
Operational Experiences with High-Volume
Network Intrusion Detection

Holger Dreger Anja Feldmann Vern Paxson Robin Sommer
TU München TU München ICSI / LBNL TU München

Germany Germany Berkeley, CA, USA Germany
dreger@in.tum.de anja@in.tum.de vern@icir.org sommer@in.tum.de

ABSTRACT
In large-scale environments, network intrusion detection systems
(NIDSs) face extreme challenges with respect to traffic volume,
traffic diversity, and resource management. While crucial for ac-
ceptance and operational deployment, the research literature mainly
omits such practical difficulties. In this paper, we offer an evalua-
tion based on extensive operational experience. More specifically,
we identify and explore key factors with respect to resource man-
agement and efficient packet processing and highlight their impact
using a set of real-world traces. On the one hand, these insights
help us gauge the trade-offs of tuning a NIDS. On the other hand,
they motivate us to explore several novel ways of reducing resource
requirements. These enable us to improve the state management
considerably as well as balance the processing load dynamically.
Overall this enables us to operate a NIDS successfully in our high-
volume network environments.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations - Network
monitoring.

General Terms: Measurement, Performance, Security.

Keywords: Bro, Evaluation, Network Intrusion Detection, Security

1. INTRODUCTION
The practical experience of running a network intrusion detec-

tion system (NIDS) operationally is that with increasing volume the
challenges grow faster than linear. Three major difficulties arise.
First, the sheer packets-per-second (pps) rates can reach levels at
which the load due to interrupts and filtering push the system into
thrashing. Second, as volume rises—particularly if it rises due to
greater numbers of hosts—so does the traffic’s diversity, which can
stress the NIDS’s fidelity by generating both more false alarms and
a wider range of types of false alarms. Third, as the number of hosts
increases, so does the burden of managing state and other resources.

These practical difficulties with high-volume network intrusion
detection rarely see investigation in the research literature: NIDS
vendors often have a commercial interest in downplaying the dif-
ficulties and keeping private their techniques for addressing them,
and researchers seldom have opportunities to evaluate high-volume,
operational environments.

In this paper, we offer such an evaluation. Our study is in
the context of using commodity PC hardware running open-source

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04, October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

software for operational security monitoring of quite high-volume
environments (Gbps, 10s of thousands of hosts transferring 2-
3 TB/day). We found that in such environments, if we simply install
and run an untuned/uncustomized NIDS such as the open-source
Snort [19] or Bro [16] systems, they are unable to effectively cope
with the amount of traffic. Snort immediately consumes the entire
CPU, leading to excessive packets losses, while Bro, in addition,
quickly exhausts all available memory.

Obviously, the volume is too great a burden for the NIDS. But
what are the key factors that lead to such severe difficulties? In this
study we look at a number of issues that arise due to the problems
of resource management and efficient packet capture and filtering.
We aim to analyze the main contributors to CPU load and mem-
ory consumption and look for means to ameliorate their impact,
which sometimes requires developing new mechanisms if the avail-
able tuning parameters do not suffice.

For a stateless NIDS, the load imposed on the CPU is the main
limiting factor. This load is correlated with the types of analy-
sis as well as the traffic’s volume and makeup. A stateful NIDS,
additionally, maintains an in-memory representation of the current
state of the network, which must be meticulously maintained at all
times. This state provides the context necessary to evaluate the net-
work events. Like CPU load, the volume of the state is also corre-
lated with the traffic volume as well as the types of analysis, and is
constrained by the system’s available memory. Since maintaining
state requires state management, the NIDS requires some signifi-
cant CPU time just for updating data structures.

Common approaches for limiting NIDS resource usage include
different kinds of state management (e.g., via timeouts and/or fixed
size buffers); checkpointing [16] (i.e., regularly restarting the sys-
tem to flush old state); limiting the traffic by analyzing only cer-
tain protocols or subsets of the address space; and distributing the
work to multiple machines. To understand the efficacy of these ap-
proaches, we examine the resource requirements of a NIDS and the
associated trade-offs in operational use.

Our study is in the context of the Bro NIDS, which we have
deployed operationally in a couple of high-performance environ-
ments. Bro is a highly stateful NIDS. Its basic model has three lay-
ers: packet filtering, event generation, and policy script execution.
Packet filtering is done using a static BPF expression [10]. Events
are generated by an event engine which performs policy-neutral
analysis of network traffic at different semantic levels. For exam-
ple, there are events for attempted/established/terminated/rejected
connections, the requests and replies for a number of applications,
and successful and unsuccessful user authentication. Finally, the
user writes policy scripts using a specialized, richly-typed high-
level language. These scripts execute on the events generated by the
event engine and codify the actions the NIDS should take: updating
data structures describing the activity seen on the network, sending

out real-time alerts, recording activity transcripts to files, and exe-
cuting programs as a means of reactive response. Thus, both the
event engine layer and the policy script layer generate and manage
a great deal of state.

We find that three factors dominate overall resource consump-
tion: (i) the total amount of state kept by the system, (ii) the traf-
fic volume, and (iii) the (fluctuating) per-packet processing time.
While these factors certainly are not surprising by themselves, the
key is understanding the trade-offs between them with respect to
tuning a NIDS and adapting it to the environment. In addition, we
found several new ways to reduce resource requirements, consid-
erably improving state management and dynamically balancing the
processing load. While the concrete realization of these is tied to
the particular system we examine, the underlying concepts are ap-
plicable to other NIDS as well.

Overall this work provides us with a NIDS much more suitable
for use in high-volume networks, both in terms of raw capabilities
and greater ease of tuning. In addition, our study illuminates com-
plexities inherent in analyzing, tuning and extending systems that
must process tens-to-hundreds of thousands of packets per second
in real-time. We find that to understand memory usage and CPU
load spikes, particular care is needed to soundly instrument the sys-
tem; the somewhat atypical trade-off between CPU and memory vs.
detection rate, and the sensitivity of such a system to quite small
programming errors is rather illuminating; furthermore, a high-
volume monitoring environment can exhibit artifacts that signifi-
cantly affect any analysis.

In §2 we summarize related work. After describing the main
high-volume environment that we use for our study (§3), we discuss
our operational experiences and demonstrate certain effects using a
set of traces (§4). In §5 we present several enhancements to Bro
which together enable us to now operate Bro successfully in high-
volume environments.

2. RELATED WORK
Reports in the literature of operational experiences with high-

volume network intrusion detection are quite rare. More generally,
a major question for evaluation studies is what sort of traffic to use.
[7] proposes a methodology to craft traffic with different character-
istics. But in high-volume environments, such characteristics are
often unpredictable. Traffic patterns vary widely between differ-
ent environments [5, 15], and Internet traffic includes significant
short-term fluctuations [4]. Moreover, attack traffic can change the
picture considerably: denial-of-service floods using spoofed source
addresses can generate many thousands of new (apparent) flows per
second [13], greatly altering the total traffic pattern, as can worm
propagation [11, 24]. In addition, attackers can target the NIDS it-
self to try to evade [17] or overload the system [2, 16]. Tools like
Snot [21] or Stick [25] craft packets to match known attack signa-
tures, thereby stressing the NIDS’s logging system.

To avoid overload, some systems distribute the analysis across
multiple machines (e.g., [8, 23]). This certainly can help, but the
individual machines still face the fundamental problem of limiting
and managing their resource usage. Along these lines, [9] presents
an approach for adapting the configuration of a NIDS to the cur-
rent load. By quantifying benefits and costs of analysis tasks, they
dynamically determine the best configuration under given resource
constraints. While our concept of load-levels (see §5.3) is similar
in spirit, we find it quite hard to crisply define such cost metrics for
high-volume traffic analysis (see §4.3 and §4.4). Thus, we statically
define a set of configurations appropriate for medium-term traffic
changes (which may not suffice under overload attack situations).

