck as we attempt to scale up the
size of the cluster.

Within a single multi-core system, however, we can take
advantage of its shared memory semantics, and thus do not
need to rely on explicit message-passing for thread commu-
nication. However, our evaluation of the Bro cluster shows
we must still very carefully consider the potential costs of
state-coordination. For our multi-core effort, this in particular
reflects on the need to align the execution-locality of elements
in the network analysis chain with the non-uniformities present
due to the underlying system’s cache hierarchy.

To this end, we need to analyze the communication require-
ments for threaded operation in particular detail. Our goalis
to confine inter-thread communication to a bare minimum so
that threads can run with the greatest possible degree of inde-
pendence. Clearly, for any communication which we cannot
avoid, we need to ensure that synchronization points—which
can potentially block operation of one or more threads—are
well-defined and short-term.

There are several potential strategies to this end. One
approach is restructuring the detection algorithms in terms of
how they modify or interpret shared state. Our work on the Bro
cluster uncovered a number of simple ways to re-code network
security analysis algorithms to make them more conducive to
concurrent execution. For example, checks for counters reach-
ing specific thresholds can suffer from race conditions when
external entities can also increment the counter; a problemthat
is easy to address—once recognized—by recasting the code to
check whether the counter reachesor surpassesthe threshold.

When restructuring the code does not help, one can also
change the semantics of the communication primitives. One



approach, which we have explored already within the Bro
system, is the concept ofloosesynchronization [39]: due to
the large number of messages exchanged between the nodes
of the Bro cluster and potential delays imposed by network
latency, it is infeasible to fully lock each data structure before
every access to ensure global consistency. Any exclusive lock
potentially suspends the operation of one or more cluster node
and can easily lead to packet drops in a high-speed network.
Therefore, we introduced into Bro deliberately weakened
synchronization semantics, toexposethe possibility of such
race conditions rather than try to ensure they cannot occur.

In a shared-memory system, we likely can employsomedata
structure locks, but certainly will still want to minimize them.
Thus, we need to analyze detection algorithms for opportu-
nities to trade-off the requirement of tight synchronization of
their data structures versus the overhead that this involves.
One approach is to deploytwo-stagestrategies: first prefilter
traffic for potentially interesting activity, and only thenperform
global synchronization for the (presumably much smaller)
output set. A simple example is a scan detector that first only
looks for potential scanners within a small slice of traffic,but
with a high probability for false positives. We can combine
the output of multiple such detectors to report scanners with
high reliability.

Another approach we can additionally pursue is the use
of randomized algorithms (e.g., [48]), which by design can
cope with occasional irregularities. With these, intermittent
race conditions that sometimes introduce such irregularities
do not perturb the reliability of the algorithm’s analysis.

Overall, from our experience we find that many detection
algorithms exhibit significant potential to be optimized in
a communication-efficient fashion. We return to this point
in § V, where we experimentally verify the parallelization
potential of the Bro NIDS.

3) Prevention Functionality:For the event-based analysis
model presented in§ III, we face the significant challenge
of realizing intrusionpreventionfunctionality, i.e., blocking
malicious packets from reaching their destination. The primary
problem is that the events—on which the analysis is based—
are decoupled from packets that ultimately trigger their gener-
ation. A particular packet may trigger any from zero to many
events, and several packets may all contribute to a single event.
For example, since we must first reassemble TCP packets into
byte-streams before performing application-layer analysis, if
a packet is missing then an entire byte-stream derived from
a large number of packets might only become available for
analysis upon retransmission of the missing packet.

Ideally, the front-end ANI would retain each packet until we
have fully processed all events to which the packet contributes
in any way. However, this is not practical: high-level analysis
algorithms might generate events reflecting aggregated activity
significantly after the arrival of the individual packets the
comprise the activity. Such events can occur arbitrarily later
than the arrival of particular packets that contribute to the
generation of the event.

On the other hand, all eventsdirectly triggered by lower-

level analysis will be generated very shortly after the ANI
receives the corresponding packet. These events reflect activity
visible on a per-flow basis, which is typically manifested in
small, localized protocol data units. For these, itis feasible
to have the ANI hold each packet until all of the events it
engenders execute to completion. Because the chain of event
processing follows per-flow locality and is directly triggered
by the arrival of the packet, the end-to-end analysis latency
should remain quite low (e.g., 1–2 ms or less). Such additional
latency is essentially invisible to all but the most persnickety
applications.

