
An Assessment of Overt Malicious Activity Manifest in
Residential Networks

Gregor Maier1,2, Anja Feldmann2, Vern Paxson1,3,
Robin Sommer1,4, and Matthias Vallentin3

1 International Computer Science Institute, Berkeley, CA, USA
2 TU Berlin / Deutsche Telekom Laboratories, Berlin, Germany

3 University of California at Berkeley, CA, USA
4 Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract. While conventional wisdom holds that residential users experience a
high degree of compromise and infection, this presumption has seen little valida-
tion in the way of an in-depth study. In this paper we present afirst step towards an
assessment based on monitoring network activity (anonymized for user privacy)
of 20,000 residential DSL customers in a European urban area, roughly 1,000
users of a community network in rural India, and several thousand dormitory
users at a large US university. Our study focuses on securityissues thatovertly
manifestin such data sets, such as scanning, spamming, payload signatures, and
contact to botnet rendezvous points. We analyze the relationship between overt
manifestations of such activity versus the “security hygiene” of the user popula-
tions (anti-virus and OS software updates) and potential risky behavior (access-
ing blacklisted URLs). We find that hygiene has little correlation with observed
behavior, but risky behavior—which is quite prevalent—more than doubles the
likelihood that a system will manifest security issues.

1 Introduction

Conventional wisdom holds that residential users experience a high degree of compro-
mise and infection, due to a dearth of effective system administration and a plethora
of users untrained or unwilling to observe sound security practices. To date, however,
this presumption has seen little in the way of systematic study. Such analysis can prove
difficult to conduct due to major challenges both in obtaining access to monitoring resi-
dential activity, and in determining in a comprehensive fashion whether a given system
has been subverted given only observations of externally visible behavior.

In this paper we develop first steps towards such an investigation. We examine the
network activity of 20,000 residential DSL customers within a European urban area,
roughly 1,000 users of a community network in rural India, and several thousand dormi-
tory users at a large US university. As a baseline, we includein our assessment the same
analyses for Internet traffic seen at a large research laboratory that has a track record
of effectively protecting its roughly 12,000 systems without employing a default-deny
firewall policy.

We in addition investigate the relationship between problems flagged by our analy-
ses and the level of apparent “security hygiene” in our populations. One may expect that



users who perform regular OS updates and deploy anti-virus software are less likely to
have their systems compromised. Likewise, one might presume that users who partake
in risky behavior have more security problems. To check these assumptions, we exam-
ine the end-user systems in our data sets for signs of regularoperating system updates,
anti-virus deployments, and contacts to URLs blacklisted by Google’s Safe Browsing
API [8].

We emphasize that given our data we can only assess maliciousactivity thatovertly
manifestsin network traffic. Clearly, this reflects only a (perhaps quite small) subset
of actual security problems among the users. Thus, what we provide constitutes only a
first step towards understanding the nature and prevalence of such problems. Given that
caution, we frame some of our more interesting findings as:

– In all of our environments, only a small fraction of hosts manifest malicious activity.
– We do not find significant differences between the environment in rural India and

the other residential environments, though the former poses a number of analysis
difficulties, so this finding is only suggestive.

– While OS software updates and anti-virus technology are widely deployed, we do
not find that their use correlates with a lower degree of overtmalicious activity.

– We observe frequent risky behavior, and users exhibiting such risky behavior are
roughly twice as likely to manifest malicious activity.

We structure the remainder of this paper as follows. After introducing our data sets
and methodology in §2, we study security hygiene in §3 and then investigate malicious
activity in §4. We present related work in §5. Finally, we discuss our results and present
avenues for future work in §6.

2 Methodology

We start our discussion by summarizing the specifics of the data sets we captured in the
four network environments we examine in this study. We then discuss how, using these
traces, we identify the operating systems used by individual hosts. Finally, we present
the metrics we deploy for detecting overt malicious activity.

2.1 Data Sets

We started our work by recording network traces in all environments. However, due to
high traffic volume it did not prove feasible to record the full network data stream for
an extended period of time in most environments. We therefore leveraged Maier et al.’s
“Time Machine” system [13] to reduce the stored amount of data. The Time Machine
records only the firstN bytes of each connection, discarding the remainder. For ex-
ample, in the ISP environment, usingN=50 KB allowed us to record≈ 90 % of all
connections in their entirety while only retaining 10% of total volume.1

1 We note that due to operational constraints we used different cutoff values in each environment,
as detailed in the corresponding sections.



Table 1. Data sets for European ISP,Univ, and LBNL. We collected all these using theTime
Machine.

Location Start Duration Total volume After cutoff applied Loss
ISP Mar 13, 2010 14 days > 90 TB > 9 TB 0 %
Univ Sep 10, 2010 7 days > 35 TB > 2 TB 0.005 %

LBNL Apr 29, 2010 4 days > 25 TB > 350 GB 0.2 %

Table 2.Data sets for AirJaldi.

Name Start Duration # IPs Size Loss
AirJaldi1 Mar 10, 2010 40 h 263 65 GB 0.35 %
AirJaldi2 Mar 13, 2010 34 h 188 31 GB 1.07 %
AirJaldi3 Apr 22, 2010 34 h 261 51 GB 0.44 %

We used the Bro system [14] with Dynamic Protocol Detection [6] to detect and
extract application layer headers. Our capturing processes made sure to anonymize the
data in accordance with the network operators’ policies, and all data classification and
header extraction executed directly on the secured measurement infrastructures. Table 1
and Table 2 summarize our data sets.