Most evaluations consider detection rate as their major perfor-
mance criteria, gauging trade-offs between false positives and false

negatives. But from our experience we argue one must not lose
sight of the fundamental trade-off between detection rate and re-
source usage. It is rare that studies explore this consideration, and
in fact often the particular configurations of evaluated systems are
unclear. For example, for signature matching [22] shows that alerts
often depend on the underlying implementation and its concrete pa-
rameterization. For a general discussion of these difficulties and
pitfalls, see [18].

Using commodity hardware, high-speed packet capture is quite
challenging [1]. A key factor is the architecture of the operating sys-
tem’s packet filter [3]. On our monitors, we use FreeBSD, which
provides an in-kernel implementation of the Berkeley Packet Fil-
ter [10], giving us quite efficient, stateless packet filtering.

3. ENVIRONMENTS
The basis for our study is our operational experiences monitor-

ing a heavily-loaded Gb/s environment, Münchener Wissenschaft-
snetz (MWN), Germany. The MWN provides Internet connectivity
to 2 major universities and a number of research institutes. Overall,
the network contains about 50,000 individual hosts and 65,000 reg-
istered users. On a typical day, 1–2 TB of data is transferred, which
averages to 44,000 packets/sec. Usually, most of the connections
are HTTP (65–70%), while the biggest contributor to traffic vol-
ume is FTP (about half of the total volume).1 The primary NIDS
monitor is a Dual Athlon MP 1800+ with 2 GB Memory, currently
running FreeBSD 5.2.1. It is connected via a Gigabit Ethernet link
to a port of the MWN’s upstream router (a Cisco 6509), allowing it
to monitor all traffic between MWN and the Internet.

In addition, we gathered operational experiences from a sec-
ond high-volume environment, University of California, Berkeley
(UCB), USA. The traffic volume at UCB is even higher (2–3 TB).
Since the challenges already manifest in the MWN environment,
and due to easier access to experimental platforms, in this study we
concentrate on MWN.

While we gained our experiences and insights from deploying the
NIDS operationally, live traffic poses limitations for any systematic
performance evaluation study, e.g., in terms of repeatability of ex-
periments. Therefore we draw upon a set of traces captured using
tcpdump [26] at the MWN monitor to demonstrate the challenges
that a NIDS is facing:

The trace mwn-week-hdr contains all TCP control packets
(SYN, FIN, RST) for a 6 day period. The compressed trace to-
tals 73 GB, contains 365M connections, and 1.2G packets. 71% of
the packets in the trace use port 80 (HTTP), with no other port
comprising more than 3% of the traffic. mwn-all-hdr is a 2-
hour trace containing all packet headers, captured during the daily
“rush-hour” between 2PM and 4PM. (Basic statistics: 13 GB com-
pressed, 471M packets, 11M TCP connections, 96.7% of the pack-
ets are TCP (57.8% HTTP, 3.7% FTP data transfer on port 20),
2.9% UDP). mwn-cs-full is a 2-hour trace including the full
payload of all packets to/from one of the CS departments in MWN,
with some high-volume servers excluded. This trace was cap-
tured at the same time as mwn-all-hdr. (11 GB compressed,
19M packets, 404K connections, 88% of the packets are TCP
(41% HTTP, 11% NNTP), 10% UDP). mwn-www-full is a 2-
hour trace including full payload from dict.leo.org, a popular
Web server. (2.8 GB compressed, 38M packets, 1M connections of
which nearly all are HTTP). mwn-irc-ddos is a 2.5-day trace
including full payload from irc.leo.org. During the moni-

1The network is configured to block well-known peer-to-peer
ports, along with certain other services—primarily SNMP, Net-
BIOS/SMB, and Microsoft SQL.

toring period this IRC server was subjected to a large distributed
denial-of-service attack which used random source addresses. The
trace contains three major attack bursts, with peaks of 4,800, 5,300,
and 35,000 packets per second, respectively (2.8 GB compressed,
76M packets, 96% TCP / ports 6660–6668, 2% UDP).

Tcpdump reported 0.01% or fewer lost packets for each of these
traces. For the evaluation itself we had exclusive access to three
systems. One is the monitor itself, which we mainly used for any
analysis involving the large mwn-week-hdr trace. The others are
separate Athlon XP 2600+ based systems with 1 GB of RAM run-
ning Linux 2.4. To keep the analysis comparable in terms of mem-
ory use, we imposed a memory limit of 1 GB on all experiments
independent of the system. Furthermore, results used for compar-
isons are derived using the same experimental system.

The performance evaluations presented in the following sections
use the measurement methodologies for system memory usage and
run-time measurements presented in Appendix A and B.

4. OPERATIONAL EXPERIENCES
Deploying NIDSs operationally in our high-volume environ-

ments presents several different challenges. Most problems an-
nounce themselves either by exhausting the system’s memory or by
consuming all available CPU time—or both. But while the symp-
toms often are similar in appearance, they have a number of differ-
ent causes. Often, detecting and fixing a particular problem leads
to the immediate appearance of another one. Overall, each choice,
e.g., of analysis depth or of parameter values, faces a trade-off be-
tween quality (i.e., detection rate) and quantity (i.e., required re-
sources).

In this section we discuss major issues that had to be addressed:
state management that is either too liberal, or not existent at all; data
and processing peaks causing missed packets; and small program-
ming deficiencies causing major problems. Next we recapitulate a
recurring experience: in network intrusion detection, one faces a
rather unusual trade-off between resource requirements and detec-
tion rate. Finally we conclude the section outlining some problems
due to the monitoring environments rather than the NIDS itself. We
discuss various mechanisms that allow us to overcome these diffi-
culties in Section 5.

4.1 Connection State Management
For a stateful NIDS, it is vital to limit the overall memory re-

quirements for state management to a tractable amount. In a high-
volume environment, this is particularly difficult if the NIDS keeps
per-connection state. In MWN, on a typical day we see up to 4,000
new TCP connections per second, and a total of about 75M TCP
connections per day.

The amount of memory required for connection state is deter-
mined by two factors: (i) the size of a state entry, and (ii) the max-
imum number of concurrent, still active connections. In Bro, the
size of state entries differs due to factors such as IP defragmenta-
tion, TCP stream reassembly, and application-layer analysis, which
determine the amount of associated state. To limit the number of
concurrent connections, NIDSs employ timeouts to expire connec-
tion state, i.e., connections are removed from memory when some
expected event (e.g., normal termination) has not happened for a
(configurable) amount of time. In addition, some NIDS either limit
the total number of concurrent connections or the amount of mem-
ory available for connection state. In either case, they flush con-
nections aggressively once the limit is reached. Snort, for example,
simply deletes five random connections once it reaches a config-
urable memory limit. While such a limit makes the memory re-
quirements more predictable, it leads to ill-defined connection life-
times.

For TCP connections, Bro’s state entries consist of at least
240 bytes. If Bro activates an application analyzer for a connec-
tion, this can grow significantly. Running Bro in its default config-
uration2 on the traces mwn-week-hdr and mwn-www-full, we
observe average connection entry sizes of about 1 KB. When per-
forming HTTP decoding on mwn-www-full, Bro needs 6–8 KB
per connection (excluding data buffered in the stream reassembler,
whose peak usage for this trace is in fact less than 5 KB in total).

