An Architecture for Exploiting Multi-Core
Processors to Parallelize Network Intrusion
Prevention (Extended Version)

Robin Sommeér?, Vern Paxson3, Nicholas Weavér, and Po-Ching Lit

! International Computer Science Institute

2 Lawrence Berkeley National Laboratory
3 UC Berkeley

4 Institute for Information Industry, Taiwan

Abstract—It is becoming increasingly difficult to implement
effective systems for preventing network attacks, due to th
combination of the rising sophistication of attacks requiing more
complex analysis to detect; the relentless growth in the vame
of network traffic that we must analyze; and, critically, the
failure in recent years for uniprocessor performance to sugin
the exponential gains that for so many years CPUs enjoyed. Fo
commodity hardware, tomorrow’s performance gains will insgead
come from multicore architectures in which a whole set of CPUs
executes concurrently.

Taking advantage of the full power of multi-core processors
for network intrusion prevention requires an in-depth approach.
In this work we frame an architecture customized for parallel
execution of network attack analysis. At the lowest layer othe
architecture is an “Active Network Interface”, a custom device
based on an inexpensive FPGA platform. The analysis itselfsi
structured as an event-based system, which allows us to findany
opportunities for concurrent execution, since events intoduce
a natural asynchrony into the analysis while still maintainng
good cache locality. A preliminary evaluation demonstrats the
potential of this architecture. The abstract goes here.

I. INTRODUCTION

streams, and into the forwarding path itself. With sirctiine
processing, computationally intensive analysis systemshe
risk of impaosing direct limits on the performance of prodaot
network traffic.

Third, traffic volumes and rates continue to race forward,
incessantly shrinking the processing budget availabledon-
puting a given type of network analysis. Thus, even if we
could stick with the computational simplicity of signature
matching, we would find our processing capabilities stredich
increasingly thin.

Finally, we have lost our traditional ace-in-the-hole, Mais
Law for uniprocessors. Starting around 2002, the perfooman
scaling curve for single CPUs has slowed precipitously.rOve
the fifteen prior years, uniprocessor performance inccka8e
60% per year. But by 2006, performance wasetor of three
slower than had the pre-2002 curve continued.

When single processors can no longer track the necessary
growth curve, one naturally turns to multiple, concurrent
processing. Until recently, this has meant embracing eithe
expensive custom design (ASICs) or diminished (network

The performance pressures on implementing effective ngtrocessors) or alternate (FPGAs) execution models. Such
work security monitoring are growing fiercely in multiplehardware offers the raw parallelism necessary to addrals
dimensions. First, the adversarial nature of network sgcurof the problem, namely the incessant growth of network
gives an evolutionary impetus to the entire problem: “atraffic volumes and rates. But the highly deliberate, custech
tacks never get worse, only better.” The power of simplerogramming they require is directly at odds with the other
signature matching-looking for specific strings or regular half of the problem: the inexorably growing need to perform
expressions within packets or reassembled byte streams—imore and more sophisticated forms of analysis.
drastically dwindled due to the major problems of false pos- To perform such analysis, it would be hugely advantageous
itives, polymorphism, and zero-day attacks. Moving beyorifiwe could somehow draw upon the flexibility and inexpensive
signature-matching requires sophisticated analysisaibppls system costs of using general-purpose CPUs. Recently; hard
(i) at higher semantic levels, an@) incorporatingcontext ware vendors have begun delivering commodity CPUs that
correlated across multiple connections, hosts, sensoi, again reflect Moore'’s Law-style scaling, with the paraileti
over time. For such analysis, the monitor must both perfortion gains coming from multi-core/multi-thread architerets.
much more computation and, crucially, undertake soplaitgt =~ Today one can buy dual-core [9], dual-core dual-thread [2],
management of large quantities of comptate quad-core [4], six-core [5], and 8-core with 8 threads/d2E

Second, the needs to alter traffic (“normalization” [16]) t&€PUs. These designs promise to continue scaling into the
eliminate broad classes ef¥asiornthreats, and, even more crit-future; for example, there are already specialized 64-core
ically, to progress beyond simply detecting attacks toeiadt processors for network processing [7] and upcoming x86-
realizing intrusionpreventionsystems, forces the analysis tdbased many-core architectures that may contain 64 discrete
move beyond the domain of passive processing of netwot86 cores with vector extensions [36].

The aggregatedhroughput of such processors does in fact |CPU Core 1 CPU Core 2
still follow Moore’s law. However, to exploit the full power | [D-Cache E1E)
of a modern multi-core hardware platform, we must expicitl g,:lg‘j;',‘;‘; ot HEH
structure our applications in a highly parallel fashiomviding ; '
the processing into concurrent tasks while minimizing n-nte: ,

L1 D-Cache

=| =
EAER

glg Cached
ol Queues

peaay,
peaay,
peaay,
-H peanyy,

1
e i
task communication. E i |
' H . 1
In previous work with colleagues [30], we have argued thpi i LLz Cache & Main Memory L TCore 1 MSG-EventQ | !
we can extract a potentially enormous degree of paralleligm ;| HCore1PktQ [Core 2 Pke-Q [Core 2 MSG-Event-Q_e1 4
. . . | ! ---[Core 1 Event-Q__| [Core 2 Event-Q == |
from the task of network security monitoring. However, do-; ** SRl -

ing so requires rethinking how we pursue the parallehsm. ___________________

Historically, parallelization of intrusion detectiongwention --------------- ; :
i

analysis has been confined to coarse-grained load-batancin [Conn Table | ____[Packet Active Network
(with little or no fine-grained communication between the DlsﬁFtch Ll Interface
analysis units) and fast string-matching. These appraaioing = >

some initial speed-ups, but Amdahl's Law prevents significa
gains for more sophisticated analyses that require finievggla Fig. 1. Structure of architecture for parallel executionneftwork attack
coordination. analysis.

Taking advantage of the full power of multi-core processors
requires a more in-depth approach. Obviously, we need to
structure the processing into separate, low-level thrahas [OF NEwork security analysis iff I1l. In § IV we discuss our

are suitable for concurrent execution. To do so, however, \%chltecture in more concrete terms and outline we how plan
need to address a number of issues: to implement and evaluate a full NIPS built according to the

« To provide intrusiompreventionfunctionality (i.e., active approach. Ir§ V, we evaluate the potential of a crucial part

blocking of malicious traffic), we must ensure that packOf our architecture with real-world network traffic. VI,
ets are only forwarded ifll relevant processing giveswe present the prototype implementation and its performanc

approval. measurements. VII covers the rich related work in this area.

« To perform global analysis (e.g., scan detection [18],,[52YVe conclude ing Vill.
worm contact graphs [12], stepping-stone detection [55], Il. OVERVIEW
content sifting [38], botnet command-and-control [11]) '
we must support exchange of state across threads, bu¥Ve begin our discussion with an overview of the architec-
we must minimize such inter-thread communication tture we envision; Figure 1 illustrates its overall struetuht
maximize performance. the bottom of the diagram is the “Active Network Interface”

« Similarly, we must understand how the memory localityANI). This component provides an in-line interface to the
of different forms of analysis interacts with the ways imetwork, reading in packets and later (after they have been
which caches are shared across threads within a CRpproved) forwarding them. It also serves as the front-end f
core and across cores. We need to be able to expréigpatching copies of the packets to the analysis compsnent
the analysis in a form that is independent to the memoeyxecuting in different threads.
and threading parameters of a given CPU, so we canThe ANI drives its dispatch decisions based on a large
automatically retarget the implementations of analys@@nnection table indexed by packet header five-tuple. Tihle ta
algorithms to different configurations. yields arouting decisionfor each packet: eithe() which

« We must ensure that our approach is amenable to analytsitead will analyze the packéti) that the ANI should drop the
by performance debugging tooteat can illuminate the packet directly without further processing, (@r) that the ANI
presence of execution bottlenecks such as those dueshwuld forward the packet directly (to enable some forms of
memory or messaging patterns. off-loading, as discussed below). There is an analogous tab

In this work we frame an architecture customized fondexed by IP addresses to provide per-host blocking, sl al

parallel execution of network attack analysis. The goal efault routing for packets not found in either table.

to support the construction of highly parallel, inline netlw The analysis components populate the ANI's table entries
intrusion prevention systems that can fully exploit the poaf to control its dispatch procedure. For example, a component
modern and future commaodity hardware. Ultimately, we aim tean install adrop action to cut off a misbehaving connection,
prove the power of such designs in terms of enabling netwodk alter the thread associated with a connection for pupose
intrusion prevention to reap both the benefits of executigj load-balancing or to improve the locality of referenceanh

on general-purpose commodity hardware, and the expoheng@aalyzing a set of activity.

scaling that Moore’s Law for aggregate parallel processingThe ANI dispatches packets for analysis by writing them
continues to promise. into queues in memory associated with the thread assigned to

We start with a high-level overview of our architecture imnalyze the corresponding flow. It also sends a correspgndin

§ 1. Next we argue for the large potential of parallel prodegs descriptors used to subsequently refer to the packets. Nie A

holds copies of the packets locally pending approval to &wdv a single queue localizes memory access to shared statanThis
them, which an analysis component can signal by sendindguan allows for efficient threaded execution of events sithee
control message that includes the descriptor back to the!ANthreads can efficiently communicate (and lock data strestur

Conceptually, the packet queues reside in the processavisen necessary) by exploiting the per-core memory caches.
shared memory. In general, these writes can directly tdhget We discuss event scheduling in more detaik ik-A.
processor’s shared L2 cache. On modern multi-core systemsThe analysis proceeds in stages. The initial stages concern
such a write will invalidate the L1 cache entries local to thiow-level tasks such as TCP stream reassembly and normal-
individual cores, enabling the threads executing in tha¢ ¢o ization, suitable to a single thread of execution. This steg
detect that they have a new packet waiting for them and logdires very little inter-thread communication. It outpatents
it from L2 cache to L1 cache. parameterized with parsed packet headers (since noritiatiza

