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ABSTRACT
The ever-increasing sophistication in network attacks, combined
with larger and larger volumes of traffic, presents a dual challenge
to network intrusion detection systems (IDSs). On one hand, to take
advantage of modern multi-core processing platforms IDSs need to
support scalability, by distributing traffic analysis across a large
number of processing units. On the other hand, such scalability
must not come at the cost of decreased effectiveness in attack detec-
tion. In this paper, we present a novel domain-specific concurrency
model that addresses this challenge by introducing the notion of
detection scope: a unit for partitioning network traffic such that the
traffic contained in each resulting "slice" is independent for detec-
tion purposes. The notion of scope enables IDSs to automatically
distribute traffic processing, while ensuring that information neces-
sary to detect intrusions remains available to detector instances.We
show that for a large class of detection algorithms, scope can be au-
tomatically inferred via program analysis; and we present schedul-
ing algorithms that ensure safe, scope-aware processing of network
events. We evaluate our technique on a set of IDS analyses, show-
ing that our approach can indeed exploit the concurrency inherent
in network traffic to provide significant throughput improvements.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network monitoring; D.1.3 [Programming Techniques]:
Concurrent Programming—Parallel programming

Keywords
NIDS, Flexible intrusion detection, Scalable traffic analysis

1. INTRODUCTION
Effective network intrusion detection is becoming increasingly

difficult. With the proliferation of connected devices and web-
based services, network bandwidths keep soaring, putting strin-
gent performance requirements on detectors that must sift in real-
time through large data volumes. Moreover, the nature of network
intrusion itself is evolving, driven by an emerging underground
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economy and the rise of resourceful, nation-level adversaries (“Ad-
vanced Persistent Threats” [18]). As attack strategies are shifting
from conceptually simple byte-level exploits to sophisticated, tai-
lored attacks operating deep inside the application layer, intrusion
detection systems (IDSs) need to adapt to remain effective and rele-
vant. In order to scale to larger volumes of traffic, they must support
concurrency to take advantage of modern multi-core architectures.
Yet, at the same time, the increased complexity of attack strategies
requires flexibility, as no one-size-fits-all approach to detection will
prove effective against the modern arsenal of attack tools.

Unfortunately, there exists a fundamental tension between these
two objectives. Simple, static detection strategies bring predictable
data flows and inter-thread communication, which allow to “hard-
code” efficient parallelism into the IDS design. An example is sig-
nature matching: As signatures are commonly expressed on a per-
flow basis, an IDS performing this operation can simply process
each connection independently. Yet, signature-based detection re-
mains limited in expressiveness, and can often be thwarted with
minor changes in the attack strategy—consider the fragility of the
early signatures for the Heartbleed bug [8], or the use of binary ob-
fuscation to make malware undetectable [7]. Avoiding such limita-
tions requires more complex strategies, including stateful protocol
analysis and correlation of events across multiple flows. That com-
plexity, however, turns parallelization into a much harder problem.

The current state of mainstream IDSs reflects this tension. Suri-
cata [11] and Snort [10] support multi-threaded processing (the lat-
ter through a variety of different proposals, e.g., [43, 45, 48]), but
they remain limited to classic per-flow signature matching. Other
related efforts in the literature [28, 44] rely on specialized hardware
and/or similarly hardcoded detection algorithms. To our knowl-
edge, Bro [6] represents the only IDS that offers complete flexibil-
ity by design; it expresses detectors in a Turing-complete scripting
language. However, Bro remains single-threaded to this day.

Our work presents a step towards making intrusion detection
both parallel and flexible. We propose a general concurrency model
for network traffic analysis that can guide IDS architectures to-
wards parallel performance, independent from the underlying de-
tection strategy. To detach our model from the specifics of a de-
tector, we focus on generic data-level parallelism, as opposed to
process-level parallelism (e.g., pipelining) as that remains heav-
ily implementation-dependent. We observe that network traffic is
in fact inherently parallel: typical 10 GE upstream links routinely
carry 100,000s of active flows that reflect the communication of
mostly unrelated endpoints. In other words, analyzing network
traffic constitutes an almost “embarrassingly parallel” task [37].
However, while flows generally proceed independently, most of
them also share a close semantic relationship with some of the other
ones—which an IDS must account for. Consider the activity that



(b) 

void run_IDS() { 

  while ( p = read_packet() ) { 

    if ( p.SYN ) 

      count_connections(p); 

  } 

} 

void count_connections(packet p) 

{ 

  if (++counts[p.src] > THRESH) 

    report_host(p.src); 

} 

handler count_connections(connectionEvent c) 

{ 

  lock_element(counts[c.src]) 

  v = ++counts[c.src]; 

  unlock_element(counts[c.src]) 

  if ( v > THRESH ) 

    report_host(c.src); 

} 

(a) 

handler count_connections(connectionEvent c) 

{ 

  if (++counts[c.src] > THRESH) 

    report_host(c.src); 

} 

(c) 

void run_IDS() { 

  i = 0; 

  while ( p = read_packet() ) { 

    if ( p.SYN ) { 

      event c = new connectionEvent(p); 

      send_event(threads[i], c); 

      i = (i+1) % N; 

}}} 

void run_IDS() { 

  while ( p = read_packet() ) { 

    if ( p.SYN ) { 

      event c = new connectionEvent(p); 

      send_event(threads[c.src % N], c); 

    } 

  } 

} 

IDS LOGIC 

DETECTOR 

SINGLE-THREADED IDS CONCURRENT IDS (LOCK-BASED) CONCURRENT IDS (SCOPE-BASED) 

Figure 1: Simple portscan detector

is part of the same user’s browsing session, or traffic generated by
an attacker slowly scanning a target network for reconnaissance.
The latter may resemble a series of innocent requests, without any
recognizable fingerprint, and the attack would manifest itself only
to a detector that maintains connection statistics for each possible
source over a long period of time. An IDS, hence, needs to sift
through a large number of flows, mostly unrelated, while correlat-
ing the minuscule fraction that reveals the malicious activity.

For devising a general concurrency model, we start from the ob-
servation that packet processing is by nature event-driven, with
events representing semantic units of protocol activity (e.g., the
establishment of a new session, or, at higher-level, an HTTP re-
quest). Events typically trigger a simple computation that often
accesses, and potentially modifies, persistent data structures track-
ing the analysis’ current state. We find this abstraction sufficiently
generic to encompass the semantics of all popular IDS applica-
tions. We then formalize the concepts of processing scope and
state: scope represents a unit for partitioning network traffic such
that processing of each slice remains independent from the others,
and hence may proceed in parallel with them; and state refers to the
aggregate information that associates with computations operating
at a scope’s granularity. Consider a simple scan detector, counting
connection attempts by source: it operates with a scope of “source
IP address”, and its state comprises the table that maps addresses to
counter values. As each counter depends solely on the activity of
the associated source address, we can “slice” both computation and
state at the scope-level (i.e., IP addresses) to parallelize the detector
without further inter-thread communication.

From the perspective of this model, signature-based IDSs tend
to have a single program-wide scope (e.g., flows in Suricata) and
hence enable deploying a specific hard-coded slicing strategy (e.g.,
per-flow load-balancing). Once we allow for more complex anal-
ysis paradigms, on the other hand, it becomes impossible to iden-
tify just a single scope and thus optimize the implementation ac-
cordingly. For example, in Bro every analysis script may structure
its processing differently, and hence require a separate scope. Our
work identifies all relevant scopes statically at compile-time by us-
ing a novel application of program slicing (§4). We then use the
information to drive a dynamic thread scheduler at run-time.

To demonstrate our approach we implement it inside a generic
IDS middle-layer platform that provides a set of domain-specific
programming constructs for expressing arbitrary network analysis
tasks. We find this approach effective in achieving scalability (§6).