When we store a significant number of bytes per connection, it is
important to limit the number of concurrent connections. Yet, Fig-
ure 1(a, bottom), shows that on mwn-week-hdr, with Bro’s de-
fault configuration, the number of connections increases over time.
Consequently, the system crashes after 2.5 days due to reaching the
1 GB memory limit.

The arrival of new connections (Figure 1(a, top)) does not exhibit
a similar increasing trend. This implies that the problem is not a
surge in connection arrivals but rather Bro’s state management. It
does not limit the number of current connections, and at the same
time it apparently fails to remove a sufficient number of connections
from memory.

Since the number of connections in the “SYN seen” state does
not increase dramatically, we conclude that the problem is not that
Bro fails to time out unsuccessful connection attempts. Indeed, Bro
provides an explicit timeout mechanism for dealing with such con-
nections. Decreasing these timeouts to the more aggressive thresh-
olds used by Bro’s reduce-memory configuration enables Bro to
process an additional 110 minutes of the trace, only a minor gain.

Figure 1(a, bottom) indicates that the number of connections in
the established or half-closed state increases to the same degree as
the total number of connections. After further analysis of Bro’s
state management, we find that many connections are not removed
at all. This behavior is consistent with Bro’s original design goal:
to not impose limits that an attacker might exploit to evade detec-
tion [16]. The problem faced by a NIDS is that there is no point at
which it can be sure that a TCP connection in the “established” state
can be safely removed. Instead, Bro’s original, very coarse-grained
state management approach is to periodically terminate the monitor,
flushing all state, and then restart the analysis from scratch. Clearly,
this approach degrades the quality of the analysis and provides easy
evasion to attackers who split their attacks across restarts.

In accordance with the above design goals, Bro does not re-
move connections unless it sees an indication that they are properly
closed. There are at least three reasons for why one may not see
the end of a connection: (i) hosts which, for whatever reason, do
not close connections, (ii) packets missed by the NIDS itself (see
Sections §4.3 and §4.4), and (iii) artifacts caused by the monitoring
environments (see Section §4.7).

Whatever the cause, however, accumulating connection state in-
definitely over time is clearly not feasible. There are similar prob-
lems with UDP and ICMP “connections”.3 Most of these are also
never removed from memory. While there already is a way to mit-
igate these problems,4 this still does not suffice. In Section §5.1.1
we develop an approach to mitigate this problem using inactivity
timers. Figure 1(b) shows the success of including this extension.

2If not stated otherwise, we deactivate most of Bro’s analyzers for
the measurements presented in this paper. The only (major) user-
level script we include is conn.bro, which outputs one-line sum-
maries of all connections [16]. In this configuration, Bro performs
stateful analysis of all TCP control packets, but no application-layer
analysis.
3While UDP and ICMP are not connection-oriented, Bro uses a
flow-like definition to fit them into its connection-oriented frame-
work.
4There is a (by default deactivated) timeout to expire all not-further
analyzed connections after a fixed amount of time.

Figure 1: Connection state from mwn-week-hdr.

#c
on

ne
ct

io
ns

/m
in

C
rash

0
40

00
0

Time

#c
on

ne
ct

io
ns

 in
 m

em
or

y

C
rash

0e
+

00
2e

+
05

4e
+

05
6e

+
05

Fri 18:00 Sat 6:00 Sat 18:00 Sun 6:00 Sun 18:00

all connections
established, half−closed
SYN seen

#c
on

ne
ct

io
ns

/m
in

0
40

00
0

80
00

0

Time

#c
on

ne
ct

io
ns

 /
#t

im
er

s

0e
+

00
2e

+
05

4e
+

05
6e

+
05

Sat 0:00 Sun 0:00 Mon 12:00 Wed 0:00 Thu 12:00

all timers
all connections

(a) Default configuration (b) With inactivity timeouts

4.2 User-Level State Management
A NIDS may provide the users with the capability to dynami-

cally create state themselves. While not all NIDSs provide such
user-level state—Snort, for example, does not—other systems, like
Bro, provide powerful scripting languages. But similar to the sys-
tem’s connection state, user-level state must be managed to avoid
memory exhaustion. There are two approaches for doing so: (i) im-
plicit state management, where the system automatically expires
old state, perhaps using hints provided by the user; and (ii) explicit
state management, where the user is responsible to flush the state at
the right time.

Bro provides only explicit mechanisms, and the default policy
scripts supplied with the public distribution make little use of these,
motivated by Bro’s original philosophy of retaining state as long as
possible to resist evasion. Consequently, user-level state accumu-
lates over time, generally causing the system to crash eventually.
Two examples are the scan detector and the FTP analyzer. The
former stores a table of host pairs for which communication was
observed. Figure 2(a, bottom) shows the memory allocation for the
user-level state of the scan analyzer versus total memory allocation
running on mwn-week-hdr. (The chosen configuration avoids the
growth of connection state by using inactivity timeouts as described
in Section 5.1.1.) Figure 2(a, top) again shows the number of con-
nections seen per minute. We recognize from Figure 2(a, bottom)
that the table mentioned above grows rapidly, since its entries are
never removed. While this maximizes the scan detection rate (we
will not miss any scans, thus thwarting evasion), it is infeasible in
environments with large numbers of connections. For example on
mwn-week-hdr the memory limit is reached after a bit more than
4 days. Here the main question is not whether to remove the table
entries but when.

The FTP analyzer remembers which data-transfer connections
have been negotiated via an FTP session’s control channel, and
removes this information only when the connection is indeed
seen. While there is a point when this information can be safely
removed—when the control connection terminates—this point is
difficult to robustly detect from a user-level script, because Bro pro-
vides a multitude of event handlers for numerous kinds of connec-
tion termination. Even worse, there are (rare) cases when none of
these events are generated.5

In Section 5.2 we develop another extension to Bro, user-level
timeouts, for expiring table entries which results in a significantly
reduced memory footprint as shown in Figure 2(b).

4.3 Packet Drops due to Network Load
In high-bandwidth environments, even after carefully tuning the

NIDS to the traffic one still has to deal with inevitable system over-
loads. Given a heavily-loaded Gbps network, current PC hardware
is not able to analyze every packet to the desired degree. For exam-
ple, within MWN it is usually possible to generate Bro’s connection
summaries for all traffic, yet decoding and analyzing all traffic up to
the HTTP protocol level is infeasible. To demonstrate how expen-
sive detailed protocol analysis can be, we ran the HTTP analyzer on
mwn-www-full and mwn-cs-full. Compared to generating
connection summaries only, the total run-times increase by factors
of 6.2 and 5.6, respectively.

Therefore, we need to find a subset of the traffic and types of anal-
ysis that the NIDS can handle given its limited CPU resources. Do-
ing so for real-world traffic is especially challenging, as the traffic
exhibits strong time-of-day and day-of-week effects. (In the MWN,
the traffic in the early afternoon is usually about 4 times larger than
during the night; in fact, during night we are able to analyze all
HTTP traffic.) If we configure the analyzers for the most demand-
ing times, we waste significant resources during low-volume inter-
vals. Thus, we miss the opportunity to perform more detailed anal-
ysis during the off-hours. Alternatively, we could configure for the
off-hours, but then we may suffer massive packet drops during the
peaks.

In Section §5.3, we develop a mechanism to mitigate this prob-
lem by dynamically adjusting the NIDS to the current load. While
this is extremely useful, we note that it remains an imperfect so-
lution. We can still expect to encounter occasional peaks either
due to the widespread prevalence of strong correlations and “heavy
tailed” data transfers in Internet traffic [4, 28], or due to unusual sit-
uations such as flooding attacks, worm propagation, or massively
misbehaving software (once we observed one of our local hosts

5The “crud” [16] seen in real-world networks sometimes misleads
Bro’s internal connection management. This also leads to some
connections missing in Bro’s connection summaries while others
appear twice. We fixed this using the mechanism described in Sec-
tion §5.2.