An important point is that unlike for the rest of the aralready requires header analysis) and payload byte streams
chitecture, we make the presumption that the ANI can igor TCP). The next stage performs application-layer proto
customhardware, specialized for the task. Our previous woiparsing. As we will develop below, this stage can signifiant
has shown that we can construct such hardware efficientignefit from parallelizable execution. The outputs frons thi
and affordably using a simple FPGA design [51]. Because thtage are events reflecting application-level controlrimiation
functionality has quite limited complexity, can tolerategde- (requests and responses) with associated protocol dats uni
sided errors, and does not require general CPU-like flatipil Finally, these events are consumed by multiple high-level
by employing such hardware we can gain major performanasalyzers that detect attacks both within applicationogjsl
gains without incurring much of the programmability burdeand across multiple connections and hosts.
that using custom hardware for the entire task would cost. In the figure, we do not show these stages, but only the ab-

We design the functionality to be conceptually straightfostract structure of how the core’s coordinate their praogs®
ward and amenable to execution in parallel if the processathieve them. Each core has two queues associated witleit, on
fabric supports sufficiently fast packet delivery and auttim for receiving packets from the ANI and one for managing the
load balancing, as there are no inter-packet dependencignts that its analysis generates and consumes. (Thegjueue
Thus, if a multicore fabric includes embedded network inteare shared across all of the threads within the core, since
faces [25], [7], we envision that the ANI functionality cdul using per-thread queues rather than per-core risks tmgshi
also be realized in a small program running on one or moifee limited L1 cache.) Communication between threads sccur
cores without needing to access data beyond the processthter via the shared memory or by passing events. Events
caches. exchanged between threads executing in the same core gener-

We structure the analysis components asnt-basedys- ally use the core’s event queue, while communication across
tem. We have extensive experience with the power of applyisgres can use separate per-core queues (e.g., “Core 1 MSG-
an event-based approach to network security analysis, a&Event-Q” in the figure). The figure shows Core 1 inserting
forms the heart of our “Bro” intrusion detection system [31jlements into the queue for Core 2, and reading from its own
As we will develop, the focus on an event-oriented archipect MSG-Event-Q. Similarly, the system can receive externally
allows us to find many opportunities for concurrent exesytiogenerated events (e.g., from a host-based IDS) and sentseven
since events introduce a natural, decoupled asynchrooy it@ external agents (e.g., a global management console such a
the flow of analysis. By associating events with the packdtf® OpenView) via “External MSG-Event-Q”.
that ultimately stimulated them, we can determine when all As discussed above, a thread of execution can signal the
analysis for a given packet has completed, and thus it is séf®l to forward a pending packet, or alternatively to discard
to forward the pending packet, assuming none of the analy#isegardless of the outcome of further analysis. A thread ca
elements has previously signaled that the packet shoutkekids also update the connection and host tables in the ANI to alter
be discarded. the dispatching associated with a given flow or address, as

Parallelizing event execution requires care, howevestfFirshown by the dashed line from Core 1 to the left-hand part of
temporal relationships exist between events, which medhée ANI in the diagram.
that their subsequent handlers cannot execute in arbitr Y U
order. Second, event handlers tend to share a large amounj of - NCOVERING PARALLELISM IN NETWORK SECURITY

. ANALYSIS
state, and thus need to access the same memory, potentially
blocking execution of other threads. Our architecturesioms ~ In this section we discuss how the task of performing
addressing these issues by introducing multilent queues high-level network security analysis exhibits a great defal
which collect together semantically related events fooider Potential parallelism. To effectively extract it, howeveve
execution. Because the events are related, keeping thérimwitnust take care in how we structure the workflow of the
analysis.
LAs shown by the solid line from CPU Core 1 to the ANI in the figute Figure 2, taken from our previous work [30], illustrates the

analysis components can also rewrite pending packets. flihiionality is parallelism potentially available across a pipeline ofraas-
necessary to supponormalization which may require altering the contents.

of packets [16]. The ANI cannot normalize packets itselfsase it lacks 'ngly h'gher levels of network Secum.y anaIyS|s. A crucial
sufficient state to perform the necessary analysis. point is that we need to extract parallelism at each stagleeof t

Packet Assembled Event Filtered Aggregated

>
Streams || Packet — Streams Event 1 Event
S| o i 7 »
% 5) Streams | 8 74 Streams | £,| Streams |.Z
2! !—1>\. = S~ ‘C_é Sea 2:‘
1-10 Gbps 5 S S N gl ol E -l E
a) e ShY < ek N 5[
<SP =———-=) JF---=--- 5l ob--------- S| <
£ g =FZ 2 - -)| =
< < o L, o - —- -) - .- P4 Bl
] L Q E - 1) - el
= B 8 = o
A A o 5 £ O
=9 [Ay
U <
H
~10* ~103 ~10* ~10° ~10-100
Instances Instances Instances Instances Instances

Fig. 2. The spectrum of parallelism present in a high-levetimork security analysis pipeline.

pipeline to gain the maximal performance gain. In the figureyen this state exhibits a large degree of parallelism, as
vertical boxes reflect different types of analysis, inciegsn we developed in [11]. To reliably determine the application
semantic level and breadth from left to right. The prog@ssi protocol in use for a given flow, it insufficient to just consid
of arrows indicate how information flows from one level tadhe transport-layer port numbers (as in fact most systems
the next, with the thickness of an arrow indicating the re¢at still do). Instead, for a variety of reasons—some benign,
volume of data within the flow. Thinner arrows thus indicatsome malicious—many flows explicitly avoid the use of well-
fewer threads of analysis that need to execute at the n&rbwn ports [54]. However, per our previous work, a powerful
stage relative to the previous stage; hence if the laterestageans to analyze application protocols without relying on
offers less opportunities for parallel execution, lalgo will port numbers is toun all the possible application parsers in
be presented with fewer flows to analyze, then we can stilarallel to determine which parser finds the flow syntactically
“keep the pipeline full” as we analyze flows at increasinglgnd semantically correct. Thus, as the Figure shows, here we
high levels. Of particular note is the large degreetadk- have fanout as execution tries a plethora (10 in the Figure) o
level parallelism, which can easily be leveraged by multi-comdifferent application parsers, and then fan-in as only ohe o
and multi-threaded processors. Even at the highest leveltbbse parsers actually accepts the flow.
global analysis, there are potentially tens to even hurgdeéd The output of the application analysis is a series of “events
independent tasks. reflecting a distillation of application-level activity s as the
Fanout of arrows indicates multiple analyses that for argivgparameterization of requests, items and status codesi@ssbc
flow can be executed in parallel with little conflict betweemvith replies, error conditions, signature matches, and 150 o
the threads of processing. Fan-in indicates multiple sssiof We then analyze these events on a per-flow basis, maintaining
information flows being analyzed together at a higher levahe earlier parallelism we gained during the demux stage.
Finally, the numbers shown such as 10* instances” convey Next, a subset of these events, gathered across multiple
an order-of-magnitude sense of the volume of parallelisflows involving a given host or a given flow type, feed into
available if we are monitoring a busy link with a capacitynalyses that executes at an aggregate level. For exaraple, f
of 1-10 Gbps. (We use these numbers to convey a sens&edn detection we assess to how many different serversa give
opportunity, rather than as concrete values.) host has attempted to connect, and with what success. The
We work through the figure as follows. The first stagparallelism available here is a function of how many such
(“Stream Demux”) demultiplexes incoming packets to pewfloanalyses we perform, and to what degree they can execute
processing. This is the only fully sequential task, which weithout conflict.
assign to a custom front-end, the Active Network Interface Finally, at a higher level of aggregation we execute analyse
(ANI), as discussed ir§ 1. On a link of 1-10 Gbps, after that use events drawn across not only multiple flows but also
processing this stage we have now decomposed the problemitiple hosts. An example at this level would be “content
into, say,10* concurrent flows, and thus we can then parasifting” [38], which needs to analyze elements of the cotsten
lelize and/or pipeline the process of TCP stream reassembfydisparate traffic flows in order to detect the propagatibn o
and normalization amongst thes@* independent streams. Ina network worm.
a multi-core context, now each core only works on a subsetan important observation about the parallelization pagnt
of the streams. is that many related tasks share the same basic working set.
After performing TCP stream reassembly, we then forwarthus, although we may have 10 different application parsers
the resulting flows for protocol analysis. Perhaps sunpglsi decoding the same TCP stream, these 10 threads share a

great deal of state. On the other hand, the events spawwcbdrge of the corresponding flow. The ANI then appends a
by differentflows will have largely disjoint working sets. copy of the packet to the packet queue of the core running that
This observation fits well with the multi-core model, ashread. Technically, the NIC does so by directly copying the

each core has its own memory cache. Thus, we can achipaeket into the thread’s memory (i.e., the correspondimg’'so
good memory performance by scheduling threads that shacache). This is highly efficient as it avoids the need toehav
the same working set onto the same core, while executitige operating system move the packets from a single queue
unrelated threads on another core. over to the proper thread. The resulting savings in memory
bandwidth are substantial, eliminating one of the two main
packet transfers.