We structure the remainder of the paper as follows: §2 develops
our concurrency model and the notion of scope; §3 discusses how
to generalize this notion to complex detection strategies. §4 dis-
cusses how to infer scope from IDS programs via static analysis,
and §5 formally defines a scope-aware event scheduler. §6 presents
experimental results, §7 discusses limitations of our approach, §8
presents related work, and §9 concludes the paper.

2. IDS CONCURRENCY MODEL
Modern hardware architectures offer plenty of parallelism to ad-

dress scalability concerns [5, 9]. Unfortunately, current mainstream
IDSs either do not take advantage of these parallel platforms, or in
doing so restrict their capability to simple, hard-coded detection
strategies, thus limiting flexibility.

Part of the problem is the lack of a clear definition of which
detection strategies a parallel IDS should support, and what should
be its concurrency model. In our work, we approach this issue
by (i) inferring a domain-specific but flexible model of how IDSs
process traffic, and (ii) leveraging this model to define a practical
IDS concurrency model.

2.1 Reference IDS
Before discussing a concurrency model, it is important to define

the structure and capabilities of our IDS. For the purpose of our
work we use an abstract IDS model based on Bro, whose flexible
structure fits our goal of constraining analyses as little as possible.

The first idea we mutuate from Bro is a clear architectural separa-
tion between fixed, low-level packet processing tasks (“mechanism”)—
such as checksum verification, stream reconstruction, protocol pars-
ing etc.—and the detection task proper (“policy”). Specifically, the
lower layer generates a stream of pre-digested events for the higher
layer to analyze.1 In order to achieve a fully parallel IDS, both
layers—low-level traffic processing and high-level analysis—must
be parallelized. There is a significant body of work showing that
low-level traffic processing can be efficiently parallelized at con-
nection granularity. Relevant approaches include the NIDS clus-
ter [40], novel IDS proposals such as Kargus [40] and Midea [44],
and various efforts to parallelize Snort [43, 45, 48]. Taken to-
gether, these results enable us to conclude that low-level traffic
processing—as well as intra-connection detection—can be efficiently
parallelized at connection granularity, scales well in practice, and

1Events can represent occurrences at all layers of the protocol
stack, thus not limiting detectors to a specific level of abstraction.
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Figure 2: High-level IDS architecture

does not represent the main challenge for a distributed IDS. There-
fore we focus on parallelization of high-level, inter-connection events.

In this context, our IDS allows users to define detection strategies
as event handlers expressed in a Turing-complete domain-specific
language. This approach encompasses the semantics of virtually all
popular IDS platforms, enabling our concurrency model to retain
generality. For the purpose of this paper, we express analyses using
a C-like syntax with a few IDS-specific primitives and data types
(see Figures 1, 8).

2.2 Event-based Concurrency
A natural approach to parallelization is to distribute events to an

array of IDS threads. The difficulty here is that high-level intrusion
attempts (and related behaviors) are typically fingerprinted by mul-
tiple correlated events. For example, consider the simple portscan
detector in Figure 1(a). The upper half of the figure describes the
event-generating logic (“IDS logic”), while the lower half describes
the detection algorithm. Albeit admittedly contrived, this program
adheres to our IDS model and works by correlating multiple con-
secutive events (connection attempts from a given host).

A strawman parallel version may look like the program in Fig-
ure 1(b). This implementation works by generating one event for
each new connection; events are fed to a pool ofN identical threads
in round-robin for processing. This example illustrates a funda-
mental issue: most detectors—even very simple ones—maintain
a certain amount of state that is progressively updated as events
are processed. The main problem of our strawman implementation
is that events assigned to different threads are not independent—
different threads may end up processing events related to the same
source. Therefore, access to the state of the detector must be medi-
ated by locks (“lock_element()” in the example) to avoid data races.
Similar to conventional approaches for general-purpose programs,
the parallel behavior is hardcoded in the script, and data races are
avoided by using costly synchronization primitives. Moreover, the
program in Figure 1(b) will in general route multiple events from
the same source to different threads. This causes each thread to
perform a sequence of accesses with little or no memory locality; if
the amount of state kept by the detector is significant, continuously
retrieving and updating unrelated pieces of state can severely ham-
per performance. Finally, this approach does not preserve ordering
of events. While this is irrelevant for our example, many real-world
IDS analyses (e.g., ones that correlate a sequence of malicious ac-
tions) are in fact sensitive to re-ordering.

A key insight about IDS analyses [30, 37] is that, even when no
particular constraints are imposed, they tend to naturally structure
themselves around independent units of processing—such as flows,
hosts, subnets etc.—and to access little or no state outside their
unit of processing. For example, code that examines the content of
a particular flow rarely requires access to information about other
flows; and our example scan detector has no need for correlating
counters between sources. In other words, partitioning events by

unit of processing also partitions the detector state in independent
subsets. In the rest of this paper we refer to a unit of processing
and its related state as the scope of the detector. Also, we refer to
a concrete instantiation of a scope as a context (e.g., if the scope is
“connection”, a context is a concrete instantiation of the 5-tuple).

Our concurrency model requires a scope to be associated with
each analysis. Said scope defines a contract between an analysis
and the underlying IDS runtime, where the analysis “promises” to
only access state within its scope. In exchange the runtime provides
the following guarantee: all network events within the same context
are processed sequentially by the same thread, in the order they
are received. For our simple scan detector, the scope is the source
address (c.src). Figure 1(c) depicts its implementation within this
paradigm: each connection is statically mapped (by simple hash-
ing, c.src%N ) to one of the available threads, guaranteeing that (i)
no two threads access the same state at the same time, and (ii) all
events from the same source are processed sequentially. It should
be noted that scope can be non-trivial to define, especially for anal-
yses aggregating multiple connections at the application layer. §3
presents one such analysis (a worm detector), and discusses an ap-
proach to generalize the notion of scope to those cases.

2.3 A Parallel IDS Architecture
We now outline a concrete IDS architecture based on the concur-

rency model discussed above. We have implemented and evaluated
this architecture; results are discussed in §6.

Our proposed architecture, depicted in Figure 2, assumes a pre-
processing step (1) to efficiently parse raw packets and generate
events (in the case of our example portscan detector, new connec-
tion notifications). A scheduler (2) then determines the appropri-
ate context for each event (the address of the connection origina-
tor), and maps all related processing to the corresponding thread.
The resulting stream of scheduled events is analyzed using multi-
ple analysis threads (3), each in charge of a set of contexts. Each
thread maintains and updates its own private, local detection state.

The scalability of this model depends crucially on finding suffi-
cient diversity in the analyzed traffic (in terms of number of con-
texts) to distribute load and state evenly across threads. Previous
work has shown that partitioning traffic at flow level [40] and sim-
ilar units [37] balances well and provides good thread-scalability.
Our evaluation, presented in §6, supports these conclusions.

Our model relies on (i) the availability of a well-defined scope
for each detection strategy, and (ii) the correctness of the event
scheduler. In §3 we discuss how scope can be generalized using
the concept of scheduling functions, and in §4 we propose an ap-
proach to automatically infer scope via program analysis. §5 then
gives a scheduling algorithm suited for our architecture.

3. GENERALIZING DETECTOR SCOPE
For simple analyses, the processing context of an event handler

is directly characterized by its input data. For example, in the



portscan detector of Figure 1 the context is given by the address
of the connection originator. Similarly, for a detector performing
per-flow signature matching each event’s context is determined by
its connection 5-tuple. Therefore, it is tempting to specify scope
as a subset of input parameters (such as c.src for the detector of
Figure 1(c)).

This assumption however does not hold for more complex anal-
yses, that may correlate multiple flows and different classes of net-
work events. In this section we demonstrate the issue using a sim-
ple worm detector, and we show how to achieve a more general
definition of scope via the concept of scheduling functions.

3.1 Multistep: a Trojan Detector
Malicious network activity by an infected host tends to consist

of various operations that appear normal if considered individually
but become significant once considered together. Our sample anal-
ysis implements a simple multi-step trojan detector (multistep in the
following), inspired by publicly available Bro didactic material [1].
Albeit referring to a fictional malware, it is inspired by threats seen
in practice, making it a realistic case study.

