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Abstract. While conventional wisdom holds that residential usersexgnce a
high degree of compromise and infection, this presumptasdeen little valida-
tion in the way of an in-depth study. In this paper we preséinsestep towards an
assessment based on monitoring network activity (anorsgirfiar user privacy)
of 20,000 residential DSL customers in a European urban aoeghly 1,000
users of a community network in rural India, and several slaod dormitory
users at a large US university. Our study focuses on sedssties thabvertly
manifestin such data sets, such as scanning, spamming, payloadwiggaand
contact to botnet rendezvous points. We analyze the rakitip between overt
manifestations of such activity versus the “security hggieof the user popula-
tions (anti-virus and OS software updates) and potensé&yrbehavior (access-
ing blacklisted URLs). We find that hygiene has little coateln with observed
behavior, but risky behavior—which is quite prevalent—mtmnan doubles the
likelihood that a system will manifest security issues.

1 Introduction

Conventional wisdom holds that residential users expeeenhigh degree of compro-
mise and infection, due to a dearth of effective system ahinétion and a plethora
of users untrained or unwilling to observe sound securiacfices. To date, however,
this presumption has seen little in the way of systematidyst8uch analysis can prove
difficult to conduct due to major challenges both in obtagréeccess to monitoring resi-
dential activity, and in determining in a comprehensivéfas whether a given system
has been subverted given only observations of externalliplei behavior.

In this paper we develop first steps towards such an investigdle examine the
network activity of 20,000 residential DSL customers witlai European urban area,
roughly 1,000 users of a community network in rural Indiaj aaveral thousand dormi-
tory users at a large US university. As a baseline, we indluder assessment the same
analyses for Internet traffic seen at a large research labygrtnat has a track record
of effectively protecting its roughly 12,000 systems withemploying a default-deny
firewall policy.

We in addition investigate the relationship between pnoisiiagged by our analy-
ses and the level of apparent “security hygiene” in our patahs. One may expect that



users who perform regular OS updates and deploy anti-vaftware are less likely to
have their systems compromised. Likewise, one might preghat users who partake
in risky behavior have more security problems. To checkelasumptions, we exam-
ine the end-user systems in our data sets for signs of regpéating system updates,
anti-virus deployments, and contacts to URLs blacklistgdbogle’s Safe Browsing
API [8].

We emphasize that given our data we can only assess malaitividy thatovertly
manifestan network traffic. Clearly, this reflects only a (perhapstgusmall) subset
of actual security problems among the users. Thus, what exéd® constitutes only a
first step towards understanding the nature and prevaldrsteb problems. Given that
caution, we frame some of our more interesting findings as:

— Inall of our environments, only a small fraction of hosts rifiest malicious activity.

— We do not find significant differences between the envirortrirerural India and
the other residential environments, though the former paseumber of analysis
difficulties, so this finding is only suggestive.

— While OS software updates and anti-virus technology ar@hlyideployed, we do
not find that their use correlates with a lower degree of av@licious activity.

— We observe frequent risky behavior, and users exhibitiredp sisky behavior are
roughly twice as likely to manifest malicious activity.

We structure the remainder of this paper as follows. Afteéolucing our data sets
and methodology in 82, we study security hygiene in 83 and ifneestigate malicious
activity in 84. We present related work in 85. Finally, weddiss our results and present
avenues for future work in 86.

2 Methodology

We start our discussion by summarizing the specifics of tie skets we captured in the
four network environments we examine in this study. We thsawss how, using these
traces, we identify the operating systems used by individosts. Finally, we present
the metrics we deploy for detecting overt malicious activit

2.1 Data Sets

We started our work by recording network traces in all enwinents. However, due to
high traffic volume it did not prove feasible to record thd fudtwork data stream for

an extended period of time in most environments. We theedémeraged Maier et al.’'s
“Time Machine” system [13] to reduce the stored amount cad@he Time Machine
records only the firsN bytes of each connection, discarding the remainder. For ex-
ample, in the ISP environment, usitg=50 KB allowed us to records 90% of all
connections in their entirety while only retaining 10% aftio/olume?

1 We note that due to operational constraints we used differgoff values in each environment,
as detailed in the corresponding sections.