Figure 2: Memory required by scan detector on mwn-week-hdr using inactivity timeouts for connections.

#c
on

ne
ct

io
ns

/m
in

C
rash

0
40

00
0

80
00

0

Time

S
ta

te
 in

 M
B

yt
es

C
rash

0
20

0
40

0
60

0
80

0
10

00

Sat 0:00 Sun 0:00 Mon 0:00 Tue 0:00

total memory
user−state memory

#c
on

ne
ct

io
ns

/m
in

0
40

00
0

80
00

0

Time

S
ta

te
 in

 M
B

yt
es

0
20

0
40

0
60

0
80

0
10

00

Sat 0:00 Sun 0:00 Mon 12:00 Wed 0:00 Thu 12:00

total memory
user−state memory

(a) Default configuration (b) With user-level timeouts

generating 100s of thousands of connection requests; a user was
testing a new P2P client). Such situations can invalidate the as-
sumptions underlying either the configuration of the NIDS or the
processing of the NIDS itself. For example, the floods contained in
mwn-irc-ddos contain millions of packets with essentially ran-
dom TCP headers, which highly stress Bro’s TCP state machine.

Thus, in practice, finding a configuration that never exceeds
the resource constraints is next-to-impossible unless one keeps ex-
tremely large capacity margins. As perfect tuning is out of range
within the trade-off of analysis depth vs. limited resources. We aim
instead at a good balance: accepting some packet loss due to occa-
sional overload situations while maintaining a reasonable analysis
depth. For the MWN, we found a configuration which is able to run
continuously (i.e., without the need to regularly checkpoint [16] the
system) even in such demanding situations as caused by floods or
large-scale scans. The occurrences of packet drops is within accept-
able limits (e.g., 2–3 times an hour).

4.4 Packet Drops due to Processing Spikes
A NIDS processing traffic in real-time has a limited per-packet

processing budget. If this NIDS spends too much time on a single
packet (or on a small bunch), it may miss subsequent ones. It turns
out that the per-packet processing time fluctuates quite a bit. If these
fluctuations together add up to a significant amount of CPU time,
the system will inevitably drop packets.

We find there are two major reasons for fluctuating packet pro-
cessing times:

First, a single packet can trigger a special, expensive type of pro-
cessing. For example, Bro dynamically resizes its internal hash ta-
bles when their hash bucket chains exceed a certain average length,
in order to ensure that lookups do not take too long. Figure 3(a)
shows the processing time for each group of 10,000 packets and the
timespan in which this group of 10,000 packets was observed on
the network. The plot allows us to compare the time needed to pro-
cess 10,000 packets vs. the time needed to transmit them across the
monitored network link. If the processing is faster, indicating that
Bro’s processing is staying ahead, the corresponding black sample
point is below the gray sample point. Otherwise, if the gray sample
is below the black sample, Bro is unable to keep up with the incom-
ing packet rate (see Appendix B for details about this measurement
model).

Note the spikes in Bro’s processing time. These are caused by
hash table resizing. Each resize requires Bro to copy all point-
ers from the old table to a new position within the resized ta-
ble. For large tables—such as those tracking 100s of thousands
of connections—such a copy takes hundreds of msec. This time
is alloted to a single packet and therefore to a single group of
10,000 packets, causing the spike in the processing time. Note
that the spike exceeds the network time, indicating the danger of
packet drops. We have verified that this phenomenon indeed leads
to packet drops in our high-volume environments.

To address this problem, we modified the hash table resizing to
operate incrementally, i.e., per packet only a few entries are copied
from the old table to the new table. Doing so distributes the resiz-
ing across multiple packets. While the amortized run-time of insert
and remove operations on the table does not change, the worst-case
run-time is decreased, which avoids excessive per-packet delays.
We have confirmed that this change significantly reduces packet
drops. Second, different types of packets require different analysis
and therefore different processing times. For example, analyzing
TCP control packets requires less time than the analysis of HTTP
data packets. Yet since the content of packets differs even at the
same processing levels, the times can vary significantly. Figure 3(b)
shows the probability density functions of the processing time for
groups of 10,000 packets for four different configurations. Each
configuration adds an additional degree of analysis. The simplest
configuration, “Main-loop,” consists of Bro’s main loop, which im-
plements the full TCP state machine but does not generate any out-
put. The second configuration, “Transport-Layer Analyzer,” gener-
ates one-line summaries for every connection. The next configura-
tion, “Internal HTTP decoder,” does HTTP decoding without script-
level analysis, while the last and most complex one, “Full HTTP
analysis,” adds script-level analysis. Note that the per-packet pro-
cessing times vary significantly for each configuration. The ampli-
tude of the fluctuations increases with the complexity of the config-
uration. This is due to the influence of the individual characteristics
of each single packet, which gain more prominence as the depth
of analysis increases. For the most complex configuration (full
HTTP analysis), the standard deviation is 0.060 sec, whereas for
the simplest configuration (only Bro’s connection tracking and in-
ternal state management), the standard deviation is only 0.016 sec.
In general, we observe that more detailed analysis increases the av-
erage processing time and increases its variability.

Figure 3: Processing time on mwn-all-hdr (left) and mwn-www-full (right).

Time

S
ec

s
pe

r
10

,0
00

 p
ac

ke
ts

observed network time difference
bro processing time

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Wed 14:00 Wed 15:00 Wed 16:00 0.0 0.2 0.4 0.6

0
10

20
30

40

Processing time per 10,000 packets

P
ro

ba
bi

lit
y

de
ns

ity

main loop
transport−Layer Analyzer
internal HTTP decoder
full HTTP analysis

(a) Old hash table resizing spikes (b) Fluctuations in per-packets time

This increasing variability implies that interpreting such general
statements as “decoding HTTP increases the run-time by x%” (cf.
Section §4.3) need to be interpreted with caution. The actual change
in run-time depends significantly on the particular input, and the
additional processing delays may have even larger impact on real-
time performance, by exceeding buffer capacities, than one might
initially expect. More generally, this implies that judging NIDSs in
simple terms such as maximum throughput (see, e.g., [7]) is ques-
tionable.

4.5 Sensitivity to Programming Errors
A surprising consequence of operating a NIDS in a high-volume

environment is the degree to which the environment exacerbates
the effects of programming errors. We have repeatedly encountered
two kinds of mistakes that inevitably lead to significant problems
no matter how minor they may first appear: (i) memory leaks, and
(ii) invalid assumptions about network data.

Even the smallest memory leak can drive the system to memory
exhaustion. Simply put, we require that every function that is part
of the system’s main loop must not leak even a single byte. For
example, we once introduced a small leak in Bro’s code for deter-
mining whether a certain address is part of the local IP space. This
bug caused an operational system with 1 GB of memory to crash
after two hours. Unfortunately, these kinds of errors are particu-
larly hard to find. With live traffic, the main indicator is that the
system’s memory consumption slowly increases over time. Yet this
does not yield any hints about the culprit. Furthermore, memory
leaks are often hard to reproduce on small captured traces. Yet on
large traces, conventional memory checkers like mpatrol [14] and
valgrind [27] are terribly slow. In fact, such difficulties motivated
us to instrument the NIDS to account for its memory consumption,
as discussed in Appendix A. (The common riposte that one should
use a language with garbage collection, rather than C++, is not as
simple as some might think, as garbage collection processing can
lead to processing spikes similar to those discussed in Section 4.4.)