The ANI needs to determine to which thread to route a
Given the context presented in the previous sections, wacket. A simple approach is to usesttic scheme, e.g.,
now revisit the architecture sketched gnll to develop it in hashing the flow into a thread identifier. We have used such a

greater detail, including specifics of the concrete instaott scheme very successfully for building NIDS cluster[46],
such a system. Recall that the architecture consists of ayo ka set of commodity PCs jointly analyzing a high-volume
components: a frontend, the Active Network Interface (ANInetwork stream that is load-balanced across them by a high-
and a backend, the analysis engine that executes on a muylérformance frontend system. However, the drawback of such
core/multi-threaded hardware platform. We discuss each arstatic scheme is that the backend engine cannot influeace th
turn. decision, for example to route a flow to a thread analyzing re-
lated communication on demandynamicapproaches, based
on the ANI maintaining a table of per-flow routing decisions,
In contrast to conventional network interface cards, thd ANffer far more flexibility. If a packet arrives that corresyuls
is a stateful device whose functionality can be dynamicaltp a flow already having an entry in the table, the ANI will
refined by the backend analysis engine. The ANI is respamsildirectly route it to the appropriate destination. If the AdNes
for (i) routing copies of packets to the appropriate analysi®t find a corresponding table entry, it forwards the paaket t
threads;(ii) retaining packets until signaled by the analysidispatcher thread that computes which thread should assume
engine to either forward or drop them; aidl) supporting responsibility for packet-level analysis of the corresgiog
alteration of packet content. We discuss these tasks belowflow. The dispatcher thread then updates the ANI's table for
Our overall goal is to facilitate the development oflirect routing of further packets belonging to the flow.
high-performance, highly flexibleinexpensivenetwork in- In a previous effort [51] we developed an architecture
trusion prevention systems. To this end, we keep the otiet demonstrates the effectiveness of such an approach. An
non-commodity component of our architecture—the ANI—mportant performance observation from that work is that th
structurally simple, to enable implementing it in relativlow- tables the ANI uses need not be “perfect”. That is, we can view
cost specialized hardware. In [14], we present an impleaaenthe ANI’s tables as caches rather than full data structwes;
tion of a more restricted version of the ANI, and we envisionan then tolerate occasional inconsistent entries in thieda
the use the same NetFPGA platform [50] here. A single unitthe result of those entries is that packets are forwardete
should cost roughly $2,000. We find this an acceptably lodispatcher thread, as it can then correct the inconsistent e
price, since the functionality it provides enables us tdddthie without detriment to the security analysis of the packeisTh
rest of our system using off-the-shelf commodity hardware form of “one-sided” error means we can use more aggressive,
In addition, the algorithms used in the hardware impleache replacement-style policies to manage the ANI's sable
mentation can also run in pure software. Depending on thather than requiring that they always perfectly match the
development of the commodity-hardware market, this maguting requested by the backend; this approach in turmvallo
enable us at some point to forgo having any custom hardwar to significantly simplify the hardware implementatioar(f
in the system, and instead rely solely on general-purposeample, the ANI does not need to worry about implementing
CPUs. For example, the Sun Niagara 2 [25] includes, langthy hash chains to deal with hash collisions).
addition to its 8 CPU cores, two directly attached 10 Gbps2) Selective Packet ForwardingThe ANI is an in-line
Ethernet controllers, and the Tilera Tile64 processor [@ helement that for a given packet either forwards it or drops
similar features. Since our ANI algorithms should exhibit. The ANI itself does not decide which (unless its initial
predictable and bounded memory access patterns, suchatsle lookup for the packet explicitly indicates such ancamt
processor might prove capable of delivering enough generhistead, the forward-or-drop decision is made by the batken
purpose performance to execute the ANI using one or maséth the ANI holding each packet until the backend signals
of its cores directly attached to its high-performance wekw how to treat it. To avoid requiring the backend to transmit
interfaces. entire packets back to the ANI for forwarding, when the ANI
1) Thread-aware RoutingAs shown in Figure 2, the first routes a packet to a thread, it includes a packet descripabr t
task of the parallel analysis pipeline is flow demultiplexin the backend can subsequently use to refer to the particular
routing packets to analysis threads. We assign this tashketo packet.
ANI. For each packet, it first decides which thread(s) is in In addition, some extensions to this basic scheme can short-

IV. BUILDING SCALABLE PARALLEL INTRUSION
PREVENTION SYSTEMS

A. Active Network Interfaces

cut the process. For example, if the backend wants to blooke thread responsible for the packets of a particular flow.
a flow completely, it instructs the ANI to mark the flowThis initial thread is the one to which the ANI dispatches the
appropriately in its connection/flow table as an immediat@ow’s packets; however, the thread may delegate work torothe
drop for all subsequent packets matching the flow. Similarlthreads, either for follow-on analysis (after it has congde
the backend might instead conclude that a flow is benign aitsl own analysis) or to replace its own analysis. In thiselatt
does not require further inspection (for example, it cqyoesls case, the initial thread may redirect dispatch for the flow by
to a URL that the backend has already analyzed, or to a TuBdating the corresponding table in the ANI if does not want
connection that has now negotiated encryption for which the process any subsequent packets itself first.
NIPS lacks the session key), in which case it instructs thé AN We note that in practice, to achieve optimal performance
to forward all of its future packets directly without dispaing we might want to limit the number of threads to the number
them for analysis. Our previous work showed that in sonf available CPU hardware threads, especially if we optmiz
environments such cut-through for partially analyzed floass memory access patterns as outlined below. In this model
allow a security monitor to skip over a great deal of its totale would statically associate one thread with each core (for
traffic volume [14]. single-threaded cores) or for each hardware thread (foti-mul
Similarly to caching per-flow decisions, the ANI can alsehreaded cores), which would multiplex its processing s&ro
remember decisions at other granularities. For examptant all tasks it gets assigned.
use a table of IP addresses to immediately drop all traffic1) Architecturally-aware ThreadingAssuming that a sin-
from certain sources (or, alternatively, “white-list” th¢ As gle thread initially processes each flow's packets, theee ar
for flows, we can implement such tables as imperfect cachego orthogonal ways to optimize the processing performance
provided the default action (no entry in the table, i.e., éhea First, the flow's analysis may involve tasks that can execute
miss) results in again forwarding the packet to the dispatchconcurrently, and thus would benefit from delegation to ad-
to ensure its proper disposition. ditional threads. Second, we can reap significant perfocaan
3) Normalization: The ANI needs to also support packelains by optimizing the state management across theselthrea
normalization i.e., removing ambiguities from network trafficto best match the underlying memory system.
that can undermine effective security analysis [16]. Ndfrma protocol Analysis Per the discussion i Ill, the first
ization can require altering the header or payload conteitsstages of analyzing a flow consist of relatively fixed blocks o
packets. Similarly to determining forwarding/droppingcBe fynctionality, such as reassembling a TCP stream or degodin
sions (see the previous section), the ANI does not perfooh sip particular application-layer protocol. It is fairly suht-
packet manipulation itself, but instead provides a medmani forward to structure these blocks into individual threaysdi-
by which the backend can instruct it to alter paCketS CaChed|bwing the data_ﬂow Of the processing’ Wh|Ch proceeds a|0ng
its pending queue and potentially re-dispatch them forat§ie the edges of amnalyzer tree[11]. For example, the packets
analysis now that they have been rendered unambiguous. of a TCP connection are first passed to the IP analyzer; then
B. Parallelized Network Analysis to the TCP analyzer which tracks conne_ction state tramsitio
and performs stream reassembly; and finally to one or more
analyzers which decode application-layer protoéols.
Assuming a supply of inexpensive threads, the natural
approach promises the greatest gain: one thread per analyze
must address several challenges. We need to: will exploit the benefits of both data pipelining_(for serial
_ _ components of the dataflow, e.g., TCP decoding after IP
 structure the dataflqw in a fashion that can fu!ly tal_(e_a(a'ecoding) and parallel processing (for computations that w
vantagg of the multi-core C_PU,S potentlgl, t?y |dent|fy|nq:an perform concurrently, e.g., running multiple applimat
the optimal thread gre_mularlty, and considering the e‘(’feqtayer analyzers). In general, at this point we do not require
of the hardware archltect_ure_; any inter-thread communication between threads working on
» devise scalable communication schemes between threggg ot flows. However, threads come at a cost, and thus one
for correlation of global activity, thread per analyzer might not be the best choice. Generally,
« factor in |ntru5|onpre.vent|.or}funpthn_allty: with CONCUr™ e need to find a processing granularity that gives us the best
rent packet processing, !t_'s S'Qn'f'ca,”“y more d'ﬁ,'CUIfrade-off between the benefits of pipelining/paralleliziand
to resolve go/no-go decisions in a timely and re“ablfhe overhead imposed by additional threads—and also taking

fashion; and _ - _into account changes in memory access behavior (see next
« support effective evaluation, profiling and debugging Oselow)

such systems, to identify and remove performance bot'Event Processing After the initial, fairly fixed stages

tenecks. of analysis comes the execution of handlers for the events

We now discuss these areas in turn, assuming that: i@ duced by the protocol parsers. These next stages are
number of threads is not tied to the number of CPU cores; we

may.have fewer, eq_qal,.or more thread_; than we have COr€&\s noted in§ 11, one needs to rumultiple application-layer simultane-
running at any specific time; and that initially there is dkac ously analyzers to identify protocols independent of tpamslayer ports.