Table 1. Data sets for European 1SBniv, and LBNL. We collected all these using thane
Machine

Location | Start | Duration| Total volume| After cutoff applied|  Loss
ISP Mar 13, 2010 14 days >90TB >9TB 0%
Univ Sep 10, 201 7 days > 35TB >2TB | 0.005%

LBNL | Apr 29, 2010 4days >25TB > 350GB 0.2%

Table 2. Data sets for AirJaldi.

Name | Start | Duration| #IPs| Size| Loss
AirJaldil | Mar 10, 2010 40h| 263 | 65GB| 0.35%
AirJaldi2 | Mar 13, 2010 34h| 188|31GB| 1.07%
AirJaldi3 | Apr 22, 2010 34h| 261|51GB| 0.44%

We used the Bro system [14] with Dynamic Protocol Detectiohtp detect and
extract application layer headers. Our capturing processle sure to anonymize the
data in accordance with the network operators’ policied,alhdata classification and
header extraction executed directly on the secured measmtenfrastructures. Table 1
and Table 2 summarize our data sets.

Lawrence Berkeley National Laboratory. TheLawrence Berkeley National Labora-
tory (LBNL) is a large research institute with more than 12,008th@onnected to the
Internet via a 10 Gbps uplink, and we use it a baseline formatys Since LBNL offers
an open research environment, LBNL'’s security policy dié$o fairly unrestricted ac-
cess, with only limited firewalling at the border. LBNL's sgity team actively monitors
its network for malicious activity, deploying a toolbox dfategies including detectors
for scanning and spamming. Systems detected as comproansaglickly taken off
the network. Thus, we expect to find little malicious actjivit this environment.

We analyze one 4-day packet-level trace. The trace coversaeekdays and a
weekend, with a total of 7,000 hosts active during that ger@rge individual flows
are common at this site, so the Time Machine proved espg@tbctive at reducing
volume of collected data. We ran it with a cutoff value of 25.KBiring our recording
interval, the capture mechanism reported 0.2 % of all packedropped.

In terms of application protocol mix, we find that HTTP cohtries about 42 % of
bytes at LBNL and SSH 21 %. About 23 % of the traffic remains assified.

European ISP. Our largest data set represents a 14-day anonymized pagkétrace
of more than 20,000 residential DSL lines, collected at agregation point within a
large European ISP. The ISP does not employ any traffic sgamirblocking (such
as filtering outbound SMTP connections), providing us withuaobstructed view of
potential malicious activity.

We used the Time Machine with a cutoff value of 50 KB. Since wgpkyed En-
dace monitoring cards and discarded the bulk of the data,ivaat experience any
packet loss. In addition, we also have access to severhEfutty-long traces for com-
parison purposes.



This ISP data set includes meta-data associating the aripegrP addresses in
the trace with the corresponding (likewise anonymized) OiS& IDs, which enables
us to distinguish customers even in the presence of thedraqddress reassignment
employed by this ISP [11]. For our study, we thus use thegdllds as our basic analysis
unit.

Furthermore, the NAT detection approach developed in [1&k&well in this en-
vironment and allows us to reliably identify the presenc&&fr's on any of the DSL
lines. In addition, the NAT detection approach enables usstonate the number of
hosts connected at a DSL line. We find that 90 % of the DSL lireesNAT and that
46 % connect more than one device to the Internet.

The application protocol mix in the monitored ISP networkigninated by HTTP
(> 50% of the total volume), while the prevalence of peer-ter@pplications is rather
small (15%). NNTP accounts for roughly 5%, and less than 16#eotraffic remains
unclassified but is likely P2P.

Indian community network. . The AirJaldi [1] wireless network is a non-profit com-
munity network in the Himalayas of India. Using approximat##00 wireless routers,
it covers a radius of 80 km in and around the city of Dharamsaiaaldi connects
thousands of users and machines with two leased lines froadband ISPs, which
provide a total uplink capacity of 10 Mbps. The majority o&ttural population ac-
cesses the Internet via publicly shared machines in cyfesca libraries. In addition,
some residential users connect to the network with indaiigtadministered machines.

In the AirJaldi network, a single IP address is assigned¢b éaustomer site”, such
as a specific building, library, or village. Customer sitas &1 turn provide connectivity
to anywhere from one to several hundred systems, and therlangs typically employ
a multi-tiered NAT architecture on their inside, with NATtgavays connecting further
NAT gateways.