The model of multiple event-queues (see§ IV-B1) makes
this approach straight-forward to achieve. The system places
all events directly triggered for a flow into the same event
queue. Once all of them are processed, i.e., the queue has
fully drained, then if none of the event handlers has signaled
that the ANI must drop or modify the packet, the ANI can
safely forward the packet.

This approach does not apply for more global forms of
analysis, however. For example, a scan detector can only
report a scan after observing some number of connections; it
is infeasible for it to blockall of the probes that a scanner
sends, since part of its analysis might well require seeing
the degree to which the source’s initial attempts succeed or
fail [18]. However, due to the global nature of such analysis,
the blocking associated with detection will in general refer to
more coarse-grained entities than flows. For example, upon
detecting a scan it is very likely tolerable that the packets
of the scan (so far) have already reached their destination—
as long as one canensure that the system will block any
further activity by the originating host. In this example, it is
not a significant loss if the particular packet that triggered
the analysis decision is forwarded; what really matters is
blocking the originating host. Accordingly, the scan detector
can propagate the offending address to the ANI, which will
then discard any future packets originating from that address.3

In general, event handlers that raise events themselves need
to decide whether these events require processing before a
packet can be safely forwarded. The handler can do so by
choosing the corresponding event queue: the core’s thread
queue presumes blocking semantics (i.e., requires all events
to be processed before a packet gets a go/no-go decision),
while global event queues do not. Since the most apt trade-
off between reliable blocking decisions and introduced delays
is not obvious up front, our proposed effort will include
analyzing the properties of existing detection schemes in this
regard. We note that the best choice might change, depending
on capabilities of the hardware at hand: for a many-thread-per-
core processor, such as the Niagara line, it is critical to make as
many events non-blocking as possible, in order to best utilize
the additional hardware threads available. However, this is less
critical for few-threads-per-core systems such as the Intel Core

3Such active blocking of scanners has been in operational useat the
Lawrence Berkeley National Laboratory for many years now, implemented
by means of a utility that the institute’s Bro system executes to contact the
site’s border router and install a corresponding ACL.



family.

4) Evaluation, Profiling and Debugging:The concurrent
nature of the analysis outlined in the previous sections poses
new challenges with regard to the evaluation, profiling and
debugging of network security analysis algorithms. Relating
to these issues, in the past we have invested significant efforts
into developing tools to instrument our Bro system in order
to assess its performance in a sound fashion.

We are particularly interested in two areas:(i) identifying
race conditions, and(ii) understanding memory access pat-
terns. The former reflects a frequent problem often present
in concurrent processing: with race conditions, results depend
on the order of execution, which is not tolerable. The latter
problem area is important in terms of optimizing memory
locality to provide optimal performance (see§ IV-B1).

The key to systematically analyzing a program’s behavior is
repeatability. To this end, we have extensively relied on trace-
based evaluation in the past: we first capture a packet trace on
a live network link, which we then feed into the system offline
as often as required. Ideally, the output should be identical for
each run, and also match the results we would have attained
during live analysis.

To conduct such assessments with the multi-threaded ar-
chitecture, we likewise need to rely to a significant extent
on trace-based evaluation. However, we cannot readily assess
the system directly from traces, since our ANI is a hardware
device that operates onlive traffic. As such, it cannot directly
execute on traces. We thus need to develop a second, software-
only implementation that fully matches the device’s operation,
but can also operate from trace files as input.

Another problem for achieving repeatability istiming: even
when reading a trace, the communication between threads still
proceeds in real-time. Therefore, we also need to adapt the
speed of the packet processing to real-time. This can become
tricky since slight variations in communication times can also
lead to discrepancies. In past work, we faced similar problems
when working with multiple communicating instances of the
Bro NIDS [41]: results were not reproducible even when we
fed in all system inputs via a trace. To solve this problem,
we introduced apseudo-real-timemode to the Bro system.
When activated, packets from a trace are artificially delayed
to match real-time semantics. In addition, the mode introduces
synchronization points at regular time intervals to ensurethat
the reproducibility of individual instances do not drift too far
from the trace they process.

Once we have repeatable settings, we can start analyzing the
system’s overall behavior. Particularly interesting are memory
access patterns, as our most significant concern regarding
realizing the potential parallel performance is with respect
to working sets and cross-core communication. To this end,
we will add instrumentation to track the number and time of
accesses to global state, as well as causality-tracking back to
trace within which we find accesses triggered by the given
events. The results will enable us to fine-tune the system’s
architecturally-aware threading for optimal performance.