The target of the detector is a backdoor application that is asso-
ciated with the following sequence of operations: (i) the infected
host receives an SSH connection on port 2222; (ii) the host initiates
three distinct downloads: an HTML file from a web server, and a
ZIP and an EXE file from a FTP server; (iii) the host generates IRC
activity. Note that order is relevant; the same events in a different
order do not constitute a fingerprint.

We assume the availability of an underlying IDS layer that can
distill raw packet traffic into high-level events, as described in §2.1.
These events are fed to the detection logic, which consists of three
event handlers:

• ProtocolConfirmation: Triggered by the IDS when an application-
level protocol is being used within a connection. Used to de-
tect both the initial inbound SSH connection, and the final
outbound IRC connection.

• HttpRequest: Triggered when a host generates an HTTP re-
quest. Used to detect the HTTP download.

• FTPRequest: Used to detect both FTP downloads.

To maintain state the detector uses a persistent table, consisting
of an associative container indexed by IP addresses of potentially
infected hosts. The value associated with each IP is the current
detection state i.e., how many actions, from the sequence that fin-
gerprints the trojan, the host has already performed. An entry is
created in the table for each host that receives an SSH connection
on port 2222, and updated every time the same host performs one
of the activities described earlier. If a host completes all the actions
in the described order, the detector raises an alert.

3.2 Parallelizing Multistep
To determine the appropriate scope for multistep, we begin by

considering how data flows within an individual event handler, sum-
marized in Figure 3(a). Events from the input stream (1) are fed to
event handlers (2) as they arrive. Each handler derives a key from
input data (3), per the labels on the edges; and then uses that key
as an index to retrieve relevant detection state (4). First, just by
considering the inputs to each handler, it is evident that a per-flow
approach to parallelism is infeasible, since the various event han-
dlers operate on different connections. If we look for another, more
general scope to partition the traffic (connection originator? con-
nection responder?), a problem quickly becomes apparent: Each

Host 

address 

Detection 

state 
 

HTTP 

Request 

 
FTP 

Request 

      Per-host detection state 

c.dst if p == SSH 

c.src if p == IRC 

c.src 

c.src 

Inputs: 

connection c 

string method 

string URI 

Inputs: 

connection c 

protocol p 

Inputs: 

connection c 

string command 

string argument 

1 1 2 2 3 3 

4 4 

Protocol 

Confirmation 

(a) 

ProtocolConfirmation(c): 

if (p == SSH) return c.dst 

else return c.src 

HTTPRequest(c): 

return c.src 

FTPRequest(c): 

return c.src 

(b) 

Scheduling functions: 

Figure 3: Dataflows (a) and scheduling functions (b) for multistep

handler independently derives the index used to retrieve the detec-
tion state. As can be seen, there is no unique way to define a scope
that applies to all the components of the application, since the in-
formation of interest can be either the originator of a connection,
or the responder. It is not even possible to assign a well-defined
scope to individual handlers: in the case of the ProtocolConfirma-
tion handler, the index can be either the connection originator or
responder depending on which protocol is being detected.

These considerations suggest that attempting to define scope from
a network perspective, i.e., statically and in terms of protocol-related
concepts (flow, connection originator, etc.), is not suitable for cross-
layer, complex analyses. Instead, we propose considering the issue
from an “analysis-centric” point of view: all the possible inputs
that cause the same detection state to be accessed belong to the
same context. In other words, we make the definition of scope de-
pendent on the computation performed by the program itself.

3.3 A Flexible Approach to Scheduling
We observe that most analyses are structured around a set of ta-

bles, and their persistent state is fully defined by the values of the
indices used to access said tables. Consider the ProtocolConfirma-
tion handler in Figure 3(a). The handler is executed each time a new
connection is observed, and receives an identifier p for the protocol
being used. If p == IRC, the handler accesses the table based on
the source of the connection (c.src). If p == SSH, it does the same
using the destination of the connection (c.dst). The key point is that
once the table is accessed, the scope gets fully disambiguated.

This suggests a way to conceptually partition a set of events into
contexts: two events are within the same context if they cause the
detector to access the same index (indices) in its table(s). For ex-
ample, an IRC connection from address 192.168.1.12 and a SSH
connection to the same address will both cause multistep to update
the same table entry. At the same time, events generated by a an-
other infected host/IP will affect a different entry.

This rule can be directly used for scheduling, by mapping all
events resulting in the same table access(es) to the same context,
and therefore to the same thread. But there is a caveat: the value of
table indices can only be determined when the event handler exe-
cutes, i.e., after the scheduling decision has been done. However, a
large number of event-driven analyses, regardless of their complex-
ity, statelessly compute table indices from the values of their input
parameters (event data).



Our approach then consists in annotating each event handler with
its index computation, which we call the scheduling function A.
Figure 3(b) outlines the simplest possible scheduling functions for
the handlers in the multistep example. The role of A is to guide
scheduling by deriving the scope from input values for each new
event, before processing it. Once scheduling functions are avail-
able, parallelization can proceed by executing the appropriate schedul-
ing function on each input, and using the result to map events
within the same context (i.e., accessing the same data) to the same
thread. As Figure 3(b) illustrates, expressing scope in terms of
scheduling functions does not introduce additional overhead: a min-
imal scheduling function expresses precisely the operations that the
IDS logic must perform to derive the appropriate context for an
event.

In §4 we give algorithms to automatically construct an efficient
scheduling function A for a given program P via static program
analysis. An advantage of this technique is that the parallelization
strategy is derived offline, i.e., scheduling functions can be fully
constructed before running the program.

4. INFERRING SCOPE
The approach outlined in §3 requires, for each analysis, a schedul-

ing function A. The simplest approach for generating A is to re-
quire the developer to annotate each program with an appropri-
ate scheduling function. This is however impractical, as it further
complicates the user’s already difficult task of implementing effec-
tive traffic analyses. Developing an analysis and the corresponding
scheduling function is cumbersome, and the duplication of code
with similar purpose makes programming errors more likely. If
a program and its scheduling function become inconsistent, the
analysis risks incurring false negatives. Moreover, reasoning about
scheduling functions requires the user to focus on a technical as-
pect of the system—parallelization—unrelated to the main goal of
intrusion detection. Instead, our goal is to provide an IDS system
with transparent scalability, leaving the user free to concentrate on
developing effective analyses.

We therefore consider the problem of automatically generating
the scheduling functionA for a given IDS program P . If Ind(i) is
the set of indices accessed by P , A is defined so that Ind(i) ⊆
A(i) for all i ∈ I (where I is the set of all possible program
inputs). We begin by observing that the most obvious definition
of A is P itself. Making A equal to P results in a scheduling
function that is fully precise, since for every input i it always returns
exactly the set of indices Ind(i) that P will access. However, such
A is also terribly inefficient, as it causes P to run twice on each
input: first to perform scheduling and then to process the event. The
problem then becomes to constructA an as an over-approximation
of P , such that Ind(i) ⊆ A(i) and A executes faster than P .

To construct such an approximation, we observe that for many
IDS heuristics only a small part of the program is dedicated to com-
puting the indices in Ind(i), while the rest implements the detec-
tion logic. Therefore, a compact (with respect to the size of P )
scheduling function A can be obtained by pruning all the state-
ments, in P , that are irrelevant for the computation of Ind(i). In
the rest of this section, we describe static analysis algorithms that
constructs the scheduling functionA by pruning P . As both the al-
gorithms are based on program slicing, we provide a brief primer.

4.1 Program Slicing Primer
Program slicing [27, 35, 47] is a program analysis technique that

provides two primitives: (i) determine which statements in a pro-
gram influence the value of a variable at a given point (backward
slicing), and (ii) determine which statements are influenced by the

value of a variable at a given point (forward slicing). It does so by
leveraging the program dependency graph (PDG), a graph repre-
sentation of a program where nodes are statements and edges rep-
resent data and control dependencies between statements. Thus for
example backward slices can be constructed by computing back-
ward reachability from the statements of interest. Figure 4(a-b)
presents an example of a simple program and its PDG. (We discuss
the figure in more detail below.)