Lawrence Berkeley National Laboratory. TheLawrence Berkeley National Labora-
tory (LBNL) is a large research institute with more than 12,000 hosts connected to the
Internet via a 10 Gbps uplink, and we use it a baseline for our study. Since LBNL offers
an open research environment, LBNL’s security policy defaults to fairly unrestricted ac-
cess, with only limited firewalling at the border. LBNL’s security team actively monitors
its network for malicious activity, deploying a toolbox of strategies including detectors
for scanning and spamming. Systems detected as compromisedare quickly taken off
the network. Thus, we expect to find little malicious activity in this environment.

We analyze one 4-day packet-level trace. The trace covers two weekdays and a
weekend, with a total of 7,000 hosts active during that period. Large individual flows
are common at this site, so the Time Machine proved especially effective at reducing
volume of collected data. We ran it with a cutoff value of 25 KB. During our recording
interval, the capture mechanism reported 0.2 % of all packets as dropped.

In terms of application protocol mix, we find that HTTP contributes about 42 % of
bytes at LBNL and SSH 21 %. About 23 % of the traffic remains unclassified.

European ISP. Our largest data set represents a 14-day anonymized packet-level trace
of more than 20,000 residential DSL lines, collected at an aggregation point within a
large European ISP. The ISP does not employ any traffic shaping or blocking (such
as filtering outbound SMTP connections), providing us with an unobstructed view of
potential malicious activity.

We used the Time Machine with a cutoff value of 50 KB. Since we employed En-
dace monitoring cards and discarded the bulk of the data, we did not experience any
packet loss. In addition, we also have access to several further day-long traces for com-
parison purposes.



This ISP data set includes meta-data associating the anonymized IP addresses in
the trace with the corresponding (likewise anonymized) DSLline IDs, which enables
us to distinguish customers even in the presence of the frequent address reassignment
employed by this ISP [11]. For our study, we thus use these line IDs as our basic analysis
unit.

Furthermore, the NAT detection approach developed in [12] works well in this en-
vironment and allows us to reliably identify the presence ofNATs on any of the DSL
lines. In addition, the NAT detection approach enables us toestimate the number of
hosts connected at a DSL line. We find that 90 % of the DSL lines use NAT and that
46 % connect more than one device to the Internet.

The application protocol mix in the monitored ISP network isdominated by HTTP
(> 50% of the total volume), while the prevalence of peer-to-peer applications is rather
small (15%). NNTP accounts for roughly 5%, and less than 15% of the traffic remains
unclassified but is likely P2P.

Indian community network. . The AirJaldi [1] wireless network is a non-profit com-
munity network in the Himalayas of India. Using approximately 400 wireless routers,
it covers a radius of 80 km in and around the city of Dharamsala. AirJaldi connects
thousands of users and machines with two leased lines from broadband ISPs, which
provide a total uplink capacity of 10 Mbps. The majority of the rural population ac-
cesses the Internet via publicly shared machines in cybercafes or libraries. In addition,
some residential users connect to the network with individually administered machines.

In the AirJaldi network, a single IP address is assigned to each “customer site”, such
as a specific building, library, or village. Customer sites can in turn provide connectivity
to anywhere from one to several hundred systems, and the larger ones typically employ
a multi-tiered NAT architecture on their inside, with NAT gateways connecting further
NAT gateways.

Due to this architecture, we cannot directly distinguish individual systems at our
monitoring point which is located at the central uplink router. Likewise, the NAT de-
tection approach we use for the European ISP cannot reliablydetermine the number
of hosts behind the larger gateways. We therefore report only aggregate findings for
malicious activity and risky behavior for the AirJaldi environment.

However, to get an idea of the size of the user population, we can still estimate the
number ofactiveindividual users by extracting (anonymous) user ID cookiesfound in
HTTP traffic: the IDs sent togoogle.com, Doubleclick, and Google Analytics consis-
tently indicate that we are seeing at least 400–600 users in each trace.

In our traces, HTTP dominates AirJaldi’s application protocols mix, accounting for
56–72% of the total traffic volume, similar to the European ISP. However, in contrast
to the ISP, interactive communication protocols (instant messaging, VoIP, Skype, etc.)
account 2.5–10% at AirJaldi, while NNTP and P2P are not prevalent.

University Dormitories . We also examine network traffic recorded at dormitories of
a major US University, where our monitoring point allows us to observe all their ex-
ternal traffic. While the dormitory network generally employs a default-open firewall,
it deploys a custom “light-weight” Snort setup configured todetect a small set of re-
cent malware. Users flagged by Snort are automatically movedover to a containment
network from where they can then only access resources for disinfecting their systems.



Note that this containment prevents such victims from further triggering our malicious
activity metrics once the dorm setup has restricted their access.

The IP address space for the dorm users is large enough to assign public IP addresses
to each local system, with no need for a central gateway NAT. In our data set, we
observe about 10,000 active IP addresses. Analyzing user IDs (as we discussed with the
AirJaldi network), we find roughly 14,000 distinct ones, suggesting that a single public
IP is only used by few machines. We also find that user-to-IP mappings remain mostly
stable, and thus we can use IP addresses as our main analysis unit here. Similar to the
ISP, however, we cannot further distinguish between different hosts/devices connected
potentially through a user-deployed NAT gateway.