V. EVALUATION

To understand the parallelization potential that our architec-
ture is in principle able to exploit, we performed a series of
simulations based on the Bro NIDS’ processing. We picked
Bro for our experiments because it already provides many of
the same abstractions that our architecture relies on, in par-
ticular the internal separation into the two main components:
protocol analysisand event processing(cf. § IV-B1). In our
simulations we focus on the latter, as the protocol analysisis
rather straight-forward to parallelize by distributing connec-
tions individually across threads. As discussed in IV-B2, the
NIDS Cluster [46] takes a conceptually similar approach and
has already demonstrated its promising scaling properties.

It is however much less clear whether event processing
can scale similarly well. In the following, we first frame a
model for concurrent event execution that is able to address
the intricate constraints we face with regards to order-of-
execution and inter-event state correlation, and then simulate
this scheme using an abstraction of Bro’s processing. Basedon
these simulations, we predict that our concurrent event model,
and thus our architecture, is able to scale to large numbers of
independent CPUs.

A. Concurrent Event Model

To understand the parallelization potential of Bro’s event
processing, we use an execution model that, while simplified,
captures the main conceptual bottlenecks in processing events
concurrently.

We assume that a set ofn threads is available for processing
events, running independently on different CPUs. Each thread
has an incomingevent queuefrom which it pops events for
sequential execution. The processing of a single event involves
the execution of zero, one, or more eventhandlerswritten
in Bro’s scripting language. The execution of each handler
occupies the thread’s CPU for a certain (non-constant) amount
of time during which no other handlers can be processed.

During execution, a handler can accessglobal variables.4

These globals might also be accessed concurrently by handlers
running inother threads and therefore require synchronization.
For more straight-forward simulation, in our model we assume
a singleglobal lock for inter-thread synchronization: whenever
a handler that might need access to a global variable starts
to execute, it must first acquire the global lock, potentially
blocking until that becomes available.

While easy to implement, this locking approach is too
coarse to scale well. Nearly all handlers in Bro’s standard
scripts potentially access some global state, and thus threads
would spend most of their time blocking. Therefore, we
introduce an optimization. Examining Bro’s standard event
handlers, we observe that while many of them access globals,
most do so only to remember state about theircurrent unit
of processing. For example, events generated by the protocol

4In our simplified model we do not differentiate between read and write
accesses.



analysis tend to store information about the triggering con-
nection (e.g., Bro’s HTTP script remembers the URLs that
have been requested within a particular connection). However,
typically these handlers do not access the corresponding
information for other connections. Similarly, scripts like the
scan detector keep state about individual IP addresses (such
as the number of distinct destinations contacted), but do not
correlate itacrosssources.

We leverage this observation by slicing such state into
individual pieces. Rather than storing all of the information
globally, each thread keeps only locally any state that only
it needs to access. We introduce this notion into the event
model by optionally annotating global variables withscopes
that define visibility of any changes with regards to processing
units. For example, for a global of scopeconnection, an
update is only guaranteed to be visible to handlers subse-
quently triggered by the same connection as the one doing
the update. Likewise, a global of scopeoriginator will
reflect modifications only to events triggered by the same
originating IP address. In addition to these two, we further
introduce scopesresponder andhost pair to cover the
most common patterns of access to global state present in
Bro’s scripts.

Going one step further, we extend the notion of scopes from
variables toevent handlers: for each handler, we derive a scope
based on the globals it accesses. First, we restrict each handler
to access only globals ofonetype of scope (in addition to any
not-scoped globals).5. This scope then becomes the scope of
the handler. If a handler does not access any global state, we
define its scope asany.

Now we can incorporate these scopes into our execution
model. We schedule event handlers to threadsbased on their
scopes: all handlers of the same scope will be processed by the
same thread if triggered by the same processing unit (e.g., for
a particular connection all handlers of scopeconnection
are guaranteed to be run by the same thread). This scheduling
strategy localizes all accesses to the scoped global to a single
thread, and therefore allows the state to reside in thread-
local storage. As a result, all handlers that accessonly scoped
globalsdo not need to acquire the global lock.

To summarize the concurrent event model, whenever an
event is raised, we first determine all relevant handlers. We
then schedule each of them to a thread determined based on the
handler’s scope and the current processing unit6, and schedule
the handler for execution by inserting it into the corresponding
event queue. As the threads process their queues, they only
acquire the global lock for handlers accessing non-scoped
globals, processing all others directly.