In this paper, we use program slicing to isolate the portion of
analysis programs that generates table indices. Specifically, given
an input program P we want to extract the statements relevant to
the scheduling functionA, i.e., those that transform an input i into a
set of table indices Ind(i). To do so, we generate a backward slice
including statements that affect the value of indices in Ind(i). The
resulting slice S will contain a superset of the statements of interest.
We then leverage the domain-specific nature of such programs to
refine the output of slicing and generate scheduling functions in a
fully automated way. To the best of our knowledge this application
of program slicing to the domain of IDS parallelization is novel,
and an important contribution of our work.

We have developed two algorithms to generate the scheduling
function A via program slicing. The first algorithm, presented in
§4.2, is optimized for the common case where the scheduling func-
tion A can be expressed as straight-line code. The second algo-
rithm, presented in §4.3, refines the first to produce better results
when S includes conditional instructions.

4.2 Flow-insensitive Algorithm
In §3 we introduced the idea that IDS analyses can be divided in

two broad classes: simple analyses whose scope can be expressed
in terms of protocol-level units (e.g., analyses aggregating traffic by
source address, connection, etc.) and more complex ones with non-
trivial scope (e.g., our multistep example). We begin by describing
an algorithm targeted at the former, simpler class.

Our algorithm is based on the insight that, for many simple anal-
yses, the index used to access analysis state is either an input pa-
rameter, or is obtained by a simple, straight-line computation from
the input parameters (e.g., extracting a struct field, such as in Fig-
ure 1(c)). In these cases the value of the index does not depend on
conditional instructions. Therefore, scheduling function generation
can be greatly simplified by only considering data dependencies.

Algorithm 1: Flow-insensitive A generation

1 Compute DDG G from program P
2 Find the set of table accesses C in G
3 Compute the backward slice S from C
4 Remove redundant table accesses from S
5 Emit code for S

Algorithm 1 lists the high-level steps through which scheduling
functions are generated. We describe each step through an exam-
ple from the multistep application introduced in §3.1. The example
consists of one of the application’s event handlers, HttpRequest.
Pseudocode for the event handler is given in Figure 4(a). Input
parameters are 1) the identifier of the connection generating the re-
quest, 2) the request method (e.g., “GET” or “POST”), and 3) the
URI being requested. The handler first checks whether the request
matches some preconditions, then verifies if an entry for the con-
nection originator exists in its state table. If so, and the detection
state associated with the originator is in the WAIT_HTTP state, the
handler advances the detection state to WAIT_FTP.



map<addr, hostState> hosts; 

 

void HttpRequest(connection c, 

                 string method, 

                 string uri) 

{ 

  if ( method == "GET" && 

       "dl.html" in uri) 

  { 

    if ( c.src in hosts) { 

      if ( hosts[c.src] == WAIT_HTTP )  

           hosts[c.src] == WAIT_FTP; 

      }  

   } 

} 
 

     (a) Program text (pseudocode) 

 
addr SF_HTTPRequest(connection c) 

{ 

  addr v3 = struct.get c ũsrcŪ 
  return.result v3 

} 

 
    (e) Scheduling function (assembly) 

 

 

method uri 

v0 = equal method “GET” v1 = string.find uri “dl.html” 

if.else v2 

v2 = bool.and v0 v1 

c 

v3 = struct.get c “src” 

v4 = map.exists hosts v3 

if.else v4 

v5 = map.get hosts v3 

v6 = equal v5 WAIT_HTTP 

if.else v6 

map.put hosts v3 WAIT_FTP 

(b) Original PDG (assembly) 

c 

v3 = struct.get c src 

v4 = map.exists hosts v3 

v5 = map.get hosts v3 

map.put hosts v3 WAIT_FTP 

(c) Slicing output 

c 

v3 = struct.get c src 

v4 = map.exists host v3 

(d) Output after filtering 

Figure 4: Flow-insensitive algorithm. Dashed arrows represent control dependencies; shaded nodes represent table accesses.

Step 1 in Algorithm 1 computes the PDG. The algorithm only
considers data dependencies, so the result is really a data depen-
dency graph (DDG). Figure 4(b) shows the full PDG for the pro-
gram; dashed lines represent conditional dependencies (ignored in
this phase). Note that the original program has been converted
to the intermediate assembly-like representation of HILTI ([38];
see §6.2), where each node corresponds to an atomic instruction
(conditional statements correspond to if.else branch instructions).
Step 2 computes the set C of table accesses (shaded nodes in the
graph). Step 3 performs backward slicing as described in §4.1, re-
turning the slice S which contains all program statements relevant
for the scheduling function A. Figure 4(c) describes the output of
this step for our example. Step 4 (Figure 4(d)) filters redundant
table accesses, i.e., accesses that use the same index variable such
as v3, (which corresponds to the high-level variable c.src in Fig-
ure 4(a)). These are easily identifiable since as part of the PDG
construction we transform the code into SSA form [20]. Finally,
during code generation (Step 5) the slice is translated to a straight-
line code sequence, and each table access is replaced by an instruc-
tion returning the corresponding index. The scheduling functionA
for our example is reported in Figure 4(e).

Due to the simplicity of the example, the description above does
not account for the situation where some index value depends on
control flow, or where the application accesses multiple indices.
The algorithm transparently deals with these occurrences by return-
ing all possible indices that the execution may generate.

Discussion: We find that the algorithm described in this section
works well in a variety of use cases (see §6.4). Its main limitations
are that (i) being flow-insensitive, it cannot soundly analyze pro-
grams that have loops in the index computation; and (ii) when table
indices depend on conditional instructions, the resulting schedul-
ing function is imprecise. In the next section we present a slicing
algorithm that overcomes these limitations.

4.3 Flow-sensitive Algorithm
Certain analyses contain conditional constructs, such as branches

and loops, in their index computation. These are typically the anal-
yses for which the scope cannot be defined simply in terms of pro-
tocol units. One such example is the ProtocolConfirmation han-
dler in our multistep example, described in §3.1. To be effective, a
scheduling function A for such a program P should keep as much

as possible of the original control flow. To do so, the backward
slice S on P must include both control and data edges.

We note, however, that even with this approach it is not possible
to preserve all control flow. In fact, the slice S may retain branch
instructions whose outcome depends on the content of the table,
such as for example <if elem1 in table then v = table[elem2]>.
Such an expression cannot be executed in a scheduling function,
which “lives” in the scheduler and does not have access to the table.
We deal with this situation by pruning such branch instructions (<if
elem1 in table>), thus causing the instructions that depend on them
(<v = table[elem2]>) to be executed unconditionally.

Algorithm 2: Flow-sensitive A generation

1 Compute PDG G from program P
2 Find the set of table accesses C in G
3 Compute the backward slice S from C
4 Remove from S branch conditions that are

data-dependent on statements in C
5 Remove superfluous branch conditions from S
6 Remove redundant table accesses from S
7 Recompute the slice S
8 Emit code for S

Algorithm 2 describes the high-level steps through which flow-
sensitive scheduling function generation is performed. We discuss
each step using a simplified version of the ProtocolConfirmation
event handler from multistep (§3.1). Pseudocode is given in Fig-
ure 5(a). The program receives as inputs a connection ID and a
protocol ID. If the protocol is SSH and the destination port is 2222,
the handler creates a new entry for the connection responder in its
state table. If the protocol is IRC, the handler checks if the table
has an entry for the connection originator; if yes, it emits an alert.