We note that the NAT detection approach developed in [12] does not work well
in this environment. As it leverages IP TTLs, it relies on a well-known hop distance
between the monitoring point and the user system, which is not the case in the dorm
environment.

We analyze one 7-day packet-trace from theUniv environment, recorded using the
Time Machine with a 15 KB cutoff (i.e., smaller than for the European ISP). The ap-
plication protocol mix in the dorm network is dominated by HTTP, which accounts for
over 70 % of all bytes, with 20–25 % of traffic unclassified.

2.2 Operating Systems

Malware often targets particular operating systems, and some OSes are perceived as
more secure due to architectural advantages or smaller market shares that render them
less attractive targets. To assess these effects, we annotate our traces with the operating
system(s) observed in use with each DSL line (for the European ISP) or IP address (for
the other environments). We determine operating systems byanalyzing HTTP user-
agent strings reflecting the most popular browsers (Firefox, Internet Explorer, Safari,
and Opera).

Doing so, we can identify one or more operating systems on more than 90 % of all
DSL lines of the European ISP. Analyzing the operating system mix, we find that 59 %
of the lines use only a single version of Windows, while 23 % use different Windows
versions. Mac OS is present on 7.6 % of the lines, and used exclusively on 2.7 %. We
find Linux on 3.7 % of the lines. However, we also observe that Linux is generally used
in combination with other operating systems, and the fraction of lines with only Linux
is too small to assess malicious activity separately.

At LBNL, we can identify at least one operating system for 60 %of all active IPs.
We find that 70 % of these IPs use only a single version of Windows. We see Macs in
use with 19 % of those IPs, and Linux with 8.6 %.

In theUniv environment, we are able to determine operating systems for73 % of all
active IPs. Mac OS is the dominating operating system here, present on 56 % of them.
34 % of IPs use a single version of Windows exclusively, and Linux is present on just
over 4 % of IPs.

At AirJaldi, we observe a large number of operation systems per IP due to its exten-
sive NAT deployment and thus cannot further estimate the distribution.



2.3 Manifestations of Compromised Systems

To identify end systems that overtly manifest malicious activity or signs of likely com-
promise, we search for three behavioral indicators—address scanning, port scanning,
andspamming—and also monitor for network-level signatures aimed at detecting three
malware families, Zlob, Conficker, and Zeus.

To take advantage of the long duration of our traces, we analyze and report man-
ifestations of malicious activity first separately for eachday of our multi-day traces
(European ISP,Univ, and LBNL). We then further aggregate the results by accumulat-
ing all activity over increasing trace durations into cumulative data sets. For example,
consider a local system (DSL line or IP address) that startedto be a scanner on day
4. In the daily data set this system is marked as a scanner on day 4. In the cumulative
data set, it is marked as scanner on day 4 as well as forall following days, regardless of
whether the system is again acting as a scanner on any of the subsequent days or not. In
particular, the cumulative data for the last day of a trace reflects the aggregate behavior
over the full observation period.

Scanning. Extensiveaddress scanningoften reflects the precursor of an attack that
targets services that answer the scan. Most network intrusion detection systems (NIDS)
therefore detect and report such scanners but their detectors typically targetexternal
hosts probing a monitored network. For our study, however, we instead wish to find
outboundscanners. This can prove harder to do, as the potential probes are embedded
within the host’s benign activity.

We found that for our environments, a simple threshold-based scan detector often
erroneously flags benign user activity such as web browsers.Detectors that countfailed
connection attempts work better, but still can misfire for P2P-style traffic patterns. We
therefore use an approach loosely modeled on that of TRW [10]: we compute theratio
of successful vs. unsuccessful TCP connections initiated by a local host. We define a
connection as unsuccessful if a client sends a SYN but eitherreceives a RST back or no
answer at all.

We find that our data exhibits a sharply bi-modal distribution of success ratios: Con-
nections between a specific pair of local and remote hosts tend to either always succeed
or always fail. However, when investigating the fraction ofremote destinationsper local
host that tend to fail, we do not find such a clear distribution. Presumably, P2P clients
can have similarly large numbers of mostly unsuccessful destinations, thus rendering
this approach impractical. We can overcome this ambiguity,however, by limiting our
scan analysis to 14 ports that frequently appear in inbound scanning, as identified by
the security monitoring in our baseline environment, LBNL.These ports include, e.g.,
the Windows services 135–139, 445, and 1433. For activity targeting these ports, we in-
deed find that local systems either have a small (< 20) or large (> 100, often> 1,000)
number of unsuccessful remote contacts; see Figure 1. We thus deem activity as overtly
manifesting a compromised local system if a host unsuccessfully attempts to contact
> 100 destinations.

Another dimension of scanning regardsport scanning: probing many ports on a
single remote host. Since few benign applications need to contact numerous distinct
ports on a single system, we use a simple threshold-based approach: we consider a local
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Fig. 1. Scatter plot showing number of successful vs. unsuccessfulconnections with remote IPs
per DSL line, computed for a single day of the ISP trace. The size of the circles is proportional
to the number of lines having the corresponding ratio.

system to manifest malicious activity if itunsuccessfullycontacts at least two remote
hosts on more than 50 ports within a single day.