We note that this concurrent event model makes a few

5Limiting an event handler in such a way does not impose any significant
restriction. Typically event handlers can easily be split into multiple handlers
of different scopes; see§ V-B. Furthermore, the restriction can be enforced
via static checking and violations are therefore easy to spot.

6In our simulation, we generally track which connection triggered each
event, and then use the handler’s scope to extract the relevant components
from the connection’s 5-tuple. We finally hash these into theset of available
threads.

simplifications. For example, not all uses of global state inBro
directly map to one of the scopes we have defined so far. Bro’s
scan detector, for instance, sometimes flips the direction of a
connection internally when it believes that the first packetof a
connection might have been missed. In these cases, the roles
of originator and responder are reversed, which we cannot
directly capture in the model laid out so far. We also neglect
any negative effects introduced by memory/cache latencies.
However, we believe that the model captures the essence
of event processing by order of execution requirements and
global state synchronization constraints.

B. Simulation

To predict the performance of the described approach,
we performed a series of experiments with a Python-based
implementation of the event model. Based on an actual event
log from a Bro run, the simulator schedules events across
a specified number of simulated threads according to the
constraints identified above. In the following, we first describe
the necessary instrumentation of Bro, and then present the
results.

1) Instrumenting the Bro NIDS:To perform the simulation,
we first defined execution scopes for the global variables most
commonly accessed by Bro’s default script handlers. When
selecting scopes, we started with a set of heuristics to infer
the granularity of accesses automatically. For example, most
of Bro’s script-level tables store information about entities
that are derived from the current connection 5-tuple, like the
involved IP addresses. By observing which components of a
tuple are used during run-time to build the table index for a
table operation, we can often identify the right scope. We then
further adjusted some scopes manually where the heuristics
failed to identify the correct granularity (e.g., a trace might
lack the traffic triggering the use of a particular global). In
total, we assigned 74 scopes to global script variables, each
of one of the types such asconnection mentioned above.

Next, we modified some of Bro’s default scripts to comply
with the restriction that only globals ofone scope can be
accessed by each handler (see§ V-A). Generally, this proved
to be easy to achieve, usually by splitting non-conforming
handlers up into two or more separate ones, with the first
handler raising new events to trigger the subsequent ones.7 To
ensure that we did not affect Bro’s analysis semantics with our
changes, we used its standard test-suite to confirm that Bro’s
output still matched the original one.

Finally, we instrumented Bro to record each event handler
execution with the connection that triggered it, the time when
the event was raised, and the time it took to process the
event. As the latter figure requires a high-precision clock,we
leveraged the open-source PAPI library [29] for reading the
CPU’s cycle counter.

7In rare cases, such a restructuring would have been more difficult to
achieve and we then modified the code slightly to work-aroundthe problem,
sometimes by disabling code seldom exercised. We note that we did not
encounter any conceptual problems but only wanted to reducethe effort
required to eventually perform the simulations.
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Fig. 3. Processing/idle/blocking times with increasing numbers of simulated
threads. Left plot shows times averaged over all threads, and right plot shows
times for a selected individual thread across all configurations.

2) Results:With these changes in place, we ran Bro on a
trace captured in the early afternoon of a weekday at the 10GE
access link of the Lawrence Berkeley National Laboratory.
Due to the large number of events Bro generates, we restricted
the analysis to a duration of 15 minutes, which resulted in a
trace of 24 GB. We configured Bro to perform an extensive
analysis using most of the standard analysis scripts that come
with the distribution, yielding an event log of about 50 million
entries, on which we then ran the Python simulator, specifying
increasing numbers of threads to simulate.

The two plots in Figure 3 show the simulation results. In
both plots, we show the times a thread spent either processing,
blocked waiting for the global lock, or idle due to a lack
of event handlers to process. The left plot averages these
times over all threads of a particular run, while the right
plot shows them for one selected thread across all setups to
illustrate individual variability. We see that while the single-
thread configuration fully utilizes the CPU, idle times increase
with the numbers of threads, as we would expect. We also see
that the time spent blocking is negligible in all configurations,
demonstrating that our concurrent, scope-based event model
works quite well.

To better visualize the speed we achieve, Figure 4 shows
the same simulation results converted into a speed-up factor
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Fig. 4. Speed-up with increasing numbers of simulated threads on average
and for the first thread in all configurations

by relating each thread’s processing time to the processing
time of the single-thread baseline. Again we show both the
speed-up averaged over all threads (circles) and specifically
for the first thread in each configuration (triangles). We see
that on average, the performance scales almost exactly with
the increase in the number of available threads. This is not
surprising given the earlier observation that the threads spend
hardly any time in a blocking state. Looking at just the
first thread, however, we also see that by averaging speed-up
factors across threads, we smooth out some of the imbalances
introduced by the specifics of how we distribute event handlers
across threads. The larger variability indicates that the load-
distribution scheme might have some head-room for further
fine-tuning.