The second problem concerns invalid assumptions about the sys-
tem’s input. If a protocol decoder assumes network data to be
in some particular format, it will eventually encounter some non-
conforming input. This problem is exacerbated in high-volume en-
vironments, due to the traffic’s diversity as well as high rate, as
discussed earlier. Indeed, we have several times encountered a pro-

tocol decoder running fine even on large traces, but crashing within
seconds when deployed in one of our environments. Along these
lines, not only does this observation mean that expecting strict con-
formance to an RFC will surely fail; but that expecting any sort of
“reasonable” behavior risks failing. This problem is closely related
to Paxson’s observations of “crud” in network traffic [16] as well as
“crash” attacks: not only must a NIDS be coded defensively to deal
with bizarre-but-benign occurrences such as receivers acknowledg-
ing data that was never sent to them; but they must also be coded
against the possibility of attackers maliciously sending ill-formed
input in order to crash the NIDS, or, even worse, compromise it, as
happened with the recent “Witty” worm [12].

4.6 Trade-off: Resources vs. Detection Rate
So far, we have seen several indications of a rather unusual trade-

off in network intrusion detection: memory/CPU-time on one side
against detection rate in the other. This is in contrast to computer
science’s more traditional trade-off between memory and CPU-
time.

If we decrease the amount of state stored by the system, we auto-
matically decrease the size of the internal data structures. Thus, we
reduce both memory usage and processing time (even with efficient
data structures like hash tables, more state requires more operations
to maintain it). But, at the same time, we lose the ability to rec-
ognize attacks whose detection relies upon this state. Consider an
interactive session in which the attacker first sends half of his at-
tack, then waits some time before sending the remaining part. If
the NIDS happens to remove the connection state before it has seen
sufficient information to recognize the attack, it will fail to detect
it. Similarly, if we decrease the CPU usage of the NIDS by avoid-
ing certain kinds of analysis, we usually also reduce the amount of
stored state. But again, we will now miss certain attacks.

Bro’s original design emphasized detection. Many design deci-
sions were taken to avoid false negatives, at the cost of large re-
source requirements. Unfortunately, as documented above, this ap-
proach can be fatal when monitoring high-volume networks. For
example, recall that by default Bro does not expire any UDP state.
In terms of detection, this is correct: being a stateless protocol, there
is no explicit time at which the state can be removed safely. On the
other hand, keeping UDP state forever quickly exhausts all avail-
able memory on a high-volume link.

Trading resource usage against detection rate is an environment-
specific policy decision. By leaving the final decision (e.g., choos-
ing the concrete timeouts) to the user, one avoids predictability.
This is a variant of Kerkhoff’s principle: while the detection mech-
anisms are public (the software is open source), their parameteri-
zations are not. We note that choosing appropriate timeouts is not
easy, and are investigating developing a tool for suggesting reason-
able values for a particular environment based on traffic samples.

4.7 Artifacts of the Monitoring Environment
So far we have examined problems originating in the NIDS itself.

We find that, in addition, high-volume environments also stress the
monitor environment (i.e., the monitoring router and the NIDS’s
network interface card).

First of all, there are some general capacity limitations. At UCB,
we monitor the traffic of several routers simultaneously by merging
their Gbps streams using an RSPAN-VLAN [20]. This can exceed
the monitor’s Gbps capacity. Indeed, we see both missing and du-
plicated packets in the NIDS’s input stream. We believe that this is
due to the RSPAN setup. While only a single router is monitored
at MWN, both directions of the network’s Gbps upstream link are
merged into one uni-directional monitor link using a SPAN port.
While the available capacity is usually sufficient, the router does
report occasional buffer-overruns (i.e., causing the monitor to miss
packets). To overcome these limitations we intend to switch from a
SPAN port to optical taps. Yet this introduces the problem of merg-
ing two traffic streams into one within the NIDS’s system. This
requires tight synchronizing between the two streams to maintain
causality (e.g., SYN ACKs must be processed after the correspond-
ing SYN).

To address this problem, we have developed both a kernel mech-
anism (“BPF bonding”) and user-level support in Bro for merg-
ing multiple packet streams. The latter is useful for systems for
which the kernel modification is not available. However, even this
does not fully address the problem. Interrupt coalescence [1] pro-
vides a way to minimize the interrupt load incurred when capturing
high-volume packet streams. When coupled with merging multi-
ple streams, however, this can result in the NIDS receiving packets
with non-monotone timestamps. Processing them out of order can
then lead to incorrect state tracking. To overcome this problem, we
implemented a “packet sorting” buffer in which Bro keeps recently
received packets for some (user-configurable) time. Now packets
with earlier timestamps can then be processed prior to those with
later timestamps yet received earlier.

The Gbps NIC in the MWN monitoring system is a Intel
Pro/1000 MF-LX. To avoid packet losses, we patched the FreeBSD
kernel to increase the NIC driver’s internal receive buffers and the
packet capture library to increase its buffer by three orders of mag-
nitude (after configuring the kernel to allow this).

5. HIGH-VOLUME IDS EXTENSIONS
Based on our experiences discussed in Section §4, there are two

major areas where improvements of the NIDS show promise to im-
prove high-volume intrusion detection: (i) state management and
(ii) control of input volume. We devised new mechanisms for both
of these. While their current implementation is naturally tied to
Bro, the underlying ideas apply to other systems as well.

In the following, we discuss each improvement individually to
gain an understanding of its impact. In practice, we use all of them.
Together they are able to cope with the network load.

5.1 Connection state management
One major contributor to the NIDS’s memory requirements is the

connection state (see §4). To reduce its volume, we use two comple-

mentary approaches: (i) introducing new timeouts to improve state
expiration, and (ii) avoiding state creation whenever possible.

5.1.1 Inactivity timeouts
In Section §4.1 we show that connections for which Bro does

not see a regular termination accumulate. These amount to a sig-
nificant share of the total connection state unless they are removed
in some way. For expiring such connections, most NIDSs rely on
an “inactivity timeout,” i.e., they flush a connection’s state if for
some time no new activity is observed. There is one caveat: such a
timeout relies on seeing all relevant packets. If a packet is missed,
it might incorrectly assume that a connection is inactive. Missed
packets can be related to drops due to monitoring issues (see §4.3,
§4.4 and §4.7). But more importantly packets are also missed when
the specified packet filter does not capture all relevant traffic. For
example, if one only analyzes TCP SYN/FIN/RST control packets,
then an inactivity timeout degrades to a static maximum connection
lifetime.

We added three inactivity timeouts to Bro, for TCP, UDP, and
ICMP respectively. We also added the capability that the user’s pol-
icy scripts can define individual timeouts on a per-connection basis.
The timeouts can be adjusted separately based on the service/port
number of the connection using a default policy script. This en-
ables us to, for example, select shorter values for HTTP traffic than
for SSH connections. Figure 1(b, bottom) shows Bro’s resource
consumptions on mwn-week-hdr with an overall TCP inactivity
timeout of 30 minutes.6 In contrast to Figure 1(a, bottom), we see
that the number of concurrent connections in memory no longer
exhibits the increasing trend. It instead follows the number of pro-
cessed connections per time-interval closely (see Figure 1(b, top)).

Naturally, inactivity timeouts should be as large as possible. But
using timeouts on the order of tens of minutes or even hours re-
vealed a significant problem with Bro’s timer implementation: for
processing efficiency, when a connection’s state is removed, as-
sociated timers are only disabled, not removed. These timers are
deleted once their original expiration time is reached. Using large
timeout values, this results in more than 90% of the timers in
memory being disabled. To reduce the memory requirements, we
changed the code to explicitly remove old timers, expecting to ac-
cept a minor loss in performance. However, we found the run-time
on mwn-week-hdr actually decreased by more than 20%. Fig-
ure 1(b, bottom) shows the number of timers in memory after this
change.