Steps 1-3 of Algorithm 2 correspond to the same steps in Algo-
rithm 1, with the difference that in Algorithm 2 the analysis builds
the full program dependency graph. Therefore, the slice S returned
by Step 3 contains both control and data dependencies (Figure 5(b),
with control edges represented as dashed arrows). Steps 4-7 further
prune the subgraph. In Figure 5(a) and (b), nodes removed dur-
ing each step (and the corresponding lines in the high-level pseu-
docode) are marked with the step number. Step 4 removes branch



set<addr> hosts; 

 

void ProtocolConfirmation(connection c, 

                          int proto) { 

    if (proto == SSH && 

         c.port == 2222) { 

        if ( c.dst !in hosts ) 

            add(hosts, c.dst); 

    } else if ( proto == IRC ) { 

        if ( c.src in hosts ) 

            report_host(c.src); 

    }} 

 

         (a) Program text (pseudocode) 

c 

v1 = struct.get c port 

v2 = equal v1 2222/tcp v0 = equal proto SSH 

proto 

v3 = bool.and v0 v2 

if.else v3 

v4 = struct.get c dst v6 = equal proto IRC 

v5 = set.exists hosts, v4 if.else v6 

if.else v5 
v7 = struct.get c src 

v8 = set.exists hosts v7 set.insert host v4 

c 

v1 = struct.get c port 

v2 = equal v1 2222/tcp 

proto 

v0 = equal proto SSH 

v3 = bool.and v0 v2 

if.else v3 

v4 = struct.get c dst v7 = struct.get c src 

v5 = set.exists hosts v4 v8 = set.exists hosts v7 

(c) Output after filtering (assembly) 

addr SF_ProtocolConfirmation(connection c, 

                             int proto { 

       v0 = equal proto SSH 

       v1 = struct.get c port 

       v2 = equal v1 2222/tcp 

       v3 = bool.and v0 v2 

       if.else v3 @L0 @L1 

L0: v4 = struct.get c dst 

       return.result v4 

L1: v7 = struct.get c src 

        return.result v7 

} 

 

          (d) Scheduling function (assembly) (b) Slicing output (assembly) 

4 4 

6 6 

5 5 

7 7 

5/7 5/7 

4 4 

6 6 

Figure 5: Flow-sensitive algorithm (multistep example)

instructions that cannot be decided at run-time, as discussed above.
In Step 5, we also heuristically remove two classes of superfluous
branches: redundant ones, i.e., branches that would lead to the same
set of indices Ind(i) regardless of whether they are taken or not,
and branches for which one side would not lead to any table access.
Step 6 removes redundant table accesses, similar to Step 4 in Al-
gorithm 1. Finally, since the pruning performed in Steps 4-6 may
have disconnected further nodes from the rest of the graph, in Step
7 the program slice S is recomputed to filter them out. The result-
ing graph, and the scheduling function emitted by code generation
(Step 8) are reported respectively in Figure 5(c) and 5(d).

Discussion: By preserving part of the original control flow Algo-
rithm 2 supports loops within scheduling functions, and can gener-
ate more precise results than Algorithm 1.

4.4 Soundness of Scheduling Functions
We define a scheduling function A to be sound if Ind(i) ⊆
A(i), i.e., if A returns, for every input i, a superset of the in-
dices the program P will access on that input. A relevant issue
is whether the algorithms described in this section generate sound
scheduling functions, because this guarantees that each detector in-
stance receives all the inputs relevant for its task. A program P is
transformed into a scheduling function A through two operations:
a slicing procedure, that extracts a slice S from P , and the pruning
step, that further removes various statements from S and restruc-
tures control flow. Intuitively, both transformations must preserve
soundness.

We first observe that, as our slicing procedure is correct, it pre-
serves all statements in P relevant to compute Ind(i). There-
fore executing S on any input i generates a set of indices S(i) s.t.
Ind(i) ⊆ S(i). We then need to show that S(i) ⊆ A(i).

For a slice S, we define πS(i) as the program path on input i,
i.e., the sequence of instructions executed by S when run on input
i. We then define the set of all possible paths executed by S as ΠS .

Both Algorithms 1 and 2 create an overapproximationA of S by
removing some (or all) branches and executing the dependent in-
struction unconditionally. Therefore, for each input i, A will gen-
erate a finite set of paths ΠA(i) ⊆ ΠS . The set ΠA(i) has the
following property. For every input i, let πS(i) be the path gener-

ated by the slice S. Then there exists a path πA(i) ∈ ΠA(i), that
executes the data-flow instructions in πS(i). Note that if πA(i) ex-
ecutes the same data-flow instructions as πS(i), it will generate the
same table indices. Informally, the property implies that for each
possible input i, A generates a superset of the indices returned by
S on the same input. Therefore Ind(i) ⊆ S(i) ⊆ A(i), and A is
sound.

4.5 Running Multiple Scheduling Functions
A full-fledged IDS is expected to run several different analyses

on the same traffic. In general, each analysis can have a different
scope, and a different scheduling function. When an event is gen-
erated, the IDS must therefore run the scheduling functions for all
analyses registered for that event. However, the number of possible
scopes will be substantially smaller than the number of analyses in
the system. Indeed, a 2009 analysis of Bro’s script corpus showed
that the majority of event handlers could be mapped to one of only
four scopes [37]. If two scheduling functions have equal scope only
one needs to be executed, reducing the amount of computation re-
quired. Furthermore, it may be possible to merge two schedul-
ing functions with different scopes, as long as one subsumes the
other. For example, the scope<src IP, dst IP> subsumes the scope
<src IP, dst IP, src port, dst port, protocol>. Scheduling according
to the former scope is safe even if the application uses the latter,
more specific scope.

5. SCHEDULING ALGORITHMS
Scheduling functions can infer scope for each program execu-

tion, but they do not imply any concrete scheduling algorithm. An
issue is therefore how to perform scheduling efficiently. This sec-
tion formalizes the scheduling problem as an invariant, and dis-
cusses how scheduling algorithms can maintain this invariant.

An IDS analysis within our model can be formalized as a pro-
gram P that executes in an event-driven fashion, updating its state
every time a new input is received. Given such a program, let I be
the space of inputs and S be the state space of the program. The
type of P is I → (S → S), i.e, given an input i ∈ I and a state
s ∈ S the new state of the program is given by P (i)(s). Without
loss of generality, assume that the state space of the program is a



possibly unbounded array or table T [0 · · · k] of bytes. Given the
program P , let Ind(i) be the set of indices of the table T that are
read by or written to when executing the program P with input i.
Furthermore, we stipulate that P runs within a multi-threaded sys-
tem, where each execution of P is in general scheduled to a differ-
ent thread. Each thread maintains its own private copy of the table
T holding program P ’s state. Throughout the rest of the discus-
sion assume that the program P is fixed (i.e., everything implicitly
corresponds to the program P ).

A scheduler (denoted by Sch) takes a stream of inputs from
I and maps them to threads. Let mSch(i) be a positive integer
that denotes the ID of the thread to which Sch maps the input i.
Assume that the scheduler Sch , having already scheduled inputs
i1, · · · , ik, receives a new input ik+1, and assigns it to the thread
ID mSch(ik+1). For a program P we want the scheduler Sch to
maintain the following invariant Inv:

mSch(ix) 6= mSch(iy)⇒ Ind(ix) ∩ Ind(iy) = ∅

thus enforcing that inputs are mapped to different threads only if
the corresponding executions of P do not share state.

5.1 A General Scheduler
To maintain the invariant, a scheduler has to evaluate Ind(i1) ∩

Ind(i2) for every two inputs i1 and i2. In our approach we do not
compute Ind(i) directly; rather we assume to have a scheduling
function A such that for all i ∈ I, Ind(i) ⊆ A(i).

We will now consider a scheduler SchA which makes use of
the scheduling function A. Assume that the scheduler SchA has
already scheduled the inputs i1, · · · , ik. Let mA(ij) be the thread
ID corresponding to the input ij (for 1 ≤ j ≤ k). We assume
that the schedule so far satisfies the invariant Inv. Suppose the
scheduler receives a new input ik+1. There are three cases:

Case 1: ik+1 is equal to ij for some j ∈ [1, · · · , k].
In this case, schedule ik+1 on the same thread as ij .