Overall, we can conclude from these simulations that the
concurrent event model we sketched in§ V-A promises to
scale very well with increasing numbers of available threads.
While in practice further effects, such as memory performance,
will affect the achievable performance gain, conceptuallyour
approach appears well-suited to exploit the parallel potential
we find in large-scale network traffic.

VI. PROTOTYPE IMPLEMENTATION

Encouraged by the simulation results discussed in§ V, we
built a prototype of a multi-threaded Bro, parallelizing both
protocol analysis and event processing. In§ VI-A, we discuss
a few specifics of our implementation and then present pre-
liminary performance measurements in§ VI-B. We emphasize
that at the time of writing, this is still work-in-progress and
we expect to further improve Bro’s performance based on
extensive profiling of the current code base.

A. Adapting the Bro NIDS

Turning Bro into a multi-threaded application consisted of
two main parts:(i) restructuring the information flow to split
the work-load across a set of threads; and(ii) adapting the code
base to a concurrent setting, which violates many assumptions
made internally about execution order. Regarding the former,
we chose to separately parallelize the protocol analysis and



event processing, providing a configurable number of threads
to each of them. For the protocol analysis we followed the
Bro Cluster[46] model of distributing connections across the
thread pool to then process them in parallel. For the event
processing, we implemented the model sketched in§ V-A.
Internally, we rely on the infrastructure provided by Intel’s
Threading Building Blocks[44] library. However, we leverage
the library primarily as a platform-independent abstraction
of typical concurrency primitives (such as mutexes and con-
current queues) rather than using its higher-level, task-based
concurrency model.

In terms of adapting the original code base, the main
challenge was to identify all the non-thread-safe idioms used
throughout Bro’s source. Much of Bro’s code is now more than
a decade old, and not written with concurrency in mind. In
particular, Bro relies heavily on global (and static) variables.
We added extensive instrumentation to identify locations of
potential race conditions, and we restructured critical parts
where necessary. For the prototype implementation, we also
disabled all functionality not crucial to Bro’s core trafficanal-
ysis (e.g., remote communication and trace anonymization).

The prototype allows the user to specify the number of
threads to assign to protocol decoding and event processing.
In addition, on Linux and FreeBSD platforms, the user can
hard-wire each thread to a particular CPU core by assigning
it an affinity.

B. Performance Measurements

We conducted preliminary performance measurements on
a workstation with dual quad-core Intel Xeon E5310 CPUs.
The eight cores are numbered from 0 to 7. Each core in the
processor has a 32KB L1 instruction cache and a 32KB L1
data cache. Each of the two core pairs shares a 4MB L2 cache.

In the current prototype implementation, the packet dis-
patcher isalwaysscheduled to Core 0, while protocol analysis
and event processing can be dispatched to one or more
processor cores as specified in the command options. The
option format isi1, i2, · · · , in:j1, j2, · · · , jm, wheren and m

are the number of threads for protocol analysis and event
processing, respectively. For example, specifying1, 2, 3:4, 5, 6
means scheduling three threads for protocol analysis to Core
1, 2 and 3, and three for event processing to Core 4, 5
and 6. The packet dispatcher schedules packets and events
by calculating the hash of theexecution context(e.g., the
connection identifier for connection scope) modulo the number
of threads for either protocol analysis or event processing. It
then uses the result as an index into the list of threads.

Scheduling is complicated by the fact that the kernel’s
mapping from core numbers to actual cores is not necessarily
known. (Also, even if documented, a misinterpretation in the
mapping could have significant performance consequences.)
This required us to develop an independent means to determine
the mapping empirically. We did so by comprehensively
working through the different possible combinations of core
pairs for scheduling protocol analysis and event processing
threads. In other words, we specified the core pairs ofi:j

TABLE I
AVERAGE EXECUTION TIME IN JIFFIES.

Combination Protocol analysis Event processing Entire program

on the same core 20,323 41,821 61,035
core pairs sharing
L2 cache 22,982 44,390 44,867

otherwise 33,035 51,252 51,674

in each test run, wherei and j range from 0 to 7. We then
measured the CPU time spent in the thread processing injiffies,
the internal time unit in the Linux kernel. In addition to the
time spent inside each thread execution, we also measured the
wall-clock time in the total program execution.