As outlined in § 1ll, there is an enormous potential of
parallel processing inherent in analyzing network traffiow-
ever, if we want to adapt traditionally-serialized moniitgrto
effectively use multi-core CPUs to exploit this potentiak

considerably harder to effectively parallelize. Each padckecution with that of unrelated handlers. However, as dsedis
can stimulate execution of multiple event handlers, andeheabove we cannot arbitrarily reorder events because we must
handlers can generate further events, or have cause sabtseffensure avoid violating temporal ordering constraintdl, &ty
such as changing global state. identifying such constraints (perhaps with the help of user
We cannot blithely execute in parallel the event handlepsovided annotations), we anticipate that such reorderary
triggered by an arriving packet because events hdeengoral achieve significant gains.
order among them. For example, event handlers called upor2) Scalable CommunicationGlobal correlation requires
session establishment must run to completion before hendlsignificant communication between individual threads. dn-e
for that session’s tear-down event can execute. It is crucleer work, we developed and implemented a clusterized garsi
to preserve this order, as otherwise we would undermine tbe the Bro network monitoring system [31] that spreads
soundness of any stateful analysis. its processing of high-volume network streams over a set
To control the parallel execution of events, our architeof commodity PCs, each analyzing a share of the overall
ture defines multiple, independeavent queuesWithin the network traffic and synchronizing state via an interconioact
architecture, the semantics of these queues allows piagessetwork [46].
of events from separate queues to execute concurrent; lbut aln many ways, the cluster exploits the same parallelism in-
events inside a single queue are processed sequentiallyhément in network analysis that we discussef iH. However,
FIFO order. we found that the global synchronization of the individual
In our design, we assign one such event queue to eahster nodes quickly threatens to become a bottleneckge la
CPU core. For each flow, the low-level protocol analysisetworks. The cluster uses a message-passing approaaketo st
will put its generated events into a particular core’s eveekchange: the synchronization layer propagates eachtapera
queue, and each such core will have an event-processimga cluster-global state element to all of the cluster nogess
thread that dequeues events, serializing the executioneaf t some forms of analysis, this rapidly leads to messagesctraffi
handlers. This approach guarantees that core’s process tteat scales aé)(n?) for n state updates. Mitigating this effect
events in the order they are raised, while the event-protgssrequired switching to a star topology, introducing a relage
of independent flows can proceed concurrently if the eventsat takes charge of broadcasting updates. However, now the
associated with the flows wind up allocated to separate corpeoxy can become a bottleneck as we attempt to scale up the
However, event handlers can generate new events whgihe of the cluster.
semantically might no longer be tied to a particular flow Within a single multi-core system, however, we can take
anymore (for example, a synchronicity match between twazlvantage of its shared memory semantics, and thus do not
SSH sessions for “stepping stone” detection). For these, aeed to rely on explicit message-passing for thread commu-
architecture also includes global event queues into whidication. However, our evaluation of the Bro cluster shows
analyzers can insert such events. Again, we dedicate adthres must still very carefully consider the potential costs of
to each global queue to oversee the sequential executionstate-coordination. For our multi-core effort, this in fiaxlar
its corresponding event handlers. This approach allows usréflects on the need to align the execution-locality of eletsie
structure event processing in a very flexible way. in the network analysis chain with the non-uniformitiesqanet
While concurrent event processing already promises a lamge to the underlying system’s cache hierarchy.
gain in performance by itself, there is further, major perfo To this end, we need to analyze the communication require-
mance consideration: patterns of memory accesses. Whilenants for threaded operation in particular detail. Our gsal
general-purpose processor presents a single shared menmrgonfine inter-thread communication to a bare minimum so
to all of its cores and their threads, the system’s cacligat threads can run with the greatest possible degree ef ind
hierarchy imposes aonuniform accessnodel. As previous pendence. Clearly, for any communication which we cannot
work shows [19], memory caching hasrmaajor impact on avoid, we need to ensure that synchronization points—which
performance for highly stateful processing. That effextivcan potentially block operation of one or more threads—are
network security monitoring requires a great deal of dyramivell-defined and short-term.
state [39] makes it particularly susceptible to such effect There are several potential strategies to this end. One
Our architecture’s use of event queues promises to pramgproach is restructuring the detection algorithms in seofn
valuable here, too. By processing all events that relatdéo thow they modify or interpret shared state. Our work on the Bro
same flow on the same core, we localize memory accesses, eladter uncovered a number of simple ways to re-code network
thus can benefit from that core’s memory cache. Similarly, lsecurity analysis algorithms to make them more conducive to
placing related events into the same global event queueawe concurrent execution. For example, checks for countehrea
localize access patterns when executing inter-flow armlysi ing specific thresholds can suffer from race conditions when
We can envision further cache optimization of state maexternal entities can also increment the counter; a prothem
agement. One possibility regardsent reorderingif we can is easy to address—once recognized—Dby recasting the code to
identify event handlers that access the same state working sheck whether the counter reaclwssurpasseshe threshold.
we might see considerable performance gains by executingVhen restructuring the code does not help, one can also
them in immediate succession, rather than intermixing»ei change the semantics of the communication primitives. One

approach, which we have explored already within the Bievel analysis will be generated very shortly after the ANI
system, is the concept dbose synchronization [39]: due to receives the corresponding packet. These events refl@édtyact
the large number of messages exchanged between the nadigble on a per-flow basis, which is typically manifested in
of the Bro cluster and potential delays imposed by netwosmall, localized protocol data units. For thesejsitfeasible
latency, it is infeasible to fully lock each data structuefdse to have the ANI hold each packet until all of the events it
every access to ensure global consistency. Any exclusgle lengenders execute to completion. Because the chain of event
potentially suspends the operation of one or more clustde ngrocessing follows per-flow locality and is directly triged
and can easily lead to packet drops in a high-speed netwdnl. the arrival of the packet, the end-to-end analysis latenc
Therefore, we introduced into Bro deliberately weakeneshould remain quite low (e.g., 1-2 ms or less). Such addition
synchronization semantics, Exposethe possibility of such latency is essentially invisible to all but the most perkatg
race conditions rather than try to ensure they cannot occurapplications.

In a shared-memory system, we likely can em@oynedata The model of multiple event-queues (s¢dV-B1l) makes
structure locks, but certainly will still want to minimizeém. this approach straight-forward to achieve. The systemeglac
Thus, we need to analyze detection algorithms for opportall events directly triggered for a flow into the same event
nities to trade-off the requirement of tight synchroniaatof queue. Once all of them are processed, i.e., the queue has
their data structures versus the overhead that this insolvéully drained, then if none of the event handlers has sighale
One approach is to deplayo-stagestrategies: first prefilter that the ANI must drop or modify the packet, the ANI can
traffic for potentially interesting activity, and only theerform safely forward the packet.
global synchronization for the (presumably much smaller) This approach does not apply for more global forms of
output set. A simple example is a scan detector that first ordpalysis, however. For example, a scan detector can only
looks for potential scanners within a small slice of traffiaf report a scan after observing some number of connections; it
with a high probability for false positives. We can combinés infeasible for it to blockall of the probes that a scanner
the output of multiple such detectors to report scannerh wiends, since part of its analysis might well require seeing
high reliability. the degree to which the source’s initial attempts succeed or

Another approach we can additionally pursue is the usail [18]. However, due to the global nature of such analysis
of randomized algorithms (e.g., [48]), which by design cathe blocking associated with detection will in general ree
cope with occasional irregularities. With these, intetemit more coarse-grained entities than flawSor example, upon
race conditions that sometimes introduce such irregidaritdetecting a scan it is very likely tolerable that the packets
do not perturb the reliability of the algorithm’s analysis. of the scan (so far) have already reached their destination—

Overall, from our experience we find that many detectioms long as one caensurethat the system will block any
algorithms exhibit significant potential to be optimized irurther activity by the originating host. In this examplejs
a communication-efficient fashion. We return to this pointot a significant loss if the particular packet that triggere
in § V, where we experimentally verify the parallelizatiorthe analysis decision is forwarded; what really matters is
potential of the Bro NIDS. blocking the originating host. Accordingly, the scan detec

3) Prevention Functionality:For the event-based analysican propagate the offending address to the ANI, which will
model presented ir§ Ill, we face the significant challengethen discard any future packets originating from that askfre
of realizing intrusionpreventionfunctionality, i.e., blocking In general, event handlers that raise events themselveks nee
malicious packets from reaching their destination. Thepry to decide whether these events require processing before a
problem is that the events—on which the analysis is basedsacket can be safely forwarded. The handler can do so by
are decoupled from packets that ultimately trigger theitegge choosing the corresponding event queue: the core’s thread
ation. A particular packet may trigger any from zero to mangueue presumes blocking semantics (i.e., requires allteven
events, and several packets may all contribute to a singletevto be processed before a packet gets a go/no-go decision),
For example, since we must first reassemble TCP packets intioile global event queues do not. Since the most apt trade-
byte-streams before performing application-layer anslyi§ off between reliable blocking decisions and introduceayel
a packet is missing then an entire byte-stream derived frashnot obvious up front, our proposed effort will include
a large number of packets might only become available fanalyzing the properties of existing detection schemesim t
analysis upon retransmission of the missing packet. regard. We note that the best choice might change, depending

Ideally, the front-end ANI would retain each packet until wen capabilities of the hardware at hand: for a many-thresrd-p
have fully processed all events to which the packet corieibu core processor, such as the Niagara line, it is critical tkevees
in any way. However, this is not practical: high-level arséddy many events non-blocking as possible, in order to bestatili
algorithms might generate events reflecting aggregatédtsict the additional hardware threads available. However, hisss
significantly after the arrival of the individual packetseth critical for few-threads-per-core systems such as the Guee
comprise the activity. Such events can occur arbitraritgrla

than the arrival of particular packets that contribute te th Such active blocking of scanners has been in operational aisthe
. f th Lawrence Berkeley National Laboratory for many years nomplemented
generation of the event. by means of a utility that the institute’s Bro system exesute contact the

On the other hand, all eventhirectly triggered by lower- site’s border router and install a corresponding ACL.

family. V. EVALUATION

4) Evaluation, Pf‘?f"'”g _and _Debuggmg_?l'he con(_:urrent To understand the parallelization potential that our dechi
nature of the analysis outlined in the previous section®9os, e is in principle able to exploit, we performed a series of

new challenges with regard to the evaluation, profiling angq, ations based on the Bro NIDS' processing. We picked
debugging of network security analysis algorithms. Re@ti gy, for our experiments because it already provides many of

to these issues, in the past we have invested significam®ffqne same abstractions that our architecture relies on, iin pa

into developing tools to instrument our Bro system in ordef., oy the internal separation into the two main composent
to assess its performance in a sound fashion. protocol analysisand event processingcf. § IV-B1). In our

We are particularly interested in two areds:identifying simulations we focus on the latter, as the protocol anaigsis
race conditions, andii) understanding memory access paiather straight-forward to parallelize by distributingnoec-
terns. The former reflects a frequent problem often preseyns individually across threads. As discussed in IV-B& t
in concurrent processing: with race conditions, resulfsede N|DS Cluster [46] takes a conceptually similar approach and
on the order of execution, which is not tolerable. The latt¢jag already demonstrated its promising scaling properties
problem area is important in terms of optimizing memory |; is however much less clear whether event processing
locality to provide optimal performance (sgdV-B1). can scale similarly well. In the following, we first frame a

The key to systematically analyzing a program’s behavior igodel for concurrent event execution that is able to address
repeatability To this end, we have extensively relied on tracehe intricate constraints we face with regards to order-of-
based evaluation in the past: we first capture a packet tracegxecution and inter-event state correlation, and then laieu
a live network link, which we then feed into the system offlingnis scheme using an abstraction of Bro’s processing. Based
as often as required. Ideally, the output should be idelfica these simulations, we predict that our concurrent eventainod
each run, and also match the results we would have attairgfll thus our architecture, is able to scale to large numbers o
during live analysis. independent CPUs.