Case 2: A(ik+1) ∩ Ind(ij) = ∅ for all j ∈ [1, · · · , k].
In this case, ik+1 is scheduled on an arbitrary thread andmA(ik+1)
is assigned the ID of this thread.

Case 3: A(ik+1) ∩ Ind(ij) 6= ∅ for one or more j ∈ [1, · · · , k].
In this case, the setA(ik+1) may overlap with multiple past Ind(ij),
where each ij was scheduled to a different thread. Therefore, it
is in general not possible to pick a thread ID mA(ik+1) that di-
rectly maintains the invariant. It is however still possible to ensure
that computation remains consistent, by transferring state across
threads. For each index x ∈ A(ik+1), we locate the thread holding
the respective table entry T [x]. We then consolidate all said table
entries on the private state of a single thread. Finally, we schedule
ik+1 on the same thread, and mA is updated accordingly.

5.2 Practical Event Scheduling
The scheduler outlined above has two main drawbacks. First, it

needs to keep track of past decisions, to ensure consistent schedul-
ing of future events. Also, it may pause computation and move data
across threads, in order to ensure that each program run has access
to all necessary state. Both issues generate overhead.

We note however that, for many relevant analyses, Ind(i) is a
singleton set for all i ∈ I. In other words, for every input i the
program P only reads or writes from a single index in the table T
(i.e., |Ind(i)| = 1). In particular, this applies to all analyses that
do not correlate information across contexts.

As singleton sets cannot partially overlap, case (3) from §5.1
cannot happen, and data movements are never necessary. More-

Application Approach/Key data structures
Flowbytes Counts the amount of per-flow traffic and generates

an event for each flow crossing a given threshold.
Httpvol Tracks the amount of traffic generated by external

HTTP hosts, returns aggregate data sorted by host.
Scandetect Detects horizontal and vertical port scans, inte-

grating information from connection attempts and
HTTP requests.

Multistep [1] Proof-of concept worm detector, inspired by a di-
dactic policy script for the Bro IDS. Detects worm
activity by tracking hosts that generate a specific se-
quence of events.

Dnstunnel [19] Simple DNS tunnel detector, tracking hosts that gen-
erate a large number of DNS requests without con-
tacting the resolved addresses.

Sidejack [19] HTTP sidejacking detector. Locates reuses of the
same authentication cookie by unrelated users.

Table 1: Summary of applications used in the evaluation.

over, scheduling can be performed statelessly, i.e., without keeping
track of past decisions. LetH be a hash function from table indices
to positive integers. The scheduler can then simply schedule an in-
put i on the thread with ID H(Ind(i)). Since H is a function, the
scheduler clearly satisfies the invariant Inv.

In practice, for most relevant detection analyses it is possible to
derive a scheduling functionA that returns a singleton set, enabling
the use of this simple hash-based scheduler. If a system includes
limited number of analyses that do not satisfy this condition (i.e.,
each run of the analysis may access multiple indices), a possible
solution is to run them on a dedicated thread/core.

6. EVALUATION
Experimental highlights. The goal of this section is to evaluate the
effectiveness of scope-based scheduling in light of the following
questions:

1. Is our concurrency model effective in exploiting the paral-
lelism present in network traffic?

§6.3 shows that our approach is effective in distributing load
across multiple CPU cores. Throughput improvements are
significant and only limited by the amount of parallelism
present in the traffic.

2. Can scheduling functions be automatically determined via
static analysis?

The characterization presented in §6.4 shows that our anal-
ysis returns scheduling functions that are correct, perform
only simple stateless operations, and are close to minimal.

3. Does our approach bring improvements over traditional mul-
tiprogramming techniques?

Qualitative analysis in §6.5 suggests that our concurrency
model simplifies writing and running efficient IDS analyses,
as it transparently provides data isolation.

6.1 Benchmarks and Traces
To perform the evaluation we selected six “intrusion detection

kernels”, inspired either by existing literature or by discussions
with domain experts. Table 1 summarizes them.

These programs represent various classes of operations that IDSs
commonly perform; our goal is to evaluate how our technique works
on detectors of varying complexity and heterogeneous scopes. In
particular, Flowbytes and Httpvol model measurement scripts that
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Figure 6: Thread load for full and filtered trace

compute common traffic statistics. Scandetect is an example of
cross-layer analysis. Multistep and Dnstunnel implement analy-
ses that correlate multiple events/flows to detect suspicious activ-
ity. Finally, Sidejack is an example of a complex detection heuristic
whose scope is defined inside the application layer (HTTP cookie).

We base our evaluation on a packet trace captured at the border
gateway of the UC Berkeley campus. In order to obtain a real-
istic, diverse workload we recorded and merged the traffic flow-
ing through the campus IDS cluster—26 backend systems behind a
front-end load-balancer that splits up the total traffic on a per-flow
basis [40]—limiting it to the protocols of interest for our applica-
tions (HTTP, FTP, SSH, DNS, IRC). The resulting trace comprises
326GB in total volume, includes 349M packets, and covers a times-
pan of 15 min.

6.2 Analysis/Simulation Framework
One of the design goals of our approach is to be as architecture-

and platform-independent as possible. We therefore chose to im-
plement our benchmark in HILTI [38], an assembly-like language
designed to be a domain-specific yet abstract representation of traf-
fic analysis tasks. HILTI provides a mix of basic instructions and
common high-level primitives (regexp matching, associative con-
tainers, etc.), and supports multithreading via lightweight virtual
threads. Code generation and execution are achieved using a LLVM-
based compiler and a dedicated runtime. In order to carry out our
slicing algorithms (§4), we augmented the HILTI toolchain with a
simple program analysis infrastructure.

The IDS pipeline outlined in Figure 2 consists of three stages:
low-level traffic parsing, event scheduling, and high-level event
processing. Currently the HILTI runtime implements all the lan-
guage features (including multithreading), but lacks traffic parsing
and event scheduling functionality. To sidestep this limitation, we
emulate the IDS pipeline by implementing the stages separately.
Each stage generates intermediate output on disk, which is then fed
to the next stage.

In more detail, we first manually generate high-level events by
pre-processing the raw network trace with Bro. This distills our
network trace into an event trace which includes 298M high-level
events. Second, we generate scheduling functions by running our
algorithm on the HILTI implementation of our benchmarks. This
enables us to verify the correctness and quality of autogenerated
scheduling functions (results are discussed in §6.4). Furthermore,
we use the scheduling functions to partition the high-level event
trace from Stage 1 into sub-traces.

In the third stage, we instantiate a pool of HILTI analysis threads,
and we use a trace loader to feed each event sub-trace to a different
thread. Each thread performs all the analyses described in Table 1.
This setup faithfully reproduces how events would be distributed
among threads in a full system, and allows us to evaluate the perfor-
mance of multiple threads running within our concurrency model.
Results are discussed in §6.3. We run all of our experiments on a
64-bit Linux system with two quad-core Intel Xeon 5570 CPUs and
24GB of RAM.

6.3 Parallelism in Network Traffic
This part of our evaluation addresses the issue of whether our

approach effectively exploits parallelism present in network traffic.
In this experiment, we analyzed load balancing and throughput of
the system when running with 1 to 8 hardware threads. We used the
approach outlined above, partitioning the Bro event trace across the
analysis threads.

Load balancing: For each run, we compute the load of each thread,
defined as follows. LetN be the number of threads and TN

i the pro-
cessing time for the i-th thread in the N -thread setting. The load

for the same thread is defined as LN
i =

TN
i

T1
1

. In other words,
“load” describes the processing time for a given thread inN -thread
setting, normalized to the processing time in the single-threaded
setting. In an ideal situation where work is perfectly distributed
among threads, the load for each thread i would be LN

i = 1/N . In
practice, load deviates from the ideal, for two reasons. The first is
that work is never perfectly distributed, resulting in threads whose
load is above or below the ideal (i.e., they perform either less or
more than their “fair share” of work). The second is that adding
more threads increases resource contention, imposing a certain ar-
chitectural overhead. Architectural overhead results in the average
thread load being greater than 1/N ; the gap is expected to increase
asN increases (i.e., the overhead becomes more significant as more
threads are added).