For each fixed value ofi in the combination ofi:j, we find
in the measurement that exactly one value ofj (except the
case ofj = i) achieves noticeably shorter execution time than
the others. In addition, these combinations aresymmetric: if
i1:j1 is such a combination,j1:i1 is, too. These combinations
we have found are0:2, 1:3, 4:6 and5:7.

Considering that each core shares an L2 cache with exactly
another one in the quad-core Intel Xeon E5310 CPUs, we
conjecture that the above combinations reflect the ones that
share the L2 cache. In this case, both threads for protocol
analysis and event processing are scheduled to two cores
sharing an L2 cache, and specifically, the thread for event
processing may be able to fetch from the event queue on
the shared L2 cache. An alternative possibility would be that
due to avoiding cache conflicts, threads onnon-sharingcores
perform better; however, in that case we would expect to find
not pairs of such threads buttriples, which we do not.

We further verified our conjecture by repeating the same
tests on theSimics simulator[?], running in a configuration
that does not include a cache. The times we observe for such
execution time follow what we observe empirically for every
combination except the case ofi = j.

Thus, sharing the L2 cache across both threads has an
impact on the performance. Note that we also find that if two
cores do not share an L2 cache, it makes no difference whether
they are on the same processor or not in terms of data sharing,
since they must share data via the main memory.

Table I presents the average jiffies in executing the protocol-
analysis thread, the event-processing thread and the program.
We find the execution within the threads is the fastest if both
threads are on the same core; however, the total execution
time in this combination is the longest. Presumably this occurs
because when both threads are scheduled on the same core,
a significant amount of time is spent waiting, which does not
get accounted to either thread. The combination that sharesan
L2 cache is faster than those that do not, which likely arises
because the event-processing thread can receive events from
the event queue in the L2 cache, rather than from the main
memory.

We have not yet parallelized the packet dispatcher in our
prototype implementation. Its execution time accounts for
around10% of the total. Although tht proportion currently
appears relatively insignificant, this stage will eventually limit



the attainable speed-up, per Amdahl’s law, as the number of
cores increases.

VII. R ELATED WORK

Parallel Analysis. To date, efforts on exploiting parallelism
for network security monitoring have focused heavily onsig-
nature scanning, i.e., detecting whether a packet (or sometimes
a reassembled byte stream) contains a string of interest or
matches a regular expression, and executing an action (such
as drop or alert) associated with the signature. Much of this
work has drawn inspiration from the popularity of “Snort” [33]
and its large set of byte-level signatures.

FPGA-based work in this regard has investigated use of non-
deterministic finite automata to match regular expressions[37],
[13], compiling regular expressions into deterministic finite au-
tomata [26], and then quickly generating new, compiled FPGA
binaries [23]. Other custom hardware efforts, not specific to
FPGAs, have investigated building optimized Aho-Corasick
trees for sets of strings [45] and specialized architectures based
on collections of highly optimized tiny state-machines, each
of which looks for a portion of a string [43].

A vital point regarding much of the previous parallel hard-
ware design research is that it presumes a nearlystateless
approach to attack detection. The systems either operate on
single packets or assume that a separate process reassembles
the TCP byte stream. As shown in our previous work, this
latter operation actually turns out to be more difficult than
the string matching itself, particularly when consideringthe
problem of adversaries who target the memory available to
the reassembler [10].

Parallelizing richer, stateful hardware elements, such asTCP
stream reassembly, have not been explored in as much depth.
Schuehler et al. developed a TCP processor that maintains a
small, fixed amount of state per connection for several thou-
sand concurrent connections at OC-48 speeds [34]. This was
subsequently integrated into a signature matching system [35],
as well as being combined with a Bloom filter based system [1]
to construct a simplified version of Snort in hardware.

Unfortunately, TCP processors constructed in this way
suffer from significant limitations. First, they are subject to
evasionattacks [32], [16]: if the processor operates in a passive
monitoring role, an attacker can easily evade detection by
fragmenting and reordering packets.8

Along with research efforts, hardware-based intrusion detec-
tion is an area abuzz with commercial activity. Almost nothing
is available in the peer-reviewed literature regarding thede-
signs that underly these systems. ¿From vendor literature,it
appears clear that some of the systems use extensive, expensive
ASIC components, while others rely on FPGAs or network
processors. However, the analysis provided by vendor systems
appears heavily focused on high-speed signature detection

8Some systems counter these attacks by dropping out-of-order packets.
This, however, can impose a huge performance penalty due to TCP’s con-
gestion response. Even more seriously, such dropping canamplify packet loss
during times of congestion, increasing the work the networkmust perform at
the very moment when it lacks resources for its existing load.