Spamming. Another manifestation of malicious activity concerns local hosts sending
spam. To find an appropriate indicator for classifying a hostas a spammer, we exam-
ined SMTP activity of local systems in terms of how many remote SMTP servers they
contact. The number of distinct SMTP servers can be an indicator since we do not ex-
pect many users to run their own SMTP servers, but instead to rely on a (small) number
of e-mail providers to deliver their mails. Particularly inthe ISP environment, e-mail
providers are necessary since the IP range of the monitored DSL lines is dynamically
assigned and many SMTP servers generally reject mails from any dynamic addresses
unless specifically authenticated. We find that DSL lines consistently contact either less
than 25 SMTP servers or more than 100. Indeed, most lines contact less than 10. We
ultimately classify a system as aspammerif it contacts> 100 distinct SMTP servers in
one day.

Known malware families. We can also observe manifestations of host compromise
by flagging activity related to known malware families. To doso, we focused on Zlob,
Conficker, and Zeus.

The Zlob malware family [24] changes the DNS resolver settings of infected hosts
(and even broadband routers), altering them to a well-knownset of malicious remote
systems. We thus classify a system as reflecting a Zlob infection if it uses one of those
known DNS resolvers. We note that Zlob targets both Windows and Mac systems, sub-
verting systems using social engineering in the guise of a fake codec download.

Another malware family that has attracted much attention isConficker [15]. For
April 2010, the Conficker Working Group [4] reported 5–6 M distinct Conficker A+B
infected IPs and 100–200K distinct Conficker C infected IPs.Note however that the
number of IPs does not necessarily provide a good estimationof the population size



due to aliasing. The group estimates the true population size to be between 25–75 % of
the IP addresses seen per day.

To find rendezvous points, Conficker A and B generate a list of 250 different domain
names each day (Conficker C uses 50,000 domains) and then try to resolve them. Since
the algorithm for generating the domain names is known [22],we can compute the
relevant domain names for our observation periods and checkwhich local hosts try to
resolve any of these. To account for potential clock skew on the client machines, we
also include the domain names for the days before and after our observation period.

Conficker C sometimes generates legitimately registered domains, due to its fre-
quent use of very short names. To rule out false positives, wetherefore only flag a sys-
tem as manifesting a Conficker infection if it issued≥ 50 lookups for known Conficker
domains. We note that Conficker also uses address-scanning to find other vulnerable
machines and spread itself. Thus, we expect to find a correlation between address scan-
ning and Conficker lookups.

We use the Zeus Domainblocklist [25] to identify local systems infected with Zeus.
Since the list does not only contain seemingly random domainnames but also some in-
dicating scare-ware (e. g.,updateinfo22.com) or typo squatting (e. g.,
google-analytiics.cn), we require≥ 4 lookups per system and day to classify a
system as infected. We found that fewer lookups often reflectembedded ads or other
artifacts not due to compromise. Since we initially lacked acontinuous feed of the Zeus
domain list, we used a one-day snapshot from Mar 23, 2010 for the ISP trace andAir-
Jaldi1/AirJaldi2. We used another snapshot from May 6, 2010 for LBNL andAirJaldi3.
For Univ, we were able to continuously update the list during the measurement period.

Alternative Manifestations of Compromised Systems. We also examined further al-
ternative approaches to detect compromised systems, whichhowever did not turn out to
generate sufficiently reliable results.

One obvious approach is to leverage a NIDS’ output directly.Consequently, we
attempted using a standard signature set: the Emerging Threats rules [7] loaded into
Snort [18]. We excluded all rules that are labeled as aiming at finding “inappropriate”
activity (e. g., gaming traffic or P2P) as such is not in scope for our study. Still, analyzing
a single day of ISP traffic, we get more than 1 million hits, flagging more than 90 % of
the monitored local systems. Clearly, such results have to include many false positives.

We can reduce the number of hits by restricting the analysis to examine only out-
bound activity, and whitelisting rules that are likely to flag benign activity. However,
Snort still reports too many alarms to be a reliable indicator for us. The main problems
with the Emerging Threats rules are their sheer size (more than 3,500 rules in total), and
a general lack of documentation (many rules are not documented at all). In particular,
the rules do not include any indication on how tight they are (i. e., what their likelihood
of false positives is), nor how severe one should consider the activity they target (e. g.,
is this rule triggered by a C&C channel or by adware).

Another approach we tried as an indicator of likely system compromise is check-
ing whether a local system’s IP address appears on an anti-spam blacklist, such as
Spamhaus. However, we find that doing so proves difficult in our settings: address as-
signments are dynamic and can often reflect numerous different hosts over short time
intervals. Thus a single blacklist entry can tar the reputation of many distinct local



systems. In addition, some anti-spam providers proactively blacklist all dynamically
assigned IP address ranges.

3 Security Hygiene and Risky Behavior

To analyze whether residential users are aware of potentialhazards and take recom-
mended countermeasures, we analyze(i) whether local systems use anti-virus scanners;
(ii) if they regularly update their OS software (e. g., Windows Update); and(iii) whether
they download Google’s Safe Browsing blacklist.

Most anti-virus and OS software updates are done using HTTP,and they use spe-
cific user-agents and/or HTTP servers. Searching for those allows us to classify a local
system as a software updater and/or anti-virus user. Likewise, the HTTP servers serving
Google’s blacklist are well-known, and we can thus identifylocal systems which use
the blacklist. Moreover, we also check if local systems downloading the blacklist still
request any blacklisted URLs. Such behavior clearly has to be considered risky. For
finding such “bad” requests, we determine whether a requested URL was blacklisted at
the time of the request by keeping a local change history of the blacklist over the course
of our measurement interval.