Due to this architecture, we cannot directly distinguistiividual systems at our
monitoring point which is located at the central uplink rut_ikewise, the NAT de-
tection approach we use for the European ISP cannot relddiyrmine the number
of hosts behind the larger gateways. We therefore repoyt aggregate findings for
malicious activity and risky behavior for the AirJaldi eramiment.

However, to get an idea of the size of the user population,amestill estimate the
number ofactiveindividual users by extracting (anonymous) user ID coofiesd in
HTTP traffic: the IDs sent tgoogl e. com Doubleclick, and Google Analytics consis-
tently indicate that we are seeing at least 400—600 useicim teace.

In our traces, HTTP dominates AirJaldi’'s application poatis mix, accounting for
56—72 % of the total traffic volume, similar to the EuropeaR.|Bowever, in contrast
to the ISP, interactive communication protocols (instaessaging, VolP, Skype, etc.)
account 2.5-10% at AirJaldi, while NNTP and P2P are not peexa

University Dormitories. We also examine network traffic recorded at dormitories of
a major US University, where our monitoring point allows asobserve all their ex-
ternal traffic. While the dormitory network generally emydaa default-open firewall,
it deploys a custom “light-weight” Snort setup configureddtect a small set of re-
cent malware. Users flagged by Snort are automatically movedto a containment
network from where they can then only access resourcessonfecting their systems.



Note that this containment prevents such victims from frtnggering our malicious
activity metrics once the dorm setup has restricted theiese

The IP address space for the dorm users is large enoughdo assilic IP addresses
to each local system, with no need for a central gateway NATodur data set, we
observe about 10,000 active IP addresses. Analyzing usdiabwe discussed with the
AirJaldi network), we find roughly 14,000 distinct ones, gagting that a single public
IP is only used by few machines. We also find that user-to-1ppimys remain mostly
stable, and thus we can use IP addresses as our main analiy$iene. Similar to the
ISP, however, we cannot further distinguish between difiehosts/devices connected
potentially through a user-deployed NAT gateway.

We note that the NAT detection approach developed in [12kdus work well
in this environment. As it leverages IP TTLs, it relies on dlskeown hop distance
between the monitoring point and the user system, which tighecase in the dorm
environment.

We analyze one 7-day packet-trace from thév environment, recorded using the
Time Machine with a 15KB cutoff (i.e., smaller than for therBpean ISP). The ap-
plication protocol mix in the dorm network is dominated by F which accounts for
over 70 % of all bytes, with 20—-25 % of traffic unclassified.

2.2 Operating Systems

Malware often targets particular operating systems, amges@Ses are perceived as
more secure due to architectural advantages or smalleretnsinires that render them
less attractive targets. To assess these effects, we émpataraces with the operating
system(s) observed in use with each DSL line (for the Eunop@R) or IP address (for
the other environments). We determine operating systemasnbiyzing HTTP user-
agent strings reflecting the most popular browsers (Fireftbernet Explorer, Safari,
and Opera).

Doing so, we can identify one or more operating systems orerti@n 90 % of all
DSL lines of the European ISP. Analyzing the operating systax, we find that 59 %
of the lines use only a single version of Windows, while 23 % diferent Windows
versions. Mac OS is present on 7.6 % of the lines, and usedsixely on 2.7 %. We
find Linux on 3.7 % of the lines. However, we also observe thatik is generally used
in combination with other operating systems, and the foaatif lines with only Linux
is too small to assess malicious activity separately.

At LBNL, we can identify at least one operating system for 60fAll active IPs.
We find that 70 % of these IPs use only a single version of WirsldWe see Macs in
use with 19 % of those IPs, and Linux with 8.6 %.

In the Univ environment, we are able to determine operating systen3fés of all
active IPs. Mac OS is the dominating operating system heesgpt on 56 % of them.
34 % of IPs use a single version of Windows exclusively, anmtukiis present on just
over 4% of IPs.

At AirJaldi, we observe a large number of operation systeendpdue to its exten-
sive NAT deployment and thus cannot further estimate thteiloligion.