5.1.2 Connection compressor
Examining the TCP connections monitored in our operational en-

vironments showed that a significant fraction corresponds to con-
nection attempts without a reply. For example, for mwn-all-hdr
21% of all TCP connections are of this kind. For mwn-week-hdr,
they account for 26% (recall that this trace contains only TCP con-
trol packets). Many of these connections are due to scans. In
addition, we find that energetic flooding attacks—and also large
worm events—vastly increase the number of connections attempts.
Nearly all of these attempts are sure to fail.

As already discussed in Section §4.1 the minimum size of a con-
nection state entry is 240 bytes. To reduce the memory require-
ments for such connections, we implemented a connection com-
pressor to compress their state, leveraging the prevalence of unan-
swered connection attempts. The idea behind the connection com-
pressor is simple: defer the instantiation of full connection state un-

6The inactivity timer in this example degrades to a static maximum
connection lifetime since mwn-week-hdr only contains TCP con-
trol packets.

til we see packets from both endpoints of a connection. As long as
we only encounter packets from one endpoint, the compressor only
keeps a minimal state record: fixed-size blocks of 36 bytes which
contain just enough information to later instantiate the full state if
required. Most notably, this minimal state contains the involved
endpoints and the information from the initiating SYN packet (e.g.,
options, window size, and initial sequence number). If we do not
see a reply after a configurable amount of time, the connection at-
tempt is deemed unsuccessful, and its (minimal) state record is re-
moved.

Using fixed size records allows for very efficient memory man-
agement: we simply allocate large memory chunks for storing the
records and organize them in a FIFO. Since the FIFO ensures that
connection attempts are ordered monotonically increasing in time,
connection timeouts are extremely simple. We just check if the first
entry in the FIFO has expired. If so, we pop the record and continue
until we reach a not yet expired entry.

Using the connection compressor when generating connection
summaries7 for mwn-all-hdr (mwn-week-hdr), the total con-
nection state (including the minimal state records buffered inside
the compressor) decreases by 51% (36%). In addition, we observed
run-time benefits which at times can be rather significant. These
benefits appear to depend on the traffic characteristics as well as the
system’s memory management, and merit further analysis to under-
stand the detailed effects.

During our experiments, we encountered one problem when us-
ing the compressor: for some connections, Bro’s interpretation of
the connection’s TCP state changes when activating the compres-
sor. The compressor alters some corner-case facets of TCP state
handling. While we attempt to model the original behavior as
closely as possible, this is not always possible. In particular, we
may see multiple packets from an originator before the responder
answers. Sometimes originators send multiple different SYNs with-
out waiting for a reply. In other cases we miss the start of a connec-
tion, stepping right into the data stream. While the change is def-
initely noticeable—affecting 2% of the connection summaries for
mwn-all-hdr—nearly all of the disagreements are for connec-
tions which failed in some way. Since the semantics of not-well-
formed connections are often ambiguous, these discrepancies are a
minor cost if compared to the benefits of using the compressor.

Two additional optimizations are possible. First, if the responder
answers with a RST to a connection request, the connection could
be deleted immediately, rather than instantiated as is currently done.
In this case, the compressor could avoid instantiating full connec-
tion state by directly reporting the rejected connection and flushing
the minimal state record. This should be particularly helpful during
floods. Second, we can choose to either not report non-established
sessions at all, or only generate summaries such as “42 attempts
from host a.b.c.d”. For Bro, this would avoid creating user-level
state for such attempts, potentially a significant savings.

5.2 User-level state management
As discussed in Section §4.2, a NIDS may provide the user with

the capability to dynamically create their own custom state. In this
regard, to cope with the requirements of our high-volume environ-
ments, we extended Bro’s explicit state management and introduced
an additional, implicit mechanism.

For Bro’s existing, explicit state management mechanism, the
fundamental (and only) question is when to decide to flush state.
We inspected the state stored by its scripts and determined that a
large fraction of the state is per-connection and stored in tables.

7For these measurements, we used inactivity timeouts of 30 min-
utes. We only analyzed TCP control packets.

Often, this can and should be removed when the connection termi-
nates. To facilitate doing so, we added a new event which is reli-
ably generated whenever a connection is removed from the system’s
state for whatever reason. We then modified the scripts to base their
state management on the generation of this event (for example, we
modified the FTP analyzer to remove state for tracking expected
data-transfer connections whenever the corresponding control ses-
sion terminates).

Often, however, we would rather have implicit—i.e.,
automatic—state management, relieving us of the responsi-
bility to explicitly remove the state. Carefully-designed timeouts
provide a general means for doing so. While Bro supports user-
configurable timers, using them for state management requires the
user to manually install the timers and also specify handlers to
invoke when the timers expire.

To support implicit state management, we extended Bro’s table
and set data structures to support per-element timeouts of three dif-
ferent flavors: creation, write, and read. That is, for a given table
(or set), the user can specify in the policy script a timeout associ-
ated with each element which expires T seconds after any of: the
element’s creation; the last time the element was updated; or the
last time the element was accessed.

One benefit of this approach is that these timeouts provide a sim-
ple but effective way to add state management to already-existing
scripts. Consider for example the scan analyzer, which, as men-
tioned above, can consume a great deal of state. Figure 2(b,
bottom), shows the quite significant effects of running Bro on
mwn-week-hdr using 15-minute read timeouts for the scan de-
tection tables. (Note, the large spike on Wednesday seems to stem
from a single host in the scan-detection data structures that performs
large vertical scans. Eventually, all of its state is expired at once.)

Adding timeouts to the scan detector also revealed a problem,
though: sometimes state does not exist in isolation, but in context
with other entities. In this case, when we implicitly remove it, we
can introduce inconsistencies. For example, the scan detector con-
tains one table tracking pairs of hosts and another counting for each
host the number of such distinct pairs involving the host. Automat-
ically removing an entry from the first table invalidates the counter
in the second.

To accommodate such relationships, we added an additional at-
tribute to Bro’s table type which specifies a script function to call
whenever one of the table’s entries expires and is removed. In the
scan detector, this functions simply adjusts the counter and thus
maintains consistency between the two tables.

5.3 Dynamically controlling packet load
As discussed in Section §4.3, to avoid CPU exhaustion we need

to find ways to control the packet load. Doing so statically—i.e., by
controlling the BPF filter Bro uses for its packet capture—lacks the
flexibility necessary to adapt to the wide range of conditions we can
encounter over a relatively short period of time. Thus, we devised
two new dynamic mechanisms: (i) load-levels, which allow us to
adapt to the system’s current load, and (ii) a flood detector.

We define load-levels as a set of packet filters for which we main-
tain an ordering. Each filter that is “larger” in the ordering than
another imposes a greater load on the NIDS than its predecessor.
(Note that the extra load is not due to the burden of the packet fil-
tering per se, but rather the associated application analyzers that
become active due to the packets captured by the filter, and the pro-
cessing of the events that these analyzers then generate.)

At any time, the kernel has exactly one of the filters installed.
By continuously monitoring its own performance, the NIDS tries
to detect overloads (ideally, incipient ones) and idle times. During
overloads, it backs off to a filter earlier in the ordering (i.e., one

Figure 4: Load-levels

Lo
ad

−
Le

ve
l

2
4

6
8

10

Time

C
P

U
 lo

ad
 [%

]

20
40

60
80

10
0

Tue 16:00 Tue 17:00 Tue 18:00

CPU load
threshold
filter change

requiring less processing); during idle times, it ramps up to a filter
that reflects more processing, because during these times the NIDS
has sufficient CPU resources available and can afford to do so.