(e.g., [42], [27]), rather than higher-level semantic analysis,
with the custom hardware serving simply to parallelize low-
level matching operations. For example, Kruegel and col-
leagues were able to reverse-engineer the signatures used
by ISS RealSecure in order to construct variants that evade
detection by it [20], and in our own operational experiences
with McAfee’s Intrushield product, we found we could readily
trigger false alarms regarding purported file-sharing traffic by
issuing particular HTTP requests [40].

By relying on customized hardware rather than general-
purpose CPUs, these technologies have difficulty in tracking
Moore’s Law-style scaling. Network processors haven’t en-
joyed the smooth, continual evolution of microprocessors,with
new versions of a given processor often requiring rewriting
substantial portions of the code. (Wun et al. present an
approach towards unifying the programming interface in [53]).
They also remain difficult to program for high-level analysis
due to their lack of the powerful cached memory semantics of
a commodity microprocessor. Due to the low level at which
FPGA designs express parallelism, scaling such designs up
requires major recoding efforts. ASIC designs likewise embed
parallelism deep within the execution model, so scaling them
up can require complete reengineering, at great expense for
mask sets.

In terms ofhigher-levelnetwork security analysis, several
existing approaches focus on executing a small number of
components concurrently on independent cores, achieving
some speed-up yet not a generally scalable, concurrent execu-
tion model. Like with hardware-supported solutions, Snorthas
seen particular attention in this regard. For example, recently
Verdu et al. presentedSnort-MT[49], which identifies a set of
processing layers sharing related sets of states to then localize
their memory accesses by executing them in separate threads.
In [47], Vasiliadis et al. outsource parts of Snort’s processing
to a graphical processing unit. Endace provides a commercial
solution that load-balances a packet stream across multiple
Snort instances running on a multi-core platform [28].

For our work, we take our main inspiration from the work
of Kruegel et al., who explored the design of front-end NIDS
load balancers [21]. They introduced the notion ofslicing:
splitting up traffic not simply at a per-connection granularity,
but in a NIDS-analysis-aware fashion to ensure that packets
germane to possible attack scenarios are all available to the
processing element that assesses their associated scenarios. For
example, an element performing scan detection (a form of
global analysis that requires observing all connection requests
and responses) will receive copies of all connection requests;
however, these also need to be sent to elements performing
parsing of the corresponding application protocols.

The issue of such front-end dispatch becomes subtle be-
cause there are many such forms of global analysis. For
example,content sifting[38] requires looking at a large pool
of potentially suspicious strings that may be taken from any
connection;contact graphanalysis [12] can efficiently detect
new worms, but requires a global connection history within a
time window;stepping stonedetection [55] needs to correlate



packet timing across connections that may have no hosts
in common; and, as mentioned above, scan detection [18],
[52] needs to track all connection initiation requests. At a
simpler level, we note that many attacks seen today involve
complex application-level sessions that span multiple con-
nections and sometimes multiple hosts. For example, of the
66 different types of worms detected by our GQ honeyfarm
over a four-month period,all used exploits that required more
than one connection—sometimes as many asseventy two(for
BAT.Boohoo.Worm) [8].

In [46], we have used a connection-based load-balancing
approach to build aNIDS clusterout of commodity PCs. The
statelessload-balancing algorithm is able to operate at very
high line-rates yet it does not allow dynamically rerouting
packets for analysis with a different target than the one initially
chosen. In [15], Guo et al. also deploy a connection-based
scheduling scheme to parallelize the operation of L7-filter[22],
finding that the resulting maximum throughput is close to
linear speedup compared to the sequential version.

Because intrusion prevention requiresin-line operation,
to realize parallelizable intrusion prevention we need to go
significantly further than the slicing approach developed by
Kruegel et al. Their architecture allows intelligent front-end
load-balancing. What we need in addition are(i) ways of
structuring the analysis itself such that it is amenable to multi-
core parallelization (addressed by our event-based structure),
and (ii) support for prevention functionality (addressed by
incorporating control feedback from the analysis elements
back to our front end, the ANI).