To conduct such assessments with the multi-threaded ar-
chitecture, we likewise need to rely to a significant extet. Concurrent Event Model

on trace-based evaluation. However, we cannot readilysasse To understand the parallelization potential of Bro's event

Eﬁocessing, we use an execution model that, while simplified

device that operates dive traffic. As such, it cannot directly captures the main conceptual bottlenecks in processingsve
execute on traces. We thus need to develop a second, SGftW@B‘gcurrently

only implementation that fully matches the device’s opierat We assume that a set nfthreads is available for processing

but can also operate from .tra-ce files as |n.p-ut..) events, running independently on different CPUs. Eachathre
Another_problem for achieving re_pea_ltabnltytlmmg: eVeN has an incomingevent queudrom which it pops events for
when reading a trace, the communication between thredlls §il ential execution. The processing of a single evenhieso
proceeds in real-time. Therefore, we also need to adapt {§g execution of zero, one, or more evérandlerswritten
speed of the packet processing to real-time. This can becojes s scripting language. The execution of each handler

tricky since slight variations in communication times cd80a . pies the thread’s CPU for a certain (non-constant) amou
lead to discrepancies. In past work, we faced similar proble o time during which no other handlers can be processed.
when working with multiple communicating instances of the During execution, a handler can accegsbal variables*

Erg _NID”S [41]: res_ults were not reprodumblle evE_n Whel; Wfhese globals might also be accessed concurrently by handle
edn ad sys(’;em mpgts V'al a traced To S(;]ve this pro ®Munning inotherthreads and therefore require synchronization.
we Introduced gpseudo-real-timemode to the Bro system. For more straight-forward simulation, in our model we assum

When ahct|va|te_d, packets from a t(;z(_:? arehartlflc(;ally (é:;ay%singleglobal lock for inter-thread synchronization: whenever
to match real-time semantics. In addition, the mode into@Su , nqjer that might need access to a global variable starts

synchronization points at regular time intervals to engheg to execute, it must first acquire the global lock, potengiall
the reproducibility of individual instances do not driftotdar blocking until that becomes available

from the trace they process. . i While easy to implement, this locking approach is too

Once we have repeatable settings, we can start analyzingd3grse to scale well. Nearly all handlers in Bro’s standard
system’s overall behavior. Particularly interesting arermory scripts potentially access some global state, and thuadsre
access patterns, as our most significant concern regardjgliq spend most of their time blocking. Therefore, we
realizing the potential parallel performance is with regpejntoduce an optimization. Examining Bro’s standard event
to working sets and cross-core communication. To this enghndiers, we observe that while many of them access globals,
we will add instrumentation to track the number and time ¢f,ost do so only to remember state about theirrent unit

accesses to global state, as well as causality-tracking tac o yrocessingFor example, events generated by the protocol
trace within which we find accesses triggered by the given

even_ts' The results will en?'ble us to_flne-tune the SysStem'sy, oyr simplified model we do not differentiate between read arite
architecturally-aware threading for optimal performance accesses.

analysis tend to store information about the triggering-cosimplifications. For example, not all uses of global statBrio
nection (e.g., Bro’s HTTP script remembers the URLs thdirectly map to one of the scopes we have defined so far. Bro’s
have been requested within a particular connection). Hewevscan detector, for instance, sometimes flips the directfaam o
typically these handlers do not access the correspondtc@nnection internally when it believes that the first packed
information for other connections. Similarly, scripts like theconnection might have been missed. In these cases, the roles
scan detector keep state about individual IP addresseh (sat originator and responder are reversed, which we cannot
as the number of distinct destinations contacted), but do rirectly capture in the model laid out so far. We also neglect
correlate itacrosssources. any negative effects introduced by memory/cache latencies
We leverage this observation by slicing such state intdowever, we believe that the model captures the essence
individual pieces. Rather than storing all of the inforrati of event processing by order of execution requirements and
globally, each thread keeps only locally any state that ondjobal state synchronization constraints.
it needs to access. We introduce this notion into the event _
model by optionally annotating global variables withopes B- Simulation
that define visibility of any changes with regards to prote&ss To predict the performance of the described approach,
units. For example, for a global of scop@nnecti on, an we performed a series of experiments with a Python-based
update is only guaranteed to be visible to handlers subs@plementation of the event model. Based on an actual event
quently triggered by the same connection as the one doig from a Bro run, the simulator schedules events across
the update. Likewise, a global of scopei gi nator will a specified number of simulated threads according to the
reflect modifications only to events triggered by the sam@nstraints identified above. In the following, we first dise
originating IP address. In addition to these two, we furtheie necessary instrumentation of Bro, and then present the
introduce scopesesponder andhost pair to cover the results.
most common patterns of access to global state present in) Instrumenting the Bro NIDSTo perform the simulation,
Bro’s scripts. we first defined execution scopes for the global variableg mos
Going one step further, we extend the notion of scopes fratommonly accessed by Bro's default script handlers. When
variables teevent handlersfor each handler, we derive a scopgelecting scopes, we started with a set of heuristics ta infe
based on the globals it accesses. First, we restrict eaalidranthe granularity of accesses automatically. For examplestmo
to access only globals @netype of scope (in addition to any of Bro’s script-level tables store information about datit
not-scoped globals). This scope then becomes the scope @fat are derived from the current connection 5-tuple, Itke t
the handler. If a handler does not access any global state, inglved IP addresses. By observing which components of a
define its scope aany. tuple are used during run-time to build the table index for a
Now we can incorporate these scopes into our executigible operation, we can often identify the right scope. Vésth
model. We schedule event handlers to threlagised on their further adjusted some scopes manually where the heuristics
scopesall handlers of the same scope will be processed by thlled to identify the correct granularity (e.g., a traceghti
same thread if triggered by the same processing unit (@Qg., fack the traffic triggering the use of a particular global). |
a particular connection all handlers of scopennecti on total, we assigned 74 scopes to global script variabled) eac
are guaranteed to be run by the same thread). This scheduif@ne of the types such aonnect i on mentioned above.
strategy localizes all accesses to the scoped global togéesin Next, we modified some of Bro’s default scripts to comply
thread, and therefore allows the state to reside in threagith the restriction that only globals ofne scope can be
local storage. As a result, all handlers that acaedg scoped accessed by each handler ($e¥-A). Generally, this proved
globalsdo not need to acquire the global lock. to be easy to achieve, usually by splitting non-conforming
To summarize the concurrent event model, whenever Randlers up into two or more separate ones, with the first
event is raised, we first determine all relevant handlers. Wandler raising new events to trigger the subsequent bifies.
then schedule each of them to a thread determined based oreffgure that we did not affect Bro’s analysis semantics with o
handler’s scope and the current processing®uritd schedule changes, we used its standard test-suite to confirm thas Bro’
the handler for execution by inserting it into the correstiog output still matched the original one.
event queue. As the threads process their queues, they onlginally, we instrumented Bro to record each event handler
acquire the global lock for handlers accessing non-scopggecution with the connection that triggered it, the timeewh
globals, processing all others directly. the event was raised, and the time it took to process the
We note that this concurrent event model makes a fewent. As the latter figure requires a high-precision clow,
— . . leveraged the open-source PAPI library [29] for reading the
Limiting an event handler in such a way does not impose anyifsignt ,
restriction. Typically event handlers can easily be splibimultiple handlers CPU's cycle counter.
of different scopes; se& V-B. Furthermore, the restriction can be enforced
via static checking and violations are therefore easy td. spo 7In rare cases, such a restructuring would have been moreutiffio
6In our simulation, we generally track which connection géged each achieve and we then modified the code slightly to work-arotiedproblem,
event, and then use the handler’'s scope to extract the néleeponents sometimes by disabling code seldom exercised. We note tleatlidl not

from the connection’s 5-tuple. We finally hash these intodbeof available encounter any conceptual problems but only wanted to redieeeffort
threads. required to eventually perform the simulations.

° g {—©— Average Speed-Up
S —&— CPU-1 Speed-Up \/;\
£ S 5 e
[} S & \
£ iy
F g4 o
5 © —o— Processing 7T 94
= —— Blocked =]
3 o — Idle ®
o ¥ Q.
5 ZIN.
8 E
o ° T T T T T T
T T T T T T T 0 5 10 15 20 25 30
0 5 10 15 20 % 30 Number of CPUs
Number of CPUs
Fig. 4. Speed-up with increasing numbers of simulated tzem average
and for the first thread in all configurations
by relating each thread’s processing time to the processing
o 2 time of the single-thread baseline. Again we show both the
E speed-up averaged over all threads (circles) and spebifical
— © 7 e P i . . . B .
5 T poeesin for the first thread in each configuration (triangles). We see
g g — lde that on average, the performance scales almost exactly with
& the increase in the number of available threads. This is not
8 surprising given the earlier observation that the threpdsd
o hardly any time in a blocking state. Looking at just the

T T T T T T T 1 1
. . o M " M o first thread, however, we also see that by averaging speed-up
Number of CPUs factors across threads, we smooth out some of the imbalances

introduced by the specifics of how we distribute event hamsdle

Fig. 3. Processing/idle/blocking times with increasingniers of simulated gcross threads. The |arger variability indicates that tesld

threads. Left plot shows times averaged over all thread$right plot shows distributi h iaht h head for furth

times for a selected individual thread across all configomat f'lsmt Ut_mn scheme might have some head-room for further
Ine-tuning.