Figure 6(a) shows the maximum, minimum and average load
(relative to the single-threaded case) among all threads for each run.
We verified that all threads remain CPU-bound throughout the test.
First, we observe that the average load remains close to the ideal for
all the measurements. This shows that the architectural overhead
imposed by running multiple threads in parallel is limited (average
thread load is within 3% of the ideal). The figure however also
shows some imbalance in the distribution of load among threads.
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Figure 7: Throughput increase as a function of #CPU cores

Such imbalance can limit the overall throughput, with some threads
being overloaded while other ones are not running at full capacity.
To explain this result, we investigated the composition of traffic
in our trace. Similarly to previous studies [16], we found that the
distribution of data among hosts is asymmetric in nature, with the
25 busiest host pairs (of approximately 1M) accounting for 20%
of the data. Note that in a system with 8 cores each should carry
approximately 12.5% of the traffic processing load to achieve per-
fect balancing. In our context, even a minor asymmetry in the load
distribution can have a significant impact. In order to quantify this
impact, we repeated the experiment for the 1-, 2-, 4- and 8-thread
cases after filtering out the top 25 host pairs. Results are reported
in Figure 6(b). As can be seen, variations in per-thread load are
significantly more confined around the average, leading to a more
evenly balanced workload. This supports our hypothesis that load
asymmetry is chiefly caused by a limited number of “fat flows”.
We further discuss the issue in §7.

Throughput: For each experiment, we also computed the through-
put increase, defined as IN = 1

max(LN
i )

. IN quantifies the de-
crease in load (compared to the single-threaded case) for the busiest
thread in the N -thread setting. This definition, albeit simple, has
the advantage of allowing to estimate throughput without making
assumptions on how the system is implemented. In fact, in absence
of buffering and other optimizations, the busiest thread determines
the overall throughput. Results, depicted in Figure 7, reflect the
conclusion discussed in the context of load balancing. Through-
put improvement is significant, although sensitive to asymmetries
in load distribution.

6.4 Characterization of Scheduling Functions
We implemented both the flow-insensitive and flow-sensitive al-

gorithms described in §4. They generate the same scheduling func-
tions for all benchmarks, except for multistep and sidejack, whose
slices contain conditional constructs—in this case, the flow-sensitive
algorithm produces more precise results. Therefore, in this section
we only present results for the flow-sensitive algorithm.

Correctness: To ensure correctness of our benchmark implementa-
tions, we initially run them sequentially on sample synthetic traces
and manually verified their output. The next step was to ensure that
the benchmarks keep working correctly when parallelized using the
scheduling functions generated by our algorithm. To do so we com-
pared the output of the parallelized and the sequential version on a
variety of test traces, verifying their equivalence.

Effectiveness: Figure 8 presents simplified, high-level versions of
event handlers and respective scheduling functions from three of
our benchmarks for illustration. For most applications, scheduling
functions are minimal and perform simple struct field extractions/-
concatenations. A few cases present opportunities for further op-
timization apparent to a human expert. For example, the function
returned for multistep’s ProtocolConfirmation (Figure 8b) performs
several checks that are not relevant, since the return value can be
determined purely by observing the protocol detected (proto).

Overall, results in this section suggest that our approach is effec-
tive in producing correct and compact scheduling functions.

6.5 Characterization of Concurrency Model
A relevant question is how our concurrency model fares—in terms

of ease of use and efficiency—compared to traditional multipro-
gramming techniques that make use of inter-thread synchroniza-
tion. In order to perform a qualitative comparison, we created an
alternative implementation of our benchmarks that relies on locks
to provide data isolation between threads. In this version, a sched-
uler distributes events randomly among threads, and analyses use
global locks to guard accesses to shared data structures.

When developing the benchmarks for our lock-free concurrency
model we were able to develop code in a single-threaded setting,
and directly reuse it in a parallel scenario. Conversely, implement-
ing the lock-based version required some modifications to ensure
critical sections were properly guarded. In terms of performance, as
expected the intensive use of locks led to little observable through-
put improvement as more threads were added (limited to 6% on
our traces). While switching to lock-free data structures is certainly
possible, this would add further complexity to the application and
runtime design. Moreover, each handler must at the very least hold
logical locks on the individual table element(s) while they are being
updated. Conversely, our approach guarantees ordering and mini-
mizes inter-thread synchronization by design, which proves to be a
natural fit for programming IDS analyses.

7. DISCUSSION

Scheduler throughput: Scheduling functions are stateless and con-
sist mainly of short, straight-line code sequences, enabling high
scheduling throughput. Still, on a large system the scheduler could
potentially become a bottleneck, as it executes scheduling functions
on all incoming events. We note that many analyses tend to slice
traffic using simple scopes, such as per-host or per-connection. The
IDS runtime can therefore provide highly optimized, “hardcoded”
versions of such scheduling functions. Another solutions to scale
further would be to parallelize the scheduler itself [30]. This can
however introduce ordering issues, which we discuss in the follow-
ing. We also note that not all events require scheduling decisions.
In particular, timed events—such as state expirations—are implic-
itly associated with the thread that generated the timer.

Event ordering: If low-level traffic parsing and/or event schedul-
ing are parallelized at the connection level, events generated by dif-
ferent flows may not reach the analyzer in order, as low-level pro-
cessing of different flows may be performed by different threads.
This could affect high-level heuristics whose scope includes multi-
ple connections. A possible solution is to associate each event with
a timestamp, and to then use the timestamps to sort the threads’
input queues, as in [49]. Another approach is to make the detec-
tor agnostic to order, i.e., events are correlated as long as they are
received within a certain time interval.



Scandetect program text 

void SignatureMatch (Signature s) { 

  if ſsŜid ʰʰ ũhttp-reqŪ ŶŶ sŜid ʰʰ ũnon-http-reqŪƀƇ 
    if (s.c.id.orig_h in alarmTable) return; 

    if (s.c.id.orig_h in hostTable) { 

      State t = hostTable[s.c.id.orig_h]; 

      if (s.c.id.resp_h in t.dests) { 

        t.dests[s.c.id.resp_h] += 1; 

        if (t.dests[s.c.id.resp_h] > v_threshold) { 

          report_v_scan(s.c.id.orig_h); 

          alarmTable.add(s.c.id.orig_h); 

        } 

      } else { 

        t.dests[s.c.id.res_h] = 1; 

        if (len(t.dests) > h_threshold) { 

          report_h_scan(s.c.id.orig_h); 

          alarmTable.add(s.c.id.orig_h); 

        } 

      } 

    } else hostTable[s.c.id.resp_h]=CreateEntry(); 

  } 

} 

 

Scandetect scheduling function 

void SF(Signature s)  

    return s.c.id.orig_h; 

Flowbytes program text 

void NewPacket(connection c, 

               packetHeader p) { 

  int len = c.ip.len; 

 

  if (c.ip.p != TCP && c.ip.p != UDP) 

    return; 

 

  if (c.uid in flowTable) 

    len += flowTable[c.uid]; 

  flowTable[c.uid] = len; 

 

  if (len > threshold) 

      report_flow(c.uid); 

} 

 

 

Flowbytes scheduling function 

void SF (connection c)  

    return c.uid; 

 

Multistep program text 

void ProtocolConfirmation(connection c, int proto){ 

  if (proto == SSH && c.id.resp_p == 2222/tcp      

      && c.id.resp_h == local_subnet) { 

    if (c.id.resp_h !in hostTable) 

      hostTable[c.id.resp_h] = CreateEntry(c); 

  } 

  else if (proto == IRC && 

           c.id.orig_h == local_subnet) { 

    if (c.id.orig_h in hostTable) { 

      if (hostTable[c.id.orig_h].state == WAIT_IRC) 

        report_host(c.id.orig_h); 

    } 

  } 

} 

 

Multistep scheduling function 

void SF(connection c, int proto) { 

  if (proto == SSH && c.id.resp_p == 2222/tcp 

      && c.id.resp_h == local_subnet) { 

      return c.id.resp_h; 

  }  else return c.id.orig_h; 

} 

(a) (b) (c) 

Figure 8: Examples of scheduling functions

Sharing data structures between applications: in our discussion
of the scheduling problem, we assumed that each application main-
tains its private data structures. In practice, separate traffic analyses
may collaborate by sharing state. If their scopes are compatible, the
analyses can be treated as a single entity for scheduling purposes.
If this is not possible, the functionality of one of the analyses could
be replicated within the other. The resulting overhead may be ac-
ceptable if it allows the analyses to be independent.