We note that me might over-estimate the number of actual OS oranti-virus updates.
OS updaters often only check whether an update is available and then ask the user to
install it, however the user might decline to do so. Likewise, anti-virus products might
download (or check for) new signatures but not use them unless the user has a current
license for the anti-virus software. Our analysis flags these cases as anti-virus user and
OS updater respectively. However, we cross-checked our results by only considering a
local system as anti-virus user if the anti-virus software transferred at least 1 MB and
100 KB of HTTP body data.

3.1 European ISP

Figure 2 shows the fraction of active DSL lines vs. lines performing anti-virus or OS
updates. On any given day 57–65% of DSL lines perform OS software updates, and 51–
58 % update their anti-virus signatures (or engines). From the cumulative data we see
that over the 14 day observation period up to 90 % of lines check for updates to their OS
and 81 % use anti-virus software. This highlights that the user-base in principle exhibits
elementary “security hygiene” and performs recommended precautions.

When focusing on DSL lines exhibiting exclusively MacOS activity, we find that up
to 2 % do anti-virus updates and up to 78 % perform software updates.

But what about risky behavior such as requesting potentially dangerous URLs?
Overall, we find that only about 0.03 % of all HTTP requests appear on Google’s Safe
Browsing blacklist. However, investigating the per-DSL line behavior, we find that on
any given day up to 4.4 % of the DSL lines request at least one blacklisted URL (see
Figure 3). Across the whole 14-day period we see that a striking 19 % of lines request
at least one blacklisted URL.

To check if the browser may have warned the user about doing these requests, we
next examine if the user-agent placing them actually downloaded the blacklist from
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Fig. 2. Fraction of active lines, lines with anti-virus updates, and software updates for daily and
cumulative data sets from the ISP.

Google earlier. For doing so, we distinguish three cases when a user accesses a black-
listed URL:

– notDownloaded: The browser did not download the blacklist at all, thus the user
could not have been warned.

– beforeBlacklisted: The browser downloaded the blacklist, however the URL was
requestedbeforeit appeared on the blacklist, thus the user could likewise not have
been warned.2

– whileBlacklisted: The browser downloaded the blacklist and requested the URL
while it was blacklisted. That is, the user placing the request (presumably by click-
ing on a link)should have been warnedby the browser that the URL is considered
malicious.

In Table 3 we list for each combination of cases the fraction of DSL lines exhibiting
this combination. We find that for the majority of lines requesting blacklisted URLs the
browser either did not download the blacklist (notDownloaded), or the request occurred
before the URL was blacklisted and thus the browser could nothave warned the user
about the URLs potential malignity. However, we find a significant number, 33.6 %,
of DSL lines that request blacklisted URLs even though the users should have been
warned by their browsers (any combination in whichwhileBlacklisted is present). When
we investigate how often DSL lines request URLs that are on Google’s blacklist, we

2 We allow for a 1 hr grace period, relative to the time when a URLhas appeared on our local
copy of the list. Google suggests that browser developers implement a 25–30 minute update
interval for the blacklist. Furthermore, Google states that a warning can only be displayed to
the user if the blacklist is less than 45 minutes old, thus forcing browsers to regularly update
the list.
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Fig. 3. Fraction of lines requesting URLs blacklisted by Google.

Table 3. Possible cases when DSL lines access blacklisted URLs for ISP dataset. 100 % repre-
sents all lines requesting at least one blacklisted URL.

Fraction Cases
43.8 % notDownloaded
19.5 % beforeBlacklisted
16.9 % whileBlacklisted
11.0 % whileBlacklisted, beforeBlacklisted
3.0 % notDownloaded, whileBlacklisted
2.7 % notDownloaded, whileBlacklisted, beforeBlacklisted
3.1 % notDownloaded, beforeBlacklisted

find that 53 % of such lines do so on only a single day. This indicates that although
many lines request blacklisted URLs, they do not request such URLs every day.

3.2 University

Analyzing security hygiene at theUniv environment, we find that 78 % of all local IP
addresses perform OS software updates over the 7-day trace duration, and that 60 %
perform anti-virus updates. While these numbers are lower than the numbers for the
European ISP, we note that we observe significantly more IP addresses on which only
MacOS systems (and no Windows systems) are active than at theEuropean ISP. For IP
addresses on which we only observe Macs, we find that 45 % perform anti-virus and
73 % perform software updates.

When we turn to risky behavior we find that after the 7-day observation period
roughly 20 % of local IP addresses have requested URLs blacklisted by Google. This
is higher than at the European ISP, where we reach 19 % after 14days (after the first



7 days the European ISP environment reaches 14 %). Similar tothe ISP we find that
36.4 % of the IPs requesting blacklisted URLs do so although the browser should have
warned the user.

3.3 AirJaldi

Comparing security hygiene at the European ISP with the AirJaldi network in India,
we find them quite similar. In terms of HTTP requests, we find that at AirJaldi ap-
proximately 0.02 % are blacklisted by Google (European ISP:0.03 %), and 0.5–1.12%
are related to anti-virus software (European ISP: 1 %). For OS software updates, the
numbers differ more: up to 2.8 % of all HTTP requests at AirJaldi, vs. only 0.3 % at
the European ISP. Assessing security hygiene on a per host basis is difficult in this
environment, however, given the layered NAT structure. We find that 29.6 %–40.7 %
of the observed sites at AirJaldi perform anti-virus and OS software updates, and 3.8–
5.4 % request blacklisted URLs. Recall, however, that each site can connect anywhere
between a handful and several hundred users.