Overall, we can conclude from these simulations that the

2) Results:With these changes in place, we ran Bro on &oncurrent event model we sketched §rvV-A promises to
trace captured in the early afternoon of a weekday at the 108¢2le very well with increasing numbers of available theead
access link of the Lawrence Berkeley National LaboratoryVhile in practice further effects, such as memory perforeean
Due to the large number of events Bro generates, we restrictdll affect the achievable performance gain, conceptually
the analysis to a duration of 15 minutes, which resulted in@PProach appears well-suited to exploit the parallel paten
trace of 24 GB. We configured Bro to perform an extensivée find in large-scale network traffic.
analysis using most of the standard analysis scripts thatco
with the distribution, yielding an event log of about 50 it
entries, on which we then ran the Python simulator, spewfyi Encouraged by the simulation results discussegl ¥ we
increasing numbers of threads to simulate. built a prototype of a multi-threaded Bro, parallelizingtibo

The two plots in Figure 3 show the simulation results. lprotocol analysis and event processing§ Ml-A, we discuss
both plots, we show the times a thread spent either proggssia few specifics of our implementation and then present pre-
blocked waiting for the global lock, or idle due to a lackiminary performance measurementsivI-B. We emphasize
of event handlers to process. The left plot averages thdbat at the time of writing, this is still work-in-progresad
times over all threads of a particular run, while the righve expect to further improve Bro’s performance based on
plot shows them for one selected thread across all setupsxgensive profiling of the current code base.
illustrate individual variability. We see that while thengle-)
thread configuration fully utilizes the CPU, idle times iease A Adapting the Bro NIDS
with the numbers of threads, as we would expect. We also sedurning Bro into a multi-threaded application consisted of
that the time spent blocking is negligible in all configuoat, two main parts{(i) restructuring the information flow to split
demonstrating that our concurrent, scope-based eventImatie work-load across a set of threads; éijdadapting the code
works quite well. base to a concurrent setting, which violates many assumgptio

To better visualize the speed we achieve, Figure 4 showsde internally about execution order. Regarding the foarme
the same simulation results converted into a speed-uprfacie chose to separately parallelize the protocol analysis an

VI. PROTOTYPEIMPLEMENTATION

TABLE |

event processing, providing a configurable number of ttsead AVERAGE EXECUTION TIME IN JIFFIES

to each of them. For the protocol analysis we followed the

Bro Cluster[46] model of distributing connections across thé&_Combination [[Protocol analysis| Event processing[[Entire program |
thread pool to then process them in parallel. For the evenggr;hep;ﬁ;"esﬁg[;g 20,323 41,821 61,035
processing, we implemented the model sketched M-A. | L2 cache 22,982 44,390 44,867
Internally, we rely on the infrastructure provided by Irgel [othewise 33,035 51,252 51,674

Threading Building Block§44] library. However, we leverage

the library primarily as a platform-independent abstiacti

of typical concurrency primitives (such as mutexes and cofft €ach test run, whergand j range from 0 to 7. We then

current queues) rather than using its higher-level, tasiety Measured the CPU time spent in the thread processigfges,

concurrency model. the internal time unit in the Linux kernel. In addition to the
In terms of adapting the original code base, the maline spent @nsid_e each thread execution, we also measuwged th

challenge was to identify all the non-thread-safe idiomsdusWall-clock time in the total program execution.

throughout Bro’s source. Much of Bro's code is now more than For each fixed value of in the combination of:j, we find

a decade old, and not written with concurrency in mind. I# the measurement that exactly one valuejofexcept the

particular, Bro relies heavily on global (and static) vafés. Ccase ofj = ¢) achieves noticeably shorter execution time than

We added extensive instrumentation to identify locatiohs &€ others. In addition, these combinations syenmetric if

potential race conditions, and we restructured criticattgpa ¢1:j1 is such a combinatiory, i, is, too. These combinations

where necessary. For the prototype implementation, we ag have found are:2, 1:3, 4:6 and5:7.

disabled all functionality not crucial to Bro’s core traffimal- ~ Considering that each core shares an L2 cache with exactly

ysis (e.g., remote communication and trace anonymizationpnother one in the quad-core Intel Xeon E5310 CPUs, we
The prototype allows the user to specify the number &Phjecture that the above combinations reflect the ones that

threads to assign to protocol decoding and event processifigare the L2 cache. In this case, both threads for protocol

In addition, on Linux and FreeBSD platforms, the user canalysis and event processing are scheduled to two cores

hard-wire each thread to a particular CPU core by assignif§aring an L2 cache, and specifically, the thread for event

it an affinity. processing may be able to fetch from the event queue on
the shared L2 cache. An alternative possibility would be tha
B. Performance Measurements due to avoiding cache conflicts, threadsmm-sharingcores

We conducted preliminary performance measurements B@rform better; however, in that case we would expect to find
a workstation with dual quad-core Intel Xeon E5310 CPU#Ot pairs of such threads butiples, which we do not.
The eight cores are numbered from 0 to 7. Each core in theWe further verified our conjecture by repeating the same
processor has a 32KB L1 instruction cache and a 32KB Iltests on theSimics simulatof{?], running in a configuration
data cache. Each of the two core pairs shares a 4MB L2 cacti@t does not include a cache. The times we observe for such
In the current prototype implementation, the packet digxecution time follow what we observe empirically for every
patcher isalwaysscheduled to Core 0, while protocol analysi§ombination except the case 0¥ j.
and event processing can be dispatched to one or mordhus, sharing the L2 cache across both threads has an
processor cores as specified in the command options. Thgact on the performance. Note that we also find that if two
option format isiy, is, -+, 4n:j1,j2, - - -+ jm, Wheren andm cores do not share an L2 cache, it makes no difference whether
are the number of threads for protocol analysis and evdhey are on the same processor or not in terms of data sharing,
processing, respectively. For example, specifying, 3:4,5,6 since they must share data via the main memory.
means scheduling three threads for protocol analysis te@ Cor Table | presents the average jiffies in executing the prdtoco
1, 2 and 3, and three for event processing to Core 4,abalysis thread, the event-processing thread and thegmogr
and 6. The packet dispatcher schedules packets and ev&sfind the execution within the threads is the fastest if both
by calculating the hash of thexecution contex{e.g., the threads are on the same core; however, the total execution
connection identifier for connection scope) modulo the neimbtime in this combination is the longest. Presumably thisiesc
of threads for either protocol analysis or event procesding because when both threads are scheduled on the same core,
then uses the result as an index into the list of threads. a significant amount of time is spent waiting, which does not
Scheduling is complicated by the fact that the kernelget accounted to either thread. The combination that slzares
mapping from core numbers to actual cores is not necessati® cache is faster than those that do not, which likely arises
known. (Also, even if documented, a misinterpretation ia thbecause the event-processing thread can receive evenis fro
mapping could have significant performance consequencelg event queue in the L2 cache, rather than from the main
This required us to develop an independent means to deternimemory.
the mapping empirically. We did so by comprehensively We have not yet parallelized the packet dispatcher in our
working through the different possible combinations ofecomprototype implementation. Its execution time accounts for
pairs for scheduling protocol analysis and event procgssiaround10% of the total. Although tht proportion currently
threads. In other words, we specified the core pairg:pf appears relatively insignificant, this stage will evenlufinit

the attainable speed-up, per Amdahl’s law, as the number(efg., [42], [27]), rather than higher-level semantic g,
cores increases. with the custom hardware serving simply to parallelize low-
level matching operations. For example, Kruegel and col-
VII. RELATED WORK leagues were able to reverse-engineer the signatures used
Parallel Analysis. To date, efforts on exploiting parallelismby 1SS RealSecure in order to construct variants that evade
for network security monitoring have focused heavilysig- detection by it [20], and in our own operational experiences
nature scanning.e., detecting whether a packet (or sometimeith McAfee’s Intrushield product, we found we could regdil
a reassembled byte stream) contains a string of interesttiggger false alarms regarding purported file-sharindfitrady
matches a regular expression, and executing an action (sigsing particular HTTP requests [40].
as drop or alert) associated with the signature. Much of thisBy relying on customized hardware rather than general-
work has drawn inspiration from the popularity of “Snort3]3 purpose CPUs, these technologies have difficulty in tragkin
and its large set of byte-level signatures. Moore’s Law-style scaling. Network processors haven't en-
FPGA-based work in this regard has investigated use of ngyed the smooth, continual evolution of microprocessait)
deterministic finite automata to match regular expresg®ns New versions of a given processor often requiring rewriting
[13], compiling regular expressions into deterministigtérau- substantial portions of the code. (Wun et al. present an
tomata [26], and then quickly generating new, compiled FPGapproach towards unifying the programming interface i[53
binaries [23]. Other custom hardware efforts, not specific fhey also remain difficult to program for high-level anatysi
FPGAs, have investigated building optimized Aho-Corasickue to their lack of the powerful cached memory semantics of
trees for sets of strings [45] and specialized architestbessed @ commodity microprocessor. Due to the low level at which
on collections of highly optimized tiny state-machinesglea FPGA designs express parallelism, scaling such designs up
of which looks for a portion of a string [43]. requires major recoding efforts. ASIC designs likewise ethb
A vital point regarding much of the previous parallel hardparallelism deep within the execution model, so scalingrthe
ware design research is that it presumes a nestdyeless Up can require complete reengineering, at great expense for
approach to attack detection. The systems either operatefaask sets.
single packets or assume that a separate process reassemblgé terms ofhigher-levelnetwork security analysis, several
the TCP byte stream. As shown in our previous work, thRxisting approaches focus on executing a small number of
latter operation actually turns out to be more difficult thagomponents concurrently on independent cores, achieving
the string matching itself, particularly when considerifg Some speed-up yet not a generally scalable, concurrentiexec
problem of adversaries who target the memory available ti@n model. Like with hardware-supported solutions, S
the reassembler [10]. seen particular attention in this regard. For example,mége
Parallelizing richer, stateful hardware elements, suchG Verdu et al. presenteSinort-MT[49], which identifies a set of
stream reassembly, have not been explored in as much deptRcessing layers sharing related sets of states to thatidzec
Schuehler et al. developed a TCP processor that maintain&@ir memory accesses by executing them in separate threads
small, fixed amount of state per connection for several tholit [47], Vasiliadis et al. outsource parts of Snort's prezieg
sand concurrent connections at OC-48 speeds [34]. This W@ graphical processing unit. Endace provides a comniercia
subsequently integrated into a signature matching sys3&im [solution that load-balances a packet stream across naultipl
as well as being combined with a Bloom filter based system [Eort instances running on a multi-core platform [28].
to construct a simplified version of Snort in hardware. For our work, we take our main inspiration from the work
Unfortunately, TCP processors constructed in this waf Kruegel et al., who explored the design of front-end NIDS
suffer from significant limitations. First, they are sulfjgo l0ad balancers [21]. They introduced the notion shiting:
evasiorattacks [32], [16]: if the processor operates in a passi¢litting up traffic not simply at a per-connection granijar
monitoring role, an attacker can easily evade detection Byt in a NIDS-analysis-aware fashion to ensure that packets
fragmenting and reordering packéts. germane to possible attack scenarios are all availablego th
Along with research efforts, hardware-based intrusioeclet Processing element that assesses their associated ssefan
tion is an area abuzz with commercial activity. Almost nothi €xample, an element performing scan detection (a form of
is available in the peer-reviewed literature regardingdee 9lobal analysis that requires observing all connectioniests
signs that underly these systems. ¢From vendor literaiture@nd responses) will receive copies of all connection retgues
appears clear that some of the systems use extensive, axper¥PWever, these also need to be sent to elements performing
ASIC components, while others rely on FPGAs or networkarsing of the corresponding application protocols.
processors. However, the analysis provided by vendormste The issue of such front-end dispatch becomes subtle be-