Modern General-Purpose CPUs. As developed in the In-
troduction, today the gains provided by Moore’s Law manifest
not in uniprocessor execution speed but in performance aggre-
gated across a number of concurrent execution units. Modern
designs include symmetricmulti-threaded CPU cores [3],
[24], which allow a single CPU to switch between multiple
independent threads of execution, andmulti-core systems,
where a single die holds multiple CPUs [6], [24]. Recent
systems support both: multiple CPUs each executing multiple
threads, as discussed below. (For simplicity, we refer to CPUs
within this spectrum of multiple threads and cores as simply
“multi-core.”)

In concrete terms, AMD is shipping dual-core systems [9];
Intel has shipped dual-thread SMT systems (hyperthreading)
Pentium 4 designs [3], dual-core designs for server, desk-
top, and portable use [6], dual-core designs with each core
supporting two threads [2], quad-core [4], and six-core [5]
CPUs. Sun’s UltraSPARC T1 (Niagara) contains 8 CPU cores,
with each core supporting four threads [24], for a total of
32 simultaneous threads of execution. Its successor, the T2
(Niagara2) [25], already supports eight threads per CPU core,
for a total of 64 threads. On the slightly more specialized
front, Tilera [7] has 64 core processors with dedicated network
interfaces, and Intel has announced a graphics-card family,
Larrabee [36], which uses up to 64 x86 cores with vector
extensions. Both Tilera and Larrabee also include dedicated
processor-to-processor interconnect networks.

It is critical to recognize that to exploit the power of
such processors, programs must be specifically designed to
have a parallelizable structure; otherwise, one will not see
any substantial performance gains. However, when developing
software for these systems, not only is it crucial to parallelize
the program’s execution structure, but also itsmemory access
patterns. Although multi-thread/multi-core CPUs preserve the
semantics of shared memory with cache-coherence, memory
locality and behavior can completely dominate a program’s
ultimate performance, since main-memory latency can be 70
nanoseconds for random access (over 100 clock cycles on a
1.5 GHz processor), compared to L1/L2-cache clock cycles of
3 and 14 respectively (all numbers are for the Intel Core Duo
microprocessor).

In a multi-threaded core, the threads must share a common
working set. If they do not, cache thrashing will significantly
degrade performance [17]. This is one reason why the Pen-
tium 4 HT in fact performs better on some benchmarks when
multi-threading isdisabled[19]. In general, significant care is
required when scheduling threads on a multi-threaded system.

In contrast, on a multi-core system having disjoint working
sets on different cores can be abenefit, as the L1 and often
also the L2 caches are independent. When coupled with
independent memory controllers [9], [7], it becomes vital to
create and feed the threads in a memory-aware manner. As
an example of the approach we envision to use for the ANI,
Kumar et al. discuss how packets can be directly placed into a
CPU’s cache to be then further processed by a network stack.

All these factors create a very difficult programming prob-
lem. Not only are there complications imposed by concurrent
execution (deadlock, livelock, difficulties in identifying and
restructuring bottlenecks), but the parallel execution also needs
to be parameterized for the target system’s memory architec-
ture.

VIII. C ONCLUSION

Network traffic continues to grow at rates that outpace
flattening CPU performance curves, even more so as the speed
of uniprocessor execution—so long blessed with Moore’s
Law doubling—has finally “hit the wall.” Recently, however,
hardware vendors have begun delivering commodity CPUs
whose aggregatedthroughput again reflects Moore’s Law-
style scaling, with the parallelization gains coming from multi-
core/multi-thread architectures. Yet taking advantage ofthe
full power of multi-core processors for network intrusion
prevention requires an in-depth approach.

In this work, we frame an architecture customized for such
parallel execution of network attack analysis. At its lowest
layer, the architecture relies on an “Active Network Interface”
that provides an in-line interface to the network, reading in
packets and forwarding them only after they are fully inspected
and deemed safe. The device dispatches packets to a set
of threads that structure the processing as an event-based
analysis model well suited to exploit many of the oppor-
tunities for concurrent execution. In this model, we capture
event dependencies by scheduling related events to the same



thread, serializing their execution without needing to resort to
expensive inter-thread synchronization. We demonstratedvia
trace-driven simulation that this approach holds promisesto
scale quite well to large numbers of independent threads.

The presented concurrent architecture shows how we can
transform the traditionally serial network security analysis
pipeline into a highly parallelizable form that is able to take
full advantage of the multicore concurrency offered by modern
and future commodity CPUs. Given how parallel hardware
appears likely to evolve in the future, we expect such a
paradigm to ultimately prove highly beneficial, and we are
now in the process of implementing these concepts within the
framework provided by the Bro network intrusion detection
system.
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