3.4 LBNL

We next turn to security hygiene at LBNL. We find relatively few hosts there updating
anti-virus software (24 %) or operating systems (31 %). Thiscan be explained how-
ever by the fact that LBNL uses centralized, internal updateservers. The operating
system distribution also differs notably from the ISP environment, with significantly
more Linux and Mac hosts in use at LBNL. Turning to risky behavior, we find that only
0.01 % of all HTTP requests are blacklisted. In terms of the fraction of hosts requesting
blacklisted URLs, we also find a smaller number than at the European ISP: up to 0.92 %
of hosts per day and less 1.25 % overall. However, we find that users at LBNL still re-
quest blacklisted URLs even though they should have been warned by their browser;
23.4 % of IPs requesting blacklisted URLs do so.

4 Malicious activity

After finding that even though users appear to be security aware and take appropriate
precautions they still engage in risky behavior, we now use our indicators for identify-
ing malicious behavior. Moreover, we also study the influence of security awareness,
risky behavior, NAT deployment, and operating systems on infection probability. We
emphasize that the overall estimate of malicious activity that we derive can only be a
lower bound of the total present in these environments.

We start by studying the characteristics of the DSL customers of the European ISP
since that is our richest data set. We then compare the results from the European ISP
with those from the university dorms (Univ), the AirJaldi community network, and the
LBNL setting, as applicable.
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Fig. 4. Probability that a line triggers malicious activity indicators (isbad) for the ISP, shown
separately for the daily and cumulative data sets.

4.1 European ISP

Figure 4 shows the likelihood that a DSL line triggers any of the malicious activity
indicators for the European ISP. We find that both on a per-daybasis as well as overall
only a small fraction of local systems manifest overtly malicious activity;< 0.7 % and
< 1.3 %, respectively. Moreover, these percentages do not vary much across days.

However, even though the cumulative probabilities remain small, they are increasing
over our 14-day period. This indicates that over time we are able to identify more lines
that manifest malicious activity, and it may imply that longer observation periods would
reveal even more lines manifesting such activity.

We find thatoverall the malware families and spammers contribute most to the
observed manifestations of compromised systems, while scanners are less prominent;
see Table 4. On aper-daybasis, only the malware-based indicators are prominent.

More than 44% of the spammers are only active on a single day, i. e., they trigger the
indicator only on a single day. In contrast, only 11% of the scanning activity is limited
to a single day. On average (mean and median) scanners are seen for 4 days.

For most indicators, we observe a difference between the mean number of days that
the indicator is triggered and the median number of days. This indicates that there is no
consistent behavior by the local systems manifesting malicious activity. Indeed, an in-
depth analysis reveals that some spammers and scanners start their malicious behavior
as soon as the DSL line becomes active, while others stop temporarily or are only active
for a short period. The fact that the malware families typically trigger on 5–8 days
(mean) confirms that the bots engage in activity on a regular basis. However, malicious
activity such as port scanning or spamming seems to be limited to sub-periods.

We find only a small overlap among the lines that trigger any ofthe indicators. Most
lines that manifest malicious activity trigger only a single indicator (92 %); about 7 %



Table 4. Probability that a DSL line triggers a malicious activity indicator. The daily numbers
summarize the range of the probability values per day. To estimate the persistence of the activity,
we include the mean/median number of days that each indicator triggered and the percentage of
lines for which the indicator triggered only on a single day.

Probability Activity prevalence
Indicator daily prob. cumm. prob. mean / median only single day activity
Spam 0.03–0.10 % 0.25 % 3.6 / 2 days 44 %
Scan 0.01–0.06 % 0.09 % 4.3 / 4 days 11 %
Port Scan 0.01–0.03 % 0.06 % 3.5 / 2 days 39 %
Zlob 0.13–0.19 % 0.24 % 8.4 / 10 days 10 %
Conficker 0.17–0.26 % 0.23 % 6.5 / 6 days 27 %
Zeus 0.07–0.15 % 0.28 % 4.9 / 2 days 38 %
Total 0.50–0.66 % 1.23 % 5.9 / 4 days 28 %

trigger two. There is some correlation (0.227) between lines that manifest Conficker
and scanning activity, as we would expect due to Conficker’s regular network scans in
search of further vulnerable hosts. We also observe a correlation of 0.109 between DSL
lines triggering the Spam and Zeus metrics.

Next we check whether the likelihood that a local system manifests malicious ac-
tivity is influenced by other parameters.

Security Hygiene. We start our investigation by examining the impact of anti-virus
deployment and OS software updates. Surprisingly, we do notsee any strong effects
in this regard. Anti-virus software does not noticeably reduce the likelihood of a DSL
line manifesting malicious activity (1.10 % with anti-virus vs. 1.23 % without, consid-
ering all indicators). We cross-check these numbers for a potential over-estimation by
only considering DSL lines that transferred at least 100 KB (1 MB) of anti-virus HTTP
payload, we find that still 1.06 % (0.82 % for 1 MB) of lines trigger our metrics. While
the latter is a drop of roughly 30 %, anti-virus software still seems less effective than
one might presume. Likewise, we do not observe any particular impact of performing
OS updates. We verified that these findings are not biased by NATed DSL lines with
multiple hosts. That is, even for lines that do not show multiple hosts, the likelihood of
infections is not significantly changed by using anti-virusor doing updates.