appears heavily focused on high-speed signature detecti@yse there are many such forms of global analysis. For
example,content sifting[38] requires looking at a large pool
8Some systems counter these attacks by dropping out-of-graekets. Of potentially suspicious strings that may be taken from any
This, however, can impose a huge performance penalty dueC®sTcon- connectioncontact graphanalysis [12] can efficiently detect
gestion response. Even more seriously, such droppingueglify packet loss b . lobal . hi ithi
during times of congestion, increasing the work the netwatst perform at new worms, but requires a global connection history within a

the very moment when it lacks resources for its existing load time window; stepping stonéletection [55] needs to correlate

packet timing across connections that may have no hostdt is critical to recognize that to exploit the power of
in common; and, as mentioned above, scan detection [18]ich processors, programs must be specifically designed to
[52] needs to track all connection initiation requests. At have a parallelizable structure; otherwise, one will nat se
simpler level, we note that many attacks seen today involaey substantial performance gains. However, when devedopi
complex application-level sessions that span multiple- cosoftware for these systems, not only is it crucial to paliake
nections and sometimes multiple hosts. For example, of tthee program’s execution structure, but alsonitemory access
66 different types of worms detected by our GQ honeyfarpatterns Although multi-thread/multi-core CPUs preserve the
over a four-month periodall used exploits that required moresemantics of shared memory with cache-coherence, memory
than one connection—sometimes as manga&enty twdfor locality and behavior can completely dominate a program’s
BAT.Boohoo.Worm) [8]. ultimate performance, since main-memory latency can be 70
In [46], we have used a connection-based load-balancingnoseconds for random access (over 100 clock cycles on a
approach to build &IDS clusterout of commodity PCs. The 1.5 GHz processor), compared to L1/L2-cache clock cycles of
statelesdoad-balancing algorithm is able to operate at ver§ and 14 respectively (all numbers are for the Intel Core Duo
high line-rates yet it does not allow dynamically reroutingnicroprocessor).
packets for analysis with a different target than the onigiiy In a multi-threaded core, the threads must share a common
chosen. In [15], Guo et al. also deploy a connection-basedrking set. If they do not, cache thrashing will signifidgint
scheduling scheme to parallelize the operation of L7-fiR8f, degrade performance [17]. This is one reason why the Pen-
finding that the resulting maximum throughput is close toum 4 HT in fact performs better on some benchmarks when
linear speedup compared to the sequential version. multi-threading isdisabled[19]. In general, significant care is
Because intrusion prevention requir@sline operation, required when scheduling threads on a multi-threadedsyste
to realize parallelizable intrusion prevention we need ¢ g In contrast, on a multi-core system having disjoint working
significantly further than the slicing approach developgd Isets on different cores can bebanefit as the L1 and often
Kruegel et al. Their architecture allows intelligent freetid also the L2 caches are independent. When coupled with
load-balancing. What we need in addition gie ways of independent memory controllers [9], [7], it becomes vital t
structuring the analysis itself such that it is amenable tdtim create and feed the threads in a memory-aware manner. As
core parallelization (addressed by our event-based stejct an example of the approach we envision to use for the ANI,
and (ii) support for preventionfunctionality (addressed by Kumar et al. discuss how packets can be directly placed into a
incorporating control feedback from the analysis elemen®PU’s cache to be then further processed by a network stack.
back to our front end, the ANI). All these factors create a very difficult programming prob-
Modern General-Purpose CPUs As developed in the In- lem. Not only are there complications imposed by concurrent
troduction, today the gains provided by Moore’s Law martifegxecution (deadlock, livelock, difficulties in identifygnand
not in uniprocessor execution speed but in performancesaggrestructuring bottlenecks), but the parallel executico aleeds
gated across a number of concurrent execution units. Modeonbe parameterized for the target system’s memory architec
designs include symmetrienulti-threaded CPU cores [3], ture.
[24], which allow a single CPU to switch between multiple
independent threads of execution, amullti-core systems,
where a single die holds multiple CPUs [6], [24]. Recent Network traffic continues to grow at rates that outpace
systems support both: multiple CPUs each executing meltiglattening CPU performance curves, even more so as the speed
threads, as discussed below. (For simplicity, we refer ttd€P of uniprocessor execution—so long blessed with Moore’s
within this spectrum of multiple threads and cores as simplaw doubling—has finally “hit the wall.” Recently, however,
“multi-core.”) hardware vendors have begun delivering commodity CPUs
In concrete terms, AMD is shipping dual-core systems [9{yhose aggregatedthroughput again reflects Moore’s Law-
Intel has shipped dual-thread SMT systems (hyperthreadirsgyle scaling, with the parallelization gains coming fromaltia
Pentium 4 designs [3], dual-core designs for server, desiere/multi-thread architectures. Yet taking advantagehef
top, and portable use [6], dual-core designs with each cdrdl power of multi-core processors for network intrusion
supporting two threads [2], quad-core [4], and six-core [Firevention requires an in-depth approach.
CPUs. Sun’s UltraSPARC T1 (Niagara) contains 8 CPU cores,In this work, we frame an architecture customized for such
with each core supporting four threads [24], for a total gfarallel execution of network attack analysis. At its lowes
32 simultaneous threads of execution. Its successor, the [&ger, the architecture relies on an “Active Network Inded”
(Niagara?) [25], already supports eight threads per CP@,cothat provides an in-line interface to the network, reading i
for a total of 64 threads. On the slightly more specializegackets and forwarding them only after they are fully inspec
front, Tilera [7] has 64 core processors with dedicated ndtw and deemed safe. The device dispatches packets to a set
interfaces, and Intel has announced a graphics-card famdy threads that structure the processing as an event-based
Larrabee [36], which uses up to 64 x86 cores with vectanalysis model well suited to exploit many of the oppor-
extensions. Both Tilera and Larrabee also include dedicat®inities for concurrent execution. In this model, we captur
processor-to-processor interconnect networks. event dependencies by scheduling related events to the same

VIII. CONCLUSION

thread, serializing their execution without needing tmreso
expensive inter-thread synchronization. We demonstraid
trace-driven simulation that this approach holds promises
scale quite well to large numbers of independent threads. [17]

The presented concurrent architecture shows how we can
transform the traditionally serial network security arsidy
pipeline into a highly parallelizable form that is able tkea [1g]
full advantage of the multicore concurrency offered by nrade
and future commodity CPUs. Given how parallel hardwar(fg]
appears likely to evolve in the future, we expect such a
paradigm to ultimately prove highly beneficial, and we are
now in the process of implementing these concepts within tE%]
framework provided by the Bro network intrusion detection
system.

[16]

IX. ACKNOWLEDGMENTS 21]

This work was supported in part by NSF Awards CN 5o
716636 and NSF-0433702, as well as by a grant from In-
tel Corporation. Any opinions, findings, and conclusions @23]
recommendations expressed in this material are those of the
authors or originators and do not necessarily reflect thesvie

of the National Science Foundation. [24]

REFERENCES (23]

[[26]

Michael E. Attig and John Lockwood. SIFT: Snort intrusidilter for
TCP. In Symposium on High Performance Interconnects (KHq#ges
121-127, Stanford, CA, August 2005.

Intel Corporation. Dual Core Intel Xeon Processor 7108q&:nce,
http://www.intel.com/products/processor/xeon/71@dbrief.htm.

Intel Corporation. Intel Pentium 4 Processor, httpwiwintel.com/
products/processor/pentium4/index.htm.

Intel Corporation. Quad Core Intel Xeon Processor 53@@u&nce,
ftp://download.intel.com/products/processor/xeoBBkprodbrief.pdf.
Intel Corporation. Six Core Intel Xeon Processor, Htgk.intel.com/
cpu.aspx?grouplD=36937.

Intel Corporation. The Intel Core Duo Processor, hitpavw.intel.com/
products/processor/coreduo/.

Tilera Corporation. Tilera Tile64 Processor, httpWw.tilera.com/
products/TILE64.php.