Load-balancing: in §6.3 we showed that imperfect load-balancing
can limit throughput. We pinpointed the issue to a few high-bandwidth
flows accounting for a significant percentage of the total packet
stream. We note that this is an intrinsic limitation of hash-based ap-
proaches, determined by the amount of parallelism available in the
trace. Such traffic would cause load imbalance even for IDSs that
perform per-flow pattern matching, since each high-bandwidth flow
would still be processed by a single thread. This limitation may be
acceptable; indeed hash-based approaches are currently used in de-
ployed systems, such as the NIDS cluster [40]. It should also be
noted that often a detector only needs to parse the first few packets
of a flow [29]. Therefore, processing of large flows could be halted
after a certain byte threshold, preventing imbalance. An alternative
solution is to allow flows to be remapped across cores, as in [36].

Customization: The goal of our work is to provide automatic and
transparent parallelization of IDS workloads. However, in certain
cases the user could want to further optimize the behavior of the
system by defining the scheduling functions herself. Enabling this
is a matter of the API. In this scenario, our scheduling function
generator could be used as a programming aid, providing an initial
version of the function that the user could further refine.

8. RELATED WORK
The challenge of IDS parallelization has been examined previ-

ously in the literature, with initial efforts focusing on multi-system
setups for sharing the load.

[36, 49] focus on efficiently partitioning traffic by flow, and there-
fore lack the notion of analysis-specific scope. [30] has the notion
of a scheduler that separates the traffic into independent subsets
based on event spaces, manually defined by the IDS operator. The

semantics of event spaces are limited in expressiveness, and ori-
ented to statically defining specific contexts (e.g., a specific subnet)
more than scopes. Moreover, the authors only consider signature-
based detection. [31] discusses an IDS load-balancer that dynam-
ically groups flows based on the similarity of header fields (e.g.,
source address, port). While this approach is simple, such heuristic
correlation is not guaranteed to match the actual detector’s scope.
Other cluster-based approaches are [23, 40], which are built on a
more traditional concurrency model (intra-node synchronization)
and, as [30, 31], do not tackle parallelism within multi-core nodes.

There is another body of work (e.g., [28, 41, 43, 44]) on ac-
celerating packet matching on parallel hardware, including GPUs.
These approaches are restricted to byte-level pattern matching; while
this makes parallelization straightforward—as there is just a single,
static scope—it severely limits detection capabilities. In contrast,
our work aims to parallelize arbitrary stateful analyses.

The work closest to our discussion is [37], which presents a par-
allel IDS design for multi-core architectures. The system incorpo-
rates the notion of per-handler scope; however, scopes need to be
manually defined for each analysis, and they are still limited to sets
of protocol header fields. Our work can be seen as an extension of
those, presenting a concurrency model which is independent from
the specifics of the analysis and automatically derives the paral-
lelization strategy.

Variations of scope-based parallelization have been defined out-
side the realm of intrusion detection. Our approach is inspired by
serialization sets [14], a generic parallel programming paradigm.
In serialization sets, each shared object is associated with a seri-
alizer method, which returns an object-specific key. The runtime
uses the key to serialize computations that access the same shared
object. Our work adapts this approach to the event-driven paradigm
typical of packet processing and contributes efficient scheduling al-
gorithms. Moreover, since our approach is domain-specific to IDSs
we can leverage the common structure of IDS programs to compute
scheduling functions automatically, without developer interaction.

The networking community has also contributed models aimed
at parallel packet processing. [25] describes a parallel stateful packet
processing system, where a set of processing blocks are composed
in a data flow graph. The system supports a context-ordered mode



where logical blocks can be parallelized by applying serializers
(termed context-designator) to the input stream. The rigid orga-
nization of processing in a pipeline makes the system more suited
to traffic processing/shaping than intrusion detection; moreover, the
developer is still required to manually specify serializers. [24] out-
lines an approach to state manipulation, with the goal of simplify-
ing dynamic provision/consolidation of network appliances. State
is divided in independent units using keys, i.e., combinations of pro-
tocol header fields. Our definition of scheduling functions can be
seen as a generalization of this approach to state partitioning. [26]
focuses on mapping IDS workloads to a set of distributed network
nodes. Traffic partitioning is static, similarly to [30], and based on
offline workload estimates. [22] presents a parallel software router
that optimizes the whole system stack for its specific application,
yet does not easily generalize to other types of processing. [21]
performs analysis of a pipelined software router using symbolic
execution to derive the semantics of each component, while we use
static analysis to generate precise executable slices.

The literature also presents a number of general-purpose pro-
gramming APIs that take different approaches to parallelization
(e.g., [3, 4, 17]). Our approach does not strive to be a general
layer; instead, limiting the scope to event-driven packet processing
enables us to keep the programming model simple and hide con-
currency issues from the programmer. Architecture-specific paral-
lel APIs such as CUDA [2] require significant application-specific
effort because of their restricted computational paradigm.

Historically, the HPC community has also investigated the prob-
lem of compiler-based automatic parallelization. This line of work
targets scientific and numerical computations (see for example [13,
15, 32, 33] and Chapter 11 of [12]). Target workloads typically in-
volve repetitive operations over large arrays; therefore, approaches
focus on loop vectorization and parallelization. More recently, sim-
ilar techniques have been proposed for batch processing workloads
such as compression, machine learning, and text processing [42,
50]. Our work is similar in spirit, as it strives to exploit domain-
specific program features to extract parallelization. However, IDS
programs present different requirements (real-time stream process-
ing), for which we leverage different program features (state and
computation structured around scopes).

Furthermore, [46] proposes the use of program slicing to parti-
tion a sequential program into parallel slices. This approach uses
slicing to determine instruction- and task-level parallelism. Con-
versely, we use it to infer high-level properties of the program (its
scope), which enable extensive data-level parallelism.

Finally, Parcae [34] and Varuna [39] optimize parallel execution
of multi-threaded programs according to various metrics (time, re-
source consumption). We see these works as orthogonal, as they
could be used to fine-tune the degree of parallelism in our approach.

9. CONCLUSION
Traffic processing presents numerous opportunities for parallelism,

but making IDS scalable and flexible remains notoriously difficult.
In this paper, we propose a domain-specific concurrency model that
can support a large class of IDS analyses without being tied to a
specific detection strategy. Our technique partitions the stream of
network events into subsets that the IDS can process independently
and in parallel, while ensuring that each subset contains all events
relevant to a detection scenario. Our partitioning scheme is based
on the concept of detection scope, i.e., the minimum “slice” of traf-
fic that a detector needs to observe in order to perform its func-
tion. As this concept has general applicability, our model can sup-
port both simple, per-flow detection schemes (e.g., pattern/signa-
ture matching) and more complex, high-level detectors. Moreover,

we show that it is possible to use program analysis to determine the
appropriate traffic partitioning automatically and at compile-time,
and enforce it at run-time with a specialized scheduler.

Initial results are promising, and show that indeed our approach
correctly partitions existing sequential IDS analyses without loss
of accuracy, while exploiting the network traffic’s inherent concur-
rency potential for throughput improvements.
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