Google Blacklist. Given the large fraction of DSL lines requesting blacklisted URLs,
we next study whether such behavior increases the chance of manifesting malicious
activity (see Figure 5). Indeed, we find that the probabilityof a line triggering any of
our indicators rises by a factor of 2.5, up to 3.19 % (from 1.23%) if we also observe the
same line requesting at least one URL found on Google’s blacklist. While in absolute
terms the elevated level still remains low, our indicators only trackovertmanifestations
of security issues, so the more salient takeaway concerns the more-than-doubled rate of
host compromise for systems with poor “security hygiene”.

NAT . Next, we evaluate whether NAT influences the probability oftriggering our mali-
cious activity indicators. We find that DSL lines that connect multiple hosts are 1.5 times
more likely to trigger one (1.81 %). Lines on which no NAT gateway is present are as
likely to trigger an indicator as all DSL lines.
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Malicious activity on Macs. Next, we turn to DSL lines on which all traffic is from
Macs (2.7 % of all lines) and evaluate their likelihood of manifesting malicious activity.
When analyzing the full 14-day observation period, we find that Mac lines trigger one
of our indicators at less than half the rate of all systems (0.54 % vs. 1.23 %), and they
do so via a single indicator, infection with Zlob. In this regard, however, Macs are more
thantwiceas likely to manifest an infection as all systems (0.24 %).

These findings are somewhat difficult to interpret. They appear to suggest that in
general, Mac systems fare better than Windows systems in terms of resisting infection—
but possibly only because most infection targets only the latter, and when infection
also targets Macs, they may in fact be more vulnerable, perhaps due to less security
vigilance.

4.2 University

We next turn to manifestations of malicious activity in theUniv dorm environment. As
the dorm network provides central DNS resolvers to all localsystems, we are not able to
observe DNS requests from local systems unless they specifically configure a different,
external DNS resolver. This implies that we cannot use our DNS-based indicators (Con-
ficker and Zeus) for directly identifying infected local systems. We are however able to
observe DNS requests from the central resolvers, allowing us to recognize whether any
local systems are infected. Analyzing the DNS requests inUniv’s traffic, we find no
Conficker lookups at all, indicating that no hosts infected with Conficker were active
(outside the containment network) during our measurement interval. We do however
observe lookups for Zeus domains.



When using the other indicators, we observe that only a few local systems (0.23 %)
manifest overtly malicious activity during our 7-day observation period. At the Euro-
pean ISP, 1 % of DSL lines manifest such activity over 7 days (1.23 % over 14 days),
and 0.8 % excluding Zeus. In contrast to the European ISP, we find that port scanners
at Univ contribute most to the overall number of local systems manifesting malicious
activity. Scanners trigger on 0.13 % of local systems and allother indicators combined
trigger on 0.1 % of local systems.

We do not observe any local systems that trigger more than oneof our malicious ac-
tivity indicators. This is however not surprising given that we cannot observe Conficker
and Zeus activity. Recall that at the European ISP, these twotend to correlate most with
other indicators.

Similar to the European ISP, we find that risky behavior (requesting blacklisted
URLs) nearly doubles the rate of manifesting malicious activity, with the 0.23 % overall
figure rising to 0.4 % in that case. Again, we find that neither OS software nor anti-virus
update activities affect the rate at which security problems manifest.

4.3 AirJaldi

Fig. 6. Summary of malicious activity and security hygiene for all AirJaldi traces.

Within the Indian AirJaldi network, we observe very limitedmalicious activity.
However, given that AirJaldi uses a multi-tiered NAT hierarchy, we can only explore
malicious activity by customer site rather than per end-system. Within each trace we
observe between 188 to 263 active customers sites. Each customer site can connect



multiple, possibly hundreds, of hosts. However, exploringthe number of destinations
for scanners and spammers for each flagged site, we find that they are well within the
range of what we observe at the European ISP. Therefore, we conclude that each of the
reported scanning and spamming sites is likely due to a smallnumber of infected hosts.
Indeed, most likely it is due to a single one.

Across all three traces only a total of 12 customer sites triggered any of our indica-
tors. Figure 6 summarize the results, listing all 12 customer sites that triggered any of
our indicators. An “X” indicates that a site was not observedin a particular trace. We
also further annotate each site with labels based on whetherany of its systems requested
blacklisted URLs (BLK), or updated anti-virus (AV) or OS software (SW).

A detailed look at the spammers shows thatsite 11contacted 56 remote SMTP
servers, less than our cutoff of 100. However, since no othersite contacts more than
10 SMTP servers, we flag this site as a likely spammer (Spam?) rather than a certain
spammer (Spam).

Only two sites trigger our malicious activity indicators inmore than one trace. We
never observe more than 7 sites manifesting malicious activity in any single trace, and
in only one case do we find multiple forms of malicious activity at a single customer
site. We note thatsites 4–7are in the same /24 network and could potentially be a single
customer site using multiple IP addresses over the trace duration.

Even though we cannot reliably determine the number of infected hosts at each
customer site, we can attempt to estimate it. For Conficker this is possible since each
infected host will in general generate 250 DNS lookups per day. Thus we estimate the
number of infected hosts by dividing the total number of Conficker lookups by 250. We
list the number of Conficker lookups per site in parentheses (Conficker(n)) in Figure 6.

Given the inability to identify end hosts, we cannot soundlycorrelate activity levels,
anti-virus, OS software updates, or Google blacklist hits with malicious activity.