Weidong Cui, Vern Paxson, and Nicholas Weaver. GQ: Reai a
system to catch worms in a quarter million places. TechniRabort
TR-06-004, International Computer Science Institute, 200
Advanced Micro Devices. ~ AMD Athlon 64 X2 Dual Core [32]
Processor, http://www.amd.com/us-en/Processors/Rtiodormation/O,
,30_118 9485 13041,00.html.

Sarang Dharmapurikar and Vern Paxson. Robust TCPi8tReassem- [33]
bly in the Presence of Adversaries. USENIX Security Symposiym
August 2005. Baltimore, MD.

Holger Dreger, Anja Feldmann, Michael Mai, Vern Paxsand Robin
Sommer. Dynamic Application-Layer Protocol Analysis foetWork
Intrusion Detection. IJSENIX Security Symposiy2006. Vancouver,
B.C., Canada.

D. Ellis, J. Aiken, K. Attwood, and S. Tenaglia. A beharal approach
to worm detection. InVorkshop on Rapid Malcod@003. Fairfax, VA.
R. Franklin, D. Carver, and B. Hutchings. Assistingwetk intrusion
detection with reconfigurable hardware. Rroceedings from Field
Programmable Custom Computing Maching802. Napa, CA.

J. Gonzalez, V. Paxson, and N. Weaver. Shunting: A hareigoftware
architecture for flexible, high-performance network istan prevention. [37]
In ACM Communications And Computer Security (CCS) Conference
2007. Washington, D.C.

Danhua Guo, Guangdeng Liao, Laxmi Bhuyan, Bin Liu, amdah
Ding. A Scalable Multithreaded L7-filter Design for Virtieéd Multi-
Core Servers. IrProc. ACM/IEEE Symposium on Architectures for
Networking and Communications Syste@808. San Jose, CA.

(2]
(3]
(4]
(5]
(6]
(7]
(8]

[27]

(28]
[29]

[30]

(31]

El

[10]

[11]
[35]
[12]

[36]
(23]

[14]

[15] [38]

] Application Layer

Mark Handley, Vern Paxson, and Christian Kreibich. Wartk intru-
sion detection: Evasion, traffic normalization, and eneitd protocol
semantics. InProceedings of the 10th USENIX Security Symposium
2001. Washington, D.C.

S. Hily and A. Seznec. Standard memory hierarchy does fito
simultaneous multithreading. Proc. of the Workshop on Multithreaded
Execution Architecture and Compilation (with HPCA-4). dary 1998
1998. Las Vegas, NV.

Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and HalakBiahnan.
Fast Portscan Detection Using Sequential Hypothesisntestn IEEE
Symposium on Security and Priva@004. Oakland, CA.

Joshua Kim, Alex Settle, Andrew Janiszewski, and Damr@uos.
Understanding the Impact of Inter-Thread Cache Intereteron ILP
in Modern SMT ProcessorsJournal of Instruction-Level Parallelism
7:1-28, 2005.

C. Kruegel, D. Mutz, W. Robertson, G. Vigna, and R. Kemene
Reverse Engineering of Network Signatures. Rroceedings of the
AusCERT Asia Pacific Information Technology Security Genfss
Gold Coast, Australia, May 2005.

C. Kruegel, F. Valeur, G. Vigna, and R.A. Kemmerer. 8falt Intrusion
Detection for High-Speed Networks. IRroceedings of the IEEE
Symposium on Security and Privadytay 2002. Oakland, CA.

Packet Classifier for Linux. httzAfilter.
sourceforge.net.

John W. Lockwood, James Moscola, Matthew Kulig, Daviddgick,
and Tim Brooks. Internet worm and virus protection in dynzatiy
reconfigurable hardware. IMilitary and Aerospace Programmable
Logic Device (MAPLD)page E10, Washington DC, September 2003.
Sun Microsystems. UltraSPARC T1 Overview, http://wswn.com/
processors/UltraSPARC-T1/.

Sun Microsystems. UltraSPARC T2 Overview, http://wswn.com/
processors/UltraSPARC-T2/features.xml.

James Moscola, John Lockwood, Ronald Loui, and MictR&thos.
Implementation of a Content-Scanning Module for an InteFieewall.

In Proceedings of IEEE Symposium on Field-Programmable @usto
Computing Machines (FCCM)pages 31-38, Napa, CA, USA, April
2003.

Juniper Networks. Juniper Networks ISG Series With
http://www.juniper.net/productsnd services/intrusionprevention
solutions/isgseries with_idp/.
NinjaBox-Z and Applied Watch.
ninjaBoxZ_applied watch.pdf.
Performance Application Programming Interface (PAPhttp://icl.cs.
utk.edu/papi.

V. Paxson, K. Asanovic, S. Dharmapurikar, J. Lockwo®l, Pang,
R. Sommer, and N. Weaver. Rethinking hardware support fawark
analysis and intrusion prevention. Rroceedings of the USENIX Hot
Security WorkshgpAugust 2006. Vancouver, B.C., Canada.

Vern Paxson. Bro: a system for detecting network ingngdn real-time.
Computer Networks31(23-24):2435-2463, 1999.

Thomas H. Ptacek and Timothy N. Newsham. Insertion,siEwva and
Denial of Service: Eluding Network Intrusion Detection. chaical
report, Secure Networks, Inc., January 1998.

M. Roesch. Snort: Lightweight Intrusion Detection fetworks. In
Proc. Systems Administration Conferend99.

|DP

http://www.endace.dassets/files/

34] David V. Schuehler and John W. Lockwood. Tcp-splittér:TCP/IP

flow monitor in reconfigurable hardware. Hot Interconnects pages
89-94, Stanford, CA, August 2003.

David V. Schuehler, James Moscola, and John W. LockwoAdhi-
tecture for a hardware-based, TCP/IP content-processisigra. IEEE
Micro, 24(1):62—69, January 2004.

Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsytlichael
Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jerexgsr-S
man, Robert Cavin, Roger Espansa, Ed Grochowski, Toni JrahPat
Hanrahan. Larrabee: A many-core x86 architecture for Viso@puting.

In SIGGRAPH 2008. Los Angeles, CA.

R. Sidhu and V. K. Prasanna. Fast Regular Expressionchitay
using FPGAs. InIEEE Symposium on Field-Programmable Custom
Computing Machines (FCCMRohnert Park, CA, USA, April 2001.
Sumeet Singh, Cristian Estan, George Varghese, anthnS®avage.
Automated worm fingerprinting. IRroceedings of the Sixth Symposium
on Operating Systems Design and Implementatiz@cember 2004. San
Francisco, CA .

[39] R. Sommer and V. Paxson. Enhancing byte-level netwotiuson de-
tection signatures with context. RCM Communications And Computer
Security (CCS) Conferencg2003.

[40] Robin Sommer. Viable Network Intrusion Detection in High-
Performance Environment$hD thesis, TU Muenchen, 2005.

[41] Robin Sommer and Vern Paxson. Exploiting IndependesateSFor
Network Intrusion Detection. IANCSAC December 2005. Tucson, AZ.

[42] Cisco systems. ASA 5500 Series Adaptive Security
Appliances, http://www.cisco.com/en/US/products/Bprod.
brochure0900aecd80402ef4.html.

[43] Lin Tan and Timothy Sherwood. A high throughput stringatching
architecture for intrusion detection and prevention. Time 32nd An-
nual International Symposium on Computer ArchitectureCA$ 2005.
Madison, WI.

[44] Intel Threading Building Blocks . http://www.threadjbuildingblocks.
org/.

[45] Nathan Tuck, Timothy Sherwood, Brad Calder, and Gedrgghese.
Deterministic memory-efficient string matching algorithiior intrusion
detection. InlEEE Infocom Hong Kong, China, March 2004.

[46] Matthias Vallentin, Robin Sommer, Jason Lee, Craigelseern Paxson,
and Brian Tierney. The NIDS Cluster: Scalable, Stateful wdek
Intrusion Detection on Commodity Hardware. Rioc. Symposium on
Recent Advances in Intrusion Detecti@007. Gold Coast, Australia.

[47] Giorgos Vasiliadis, Spiros Antonatos, Michalis Pdiyonakis, Evan-
gelos P. Markatos, , and Sotiris loannidis. Gnort: High &enfance
Network Intrusion Detection Using Graphics Processor®rbt. Recent
Advances in Intrusion Detectipr2008. Boston, MA.

[48] Shobha Venkataraman, Dawn Song, Phillip B. Gibbong] Amrim
Blum. New Streaming Algorithms for Fast Detection of Supeeaders.
In Proc. Network and Distributed Systems Security SympQosiQd5.
San Diego, CA.

[49] Javier Verdu, Mario Nemirovsky, and Mateo Valero. Miutyer Pro-
cessing — An Execution Model for Parallel Stateful Packetcessing.
In Proc. ACM/IEEE Symposium on Architectures for Networkimgl a
Communications System®008. San Jose, CA.

[50] Greg Watson, Nick McKeown, and Martin Casado. NetFP®ATool
For Network Research and Education.2imd Workshop on Architectural
Research using FPGA Platforms (WARFRDO6. Austin, TX.

[51] Nicholas Weaver, Vern Paxson, and Jose M. Gonzalez. Sinent:
An FPGA-Based Accelerator for Network Intrusion Prevemtio In
ACM Symposium on Field Programmable Gate Arrdysbruary 2007.
Monterey, CA.

[52] Nicholas Weaver, Stuart Staniford, and Vern Paxsonry \Fast Con-
tainment of Scanning Worms. IdSENIX Security SymposiurAugust
2004. San Diego, CA.

[53] Ben Wun, Patrick Crowley, and Arun Raghunath. Desiga &calable
Network Programming Framework. Proc. ACM/IEEE Symposium on
Architectures for Networking and Communications Syste#i68. San
Jose, CA.

[54] Yin Zhang and Vern Paxson. Detecting Backdoors.Phoc. USENIX
Security Symposiun2000.

[55] Yin Zhang and Vern Paxson. Detecting Stepping Stones.Prbc.
USENIX Security Symposiyr000.