The filters are defined by means of Bro’s scripting language.
For example, the following code makes the activation of the DNS,
SMTP and FTP decoders dynamic rather than static. A decoder is
enabled if the system’s level is less than or equal to the specified
load level:

redef capture_load_levels += {
["dns"] = LoadLevel1,
["smtp"] = LoadLevel2,
["ftp"] = LoadLevel3,

};

For such an adaptive scheme to work—particularly given its feed-
back nature—it is important to estimate load correctly to avoid rapid
oscillations. Two of the possible metrics are CPU utilization and the
presence of packet drops. (For either, we would generally average
the corresponding values over say a couple of minutes, to avoid
overresponding to short-term fluctuations.)

We have experimented with both of these metrics. We found that
while the latter (packet drops) is indeed prone to oscillations, the
former (CPU utilization) proves to work well in practice. The par-
ticular algorithm we settled on is to adjust the current packet filter
if the CPU utilization averaged over two minutes is either (i) above
90% or (ii) below 40%, respectively.

To make this work, we cannot afford to compile new BPF fil-
ters whenever we adapt. Accordingly, we precompile the entire
set of filters to keep switching inexpensive in terms of CPU. (As
FreeBSD’s packet filter flushes its captured-traffic buffers when in-
stalling a new filter, we also had to devise a patch for the kernel-
level driver to avoid losing packets.)

Figure 4 shows an example of load-levels used operationally at
MWN. When the CPU load crosses the upper threshold (Figure 4,
bottom), the current load-level increases, i.e. Bro shifts to a more
restrictive filter (Figure 4, top). Accordingly, if the load falls below
the lower threshold, a more permissive filter is installed.

The MWN environment includes an IRC server which, unfortu-
nately, is a regular victim of denial-of-service floods. It sometimes
suffers such attacks several times a week, being at times targeted
by more than 35,000 packets per second. Such a flood puts an im-
mense load on a stateful NIDS, although ideally the NIDS should
just ignore the attack traffic (of course after logging the fact), since
there’s generally no deeper semantic meaning to it other than clog-
ging a resource by sheer brute force.

None of the mechanisms discussed above can accommodate in a
“reasonable” fashion the flood present in mwn-irc-ddos. Thus,
we devised a flood detector that is able to recognize floods and dy-
namically installs a new filter until the attack passes.

Detecting floods is straightforward: count the number of new
connections per local host and assume a flood to be in progress if
the count surpasses a (customizable) threshold. Doing so requires
keeping an additional counter per internal host, which can be quite
expensive. Therefore, we instead sample connection attempts. Sim-
ilarly, instead of ignoring all packets to the victim after detecting a
flood, we sample them at a low rate to quickly detect the end of the
flood.

For Bro, we added such a flood detector by means of a new script.
It samples connection attempts at a (customizable) rate of 1 out
of 100, reporting a flood if the estimated number of new connections
per minute exceeds a threshold (default, 30,000). When this occurs,
the script installs a host filter, sampling packets also at 1:100.8

On mwn-irc-ddos, this mechanism detects all contained at-
tack bursts. The total memory allocation stays below 122M
(whereas all other considered configurations exhaust the memory
limit of 1 GB during the last attack burst, at the latest).

6. CONCLUSION
In large-scale environments, network intrusion detection systems

face extreme challenges with respect to traffic volume, traffic di-
versity, and resource management. In this study, we discuss our
operational experiences with a NIDS in a Gbps network transfer-
ring multiple TBs each day. We identified the main contributors to
CPU load and memory usage, understood the trade-offs involved
when tuning the system to alleviate their impact, and devised new
mechanisms when existing tuning parameters did not suffice.

Our study is in the context of the Bro NIDS. We are deploy-
ing it operationally in a couple of high-performance environments
and were faced with several difficulties in terms of memory and
CPU exhaustion. While the symptoms often appeared similar, these
problems were due to a number of different reasons. First, the sys-
tem’s state management was designed to resist evasion, and thus
traded detection-rate in favor of resource consumption. Second, the
dynamic nature of the traffic makes it hard to find a stable point
of operation without wasting resources during idle times, affecting
both long-term traffic variations (e.g., due to strong time-of-day ef-
fects) and short-term fluctuations (e.g., due to “heavy-tailed” traffic
and varying packet processing times). Third, even small program-
ming errors (e.g, tiny memory leaks or not fully validated input)
will almost certainly bother us eventually. Fourth, independent of
the NIDS itself, high-volume traffic also demands a great deal of
the rest of the monitoring environment (e.g., the monitoring router
and the OS’s packet capture subsystem).

For problems that could not be solved with the available tuning
parameters, we developed new mechanisms. We improved state
management by introducing new timeouts, deferring instantiation
of connection state by means of a connection compressor, and
adding new means to dynamically control the packet load (load-
levels to automatically adapt the NIDS to the current network load;
a flood detector to revert to sampling of high-volume denial-of-
service attack flows).

8Unfortunately, the standard BPF packet filter does not support
sampling. Thus, we augmented Bro’s packet capture with a new,
user-level packet filter that can directly support sampling. While
this does not relieve the main process from receiving the flood’s
packets, they do not reach the system’s main loop. Note, we are
presently working with colleagues on extending BPF to support ran-
dom and deterministic sampling.

In summary, our work provides us with (i) a thorough under-
standing of the trade-offs involved when tuning a NIDS for use in
a high-volume network, and (ii) the tuning mechanisms necessary
to successfully operate these systems in such challenging environ-
ments.

7. ACKNOWLEDGMENTS
Craig Leres implemented Bro’s incremental resizing for hash ta-

bles and also the “BPF bonding” mechanism. Ruoming Pang im-
plemented packet sorting. This work was supported in part by the
U.S. National Science Foundation grant STI-0334088.

8. REFERENCES
[1] D. Agarwal, J. M. Gonzalez, G. Jin, and B. Tierney. An infrastructure for passive

network monitoring of application data streams. In Proc. Passive and Active
Measurement Workshop, 2003.

[2] S. A. Crosby and D. S. Wallach. Denial of service via algorithmic complexity
attacks. In Proc. 12th USENIX Security Symposium, 2003.

[3] L. Deri. Improving passive packet capture: Beyond device polling. Technical
report, University of Pisa, 2003.

[4] A. Feldmann, A. C. Gilbert, and W. Willinger. Data networks as cascades:
Investigating the multifractal nature of Internet WAN traffic. In Proc. of ACM
SIGCOMM, 1998.

[5] S. Floyd and V. Paxson. Difficulties in simulating the internet. IEEE/ACM
Transactions on Networking, 9(4), 2001.

[6] GNU Binutils. http://www.gnu.org/software/binutils.
[7] M. Hall and K. Wiley. Capacity verification for high speed network intrusion

detection systems. In Proc. Recent Advances in Intrusion Detection, number 2516
in Lecture Notes in Computer Science. Springer-Verlag, 2002.

[8] C. Krügel, F. Valeur, G. Vigna, and R. A. Kemmerer. Stateful intrusion detection
for high-speed networks. In Proc. IEEE Symposium on Security and Privacy,
2002.

[9] W. Lee, J. B. Cabrera, A. Thomas, N. Balwalli, S. Saluja, and Y. Zhang.
Performance adaptation in real-time intrusion detection systems. In Proc. Recent
Advances in Intrusion Detection, number 2516 in Lecture Notes in Computer
Science. Springer-Verlag, 2002.