4.4 LBNL

At LBNL, our indicators trigger only for a small number of benign hosts. Not sur-
prisingly, local mail servers are reported as “spammers”; and hosts deployed by the
Lab’s security group for penetration testing purposes are flagged as “scanners”. While
confirming that our detectors are working as expected, such false alarms are unlikely
to occur in the residential environments. Other than these,we do not find any further
malicious activity reported at LBNL.

5 Related Work

In our study, we examine several manifestations for malicious activity including scan-
ning and spamming which are established indicators of compromised systems. Most
network intrusion detection systems (NIDS), such as the open-source systems Snort [18]
and Bro [14], use simple threshold schemes to find scanners. Bro also provides a more
sensitive detector,Threshold Random Walk[10], that identifies scanners by tracking a
system’s series of successful and failed connection attempts. However, existing detec-
tors do not work well for findingoutboundscans, as needed for our study.



Spammingis often countered by blocking known offenders via DNS-based black-
lists, such as SORBS [19] or Spamhaus [21]. However, due to the high IP address
churn we experience (for example, due to DSL lines frequently changing their IP ad-
dress [11]), such blacklists do not provide us with a reliable metric. Furthermore, many
blacklists include thefull dynamic IP space. Ramachandran et al. [17] identify spam-
mers by observing the destinations they try to connect to. This eliminates the need for
content inspection. The Snare system [9] extends this approach by building a reputation-
based engine relying on additional non-payload features. These approaches, however,
deploy clustering algorithms, and thus rely on suitable training sets, which are not avail-
able for our data set.

We also check our data sets for indicators of specific malware, all of which are ana-
lyzed and tracked in detail by other efforts:Conficker[4,15]; Zlob [24]; and Zeus [25].
For example, Bailey et al. [2] survey botnet technology and Dagon et al. [5] examine
malware that changes a client’s DNS resolver, including theZlob trojan.

Carlinet et al. [3] ran Snort on DSL traffic from about 5,000 customers of a French
ISP to study what contributes to a user’s risk of being infected with malware. For their
study, Carlinet et al. simply removed the 20 Snort signatures triggering the most alarms.
However, they do not further analyze how the remaining signatures contribute to the
overall results, what their false-positive rate is, or whether there is relevant overlap
between them.

We also leverage Google’s Safe Browsing blacklist [8]; the approach used for col-
lecting the blacklist is originally described by Provos et al. in [16].

Stone-Gross et al. [20] try to identify malicious (or negligent) Autonomous Sys-
tems (AS). They analyze data from their honeyfarm to identify IP addresses of botnet
C&C servers and use four data feeds to find IP addresses of drive-by-download hosting
servers and phishing servers. They correlate the information from these sources and the
longevity of these malicious servers to compute a “malicious score” for the ASes host-
ing such malicious servers. ASes with high scores can then beblacklisted or de-peered
by other ISPs or network operators. Thus their focus is on thehosting infrastructure
rather than individual infected machines.

There has been some work on the prevalence of individual malware. The Conficker
Working Group states that 3 million infected hosts is a “conservative minimum esti-
mate”, and it cites the study of an anti-virus vendor that finds that 6% of the monitored
systems are infected. Weaver [23] estimates the hourly Conficker C population size in
March/April of 2009 to average around 400-700K infections.

6 Conclusion

In this work we have aimed to develop first steps towards understanding the extent of
security problems experienced by residential users. Such studies face major difficulties
in obtaining in-depth monitoring access for these users. Tothis end, we have made
partial progress by acquiring network-level observationsfor tens of thousands of users.
However, we lack direct end-system monitoring, and as such in this study we must
limit our analysis to security issues thatovertly manifestin network traffic. On the other
hand, we were able to obtain such observations from a number of sites that differ in



size, geographic location, and nature of the residential users. This diversity then gives
us some initial sense of what facets of the residential security experience appear to hold
regardless of the specific environment, and what relationships we find behind different
facets of each environment and the differing behavior of individual users.

In this regard, our analysis develops a number of findings:

– A typical residential system is unlikely to engage in scanning or spamming, nor to
contact known botnet command-and-control servers.

– Residential users generally exhibit good “security hygiene”: many of them update
their systems regularly and deploy anti-virus software.

– However, such hygiene does not appear to have much impact on the likelihood of
becoming infected with malware.

– A significant subset of users exhibit risky behavior: they contact malicious sites
even though, as best as we can deduce, their browsers have warned them in advance.

– Such risky behavior roughly doubles the likelihood of becoming infected with mal-
ware.

Our range of data sets allows us to also inferrelativecomparisons between different
residential environments. Our main finding in this regard isthat seemingly quite differ-
ent sites—a European ISP, a US university dorm complex, and arural Indian network—
all exhibit similar levels of both security hygiene and risky behavior. Fairly assessing
levels of overt malicious activity across these environments is challenging, in part due
to ambiguity and limited information for the rural Indian network and limited observ-
ability (no DNS based metrics) at theUniv dorm environment. However, for both the
European ISP and theUniv environment often only a single indicator manifests per lo-
cal system. In contrast, for our baseline system at LBNL, we do not observe any overt
malicious activity, and significantly less risky behavior.

Finally, our work establishes that much more detailed data will be required to build
up a fully comprehensive picture of security issues in residential environments. We have
shown thatovertmalicious activity is in fact fairly tame for these networks. The next,
very challenging, step is to determine how to construct a sound understanding ofcovert
malicious activity.
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