[10] S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for
user-level packet capture. In Proc. Winter 1993 USENIX Conference, 1993.

[11] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside
the Slammer worm. IEEE Magazine of Security and Privacy, 2003.

[12] D. Moore and C. Shannon. The spread of the Witty.
http://www.caida.org/analysis/security/witty, 2004.

[13] D. Moore, G. M. Voelker, and S. Savage. Inferring Internet denial-of-service
activity. In Proc. 10th USENIX Security Symposium, 2001.

[14] mpatrol. http://www.cbmamiga.demon.co.uk/mpatrol.
[15] V. Paxson. Empirically-derived analytic models of wide-area tcp connections.

IEEE/ACM Transactions on Networking, 2(4), 1994.
[16] V. Paxson. Bro: A system for detecting network intruders in real-time. Computer

Networks, 31(23–24), 1999.
[17] T. H. Ptacek and T. N. Newsham. Insertion, evasion, and denial of service:

Eluding network intrusion detection. Technical report, Secure Networks, Inc.,
1998.

[18] M. J. Ranum. Experiences benchmarking intrusion detection systems. Technical
report, NFR Security, Inc., http://www.itsecurity.com/papers/nfr2.htm, 2001.

[19] M. Roesch. Snort: Lightweight intrusion detection for networks. In Proc. 13th
Systems Administration Conference (LISA), pages 229–238, 1999.

[20] Configuring SPAN and RSPAN (Cisco Catalyst 6500 Series).
http://www.cisco.com/univercd/cc/td/doc/product/lan/
cat6000/sw_7_5/conf%g_gd/span.pdf.

[21] Snot. http://www.stolenshoes.net/sniph/index.html.
[22] R. Sommer and V. Paxson. Enhancing byte-level network intrusion detection

signatures with context. In Proc. 10th ACM Conference on Computer and
Communications Security, 2003.

[23] R. Sommer and V. Paxson. Exploiting independent state for network intrusion
detection. Technical report, TU München, 2004.

[24] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in your spare
time. In Proc. 11th USENIX Security Symposium, 2002.

[25] Stick.
http://packetstormsecurity.nl/distributed/stick.htm.

[26] tcpdump. http://www.tcpdump.org.
[27] Valgrind. http://developer.kde.org/˜sewardj/.
[28] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity through

high-variability: statistical analysis of ethernet lan traffic at the source level.
IEEE/ACM Transactions on Networking, 5(1), 1997.

APPENDIX

A. MEASURING MEMORY USAGE
If we want to reduce the memory usage of a stateful NIDS, we need to understand

where exactly it stores the state. To analyze the memory layout during run-time we can
either use external tools, or add internal measurement code.

External Tools: There are several tools available for memory debugging, of which
we have used two that are freely available: mpatrol [14] and valgrind [27]. The former
comes as a library which is linked into the system and allows very fine-grained analysis
by taking memory snapshots at user-controlled points of time. Unfortunately, mpatrol
turned out to decrease the system’s performance by multiple orders of magnitude, mak-
ing it unusable on all but tiny traces (let alone real-time use). Valgrind takes another
approach: it simulates the underlying processor on the instruction-level. While its per-
formance is much better, it is still not sufficient for more than medium-size traces. Both
programs proved to be most useful for finding illegal memory accesses.

Internal measurement: For internal measurements, we instrument the system us-
ing additional code to measure its current memory consumption. We identified Bro’s
main data structures and added methods to track their current size. During run-time, we
regularly log these values. Additionally, we print the maximum heap size as reported
by the system, and the effective memory allocation, i.e. the amount of memory cur-
rently handed out to the application by the C library’s memory management functions.
On Linux using glibc, the heap size is monotonically increasing and always provides
us with an upper bound for the application’s peak allocation.9 We note that there is a
gap between the peak heap size and the peak memory allocation: glibc keeps 8 bytes
of hidden information in every allocated memory block, which is not counted against
the current allocation. There is another pitfall when measuring memory. If we ask the
C library for n bytes of memory, we may actually get n + p, of which p ≥ 0 are
padding bytes. For example, on Intel-Linux, glibc’s malloc() always aligns block sizes
to multiples of eight and does not return less than 16 bytes. The memory allocation
includes these padding bytes.

We note that in practice it is very hard to instrument a complex system accurately.
Therefore, values delivered by internal instrumentation are often only estimates of
lower bounds. Bro, e.g., creates data structures at many different locations and often
recursively combines them into more complex structures. Often it is not determinable
what part of the code should be held accountable for particular chunk of memory. Con-
sequently, we did not try to classify every single byte of allocated memory. Rather we
identified the main contributors. By comparing their total to the current memory allo-
cation, we ensure that we indeed correctly instrumented the code (on average, we are
able to classify about 90% of the memory allocation; the rest is allocated at locations
that we did not instrument).

In the main text, total memory allocation refers to the heap size. When we discuss
the size of a particular data structure we refer to the values reported by our instrumen-
tation, and thus to lower bounds. These values include malloc()’s padding and assume
a glibc based system. When we give the memory allocation for a particular trace, we
always refer to the maximum for this trace.

B. MEASURING CPU USAGE
To measure the CPU usage of a NIDS, we have similar options as for quantifying

memory usage: external tools and internal instrumentation.
External Tools: An obvious tool to measure CPU usage is the Unix time tool. It

reports overall real-, user-, and system-time and does not impose any overhead on the
observed process. It does not provide any hints about the system’s real-time behavior,
though (while the CPU load may be sufficiently low on average, processing spikes
can lead to packet drops). Performance profilers, like gprof [6], provide more fine-
grained insight, but their overhead is much too large to infer real-time behavior.

Internal measurement: When examining CPU load, our main concern are packet
drops. If we would know the exact time required to process each packet, we could
say when drops occur: assuming BPF’s double buffering-scheme [1], we lose packets
when the total time required to process the first buffer’s packets exceeds the time which
can be stored in the second buffer.

Unfortunately, we cannot accurately measure the CPU time per packet. The over-
head would be too large and the system’s time granularity too coarse.10 Thus, we use
another model. We measure the time t required for a group of n packets and chose n

so that t lies in the order of the timing resolution. When t exceeds the interval s in
which the same n packets appeared on the network, we assume the system would drop
packets. Additionally, assuming a packet buffer of size n, there will not be any packet
drops when t does not exceed s. We note that by averaging over n packets, we cannot
blame a single packet or a small group of packets as being responsible for a sudden
increase of CPU usage. Also, we cannot quantify how many packets would have been
lost.

For our experiments, we used n = 10, 000, giving us times t within 30–50ms
with Bro’s minimal configuration (on an Athlon XP 2600+). Figure 3 shows that this
method is indeed able to identify processing spikes. Also, we see that fluctuations in
per-packet processing times are easily observable.

We note that this is an idealized model. The system’s time measurements are not
accurate. Also, on a real system, there are other factors that influence the packet drop

9
Different systems behave differently. On FreeBSD, we can allow the C library to return unused memory to the system,

thereby decreasing the total heap-size. On the other hand, FreeBSD’s C library does not provide an easy way to access
the current allocation.

10
Linux/FreeBSD’s getrusage system calls provide a default resolution of approximately 10ms on Intel hardware.

rate (such as load imposed by interrupts and other processes, or the OS itself). Finally,
BPF’s buffer implementation differs from our model. Thus, we do not claim to get per-
fect values of real-time CPU usage. But our measurements give us some very valuable
intuition on the system’s behavior. Part of our ongoing work is to flesh out the model
further.