2.3 Manifestations of Compromised Systems

To identify end systems that overtly manifest maliciousvitgtor signs of likely com-
promise, we search for three behavioral indicatoastdress scanningort scanning
andspamming—and also monitor for network-level signatures aimed ag¢clatg three
malware families, Zlob, Conficker, and Zeus.

To take advantage of the long duration of our traces, we aeand report man-
ifestations of malicious activity first separately for eatdy of our multi-day traces
(European ISPyniv, and LBNL). We then further aggregate the results by accatul
ing all activity over increasing trace durations into cuativie data sets. For example,
consider a local system (DSL line or IP address) that stdddze a scanner on day
4. In the daily data set this system is marked as a scanneryo#.da the cumulative
data set, it is marked as scanner on day 4 as well adlftollowing days regardless of
whether the system is again acting as a scanner on any oftickequent days or not. In
particular, the cumulative data for the last day of a traflects the aggregate behavior
over the full observation period.

Scanning Extensiveaddress scanningften reflects the precursor of an attack that
targets services that answer the scan. Most network iotmggtection systems (NIDS)
therefore detect and report such scanners but their detegtuically targetexternal
hosts probing a monitored network. For our study, however,jnvstead wish to find
outboundscanners. This can prove harder to do, as the potential parkeeembedded
within the host’s benign activity.

We found that for our environments, a simple threshold-tdasan detector often
erroneously flags benign user activity such as web browBettectors that couriéiled
connection attempts work better, but still can misfire foPP2yle traffic patterns. We
therefore use an approach loosely modeled on that of TRW {Wi@tompute theatio
of successful vs. unsuccessful TCP connections initiajed local host. We define a
connection as unsuccessful if a client sends a SYN but aitioeives a RST back or no
answer at all.

We find that our data exhibits a sharply bi-modal distributidd success ratios: Con-
nections between a specific pair of local and remote hoststtegither always succeed
or always fail. However, when investigating the fractiomerhote destinationserlocal
host that tend to fail, we do not find such a clear distributiresumably, P2P clients
can have similarly large numbers of mostly unsuccessfuirdsons, thus rendering
this approach impractical. We can overcome this ambighiyever, by limiting our
scan analysis to 14 ports that frequently appear in inboaadrsng, as identified by
the security monitoring in our baseline environment, LBNhese ports include, e.g.,
the Windows services 135-139, 445, and 1433. For activigeting these ports, we in-
deed find that local systems either have a smalPQ) or large ¢ 100, often> 1,000)
number of unsuccessful remote contacts; see Figure 1. \Welgrem activity as overtly
manifesting a compromised local system if a host unsucekgsittempts to contact
> 100 destinations.

Another dimension of scanning regandsrt scanning probing many ports on a
single remote host. Since few benign applications need mbact numerous distinct
ports on a single system, we use a simple threshold-baseolagtp we consider a local
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Fig. 1. Scatter plot showing number of successful vs. unsuccessfuiections with remote IPs
per DSL line, computed for a single day of the ISP trace. The ef the circles is proportional
to the number of lines having the corresponding ratio.

system to manifest malicious activity if itnsuccessfullgontacts at least two remote
hosts on more than 50 ports within a single day.

Spamming Another manifestation of malicious activity concernsdblsosts sending
spam. To find an appropriate indicator for classifying a la@ssa spammer, we exam-
ined SMTP activity of local systems in terms of how many reen®MTP servers they
contact. The number of distinct SMTP servers can be an itatisince we do not ex-
pect many users to run their own SMTP servers, but insteagyt@n a (small) number
of e-mail providers to deliver their mails. Particularlytime ISP environment, e-mail
providers are necessary since the IP range of the monito&dliDes is dynamically
assigned and many SMTP servers generally reject mails frgndgnamic addresses
unless specifically authenticated. We find that DSL linesistantly contact either less
than 25 SMTP servers or more than 100. Indeed, most linescblesss than 10. We
ultimately classify a system asspammeif it contacts> 100 distinct SMTP servers in
one day.

Known malware families. We can also observe manifestations of host compromise
by flagging activity related to known malware families. Togin we focused on Zlob,
Conficker, and Zeus.

The Zlob malware family [24] changes the DNS resolver sg#tiof infected hosts
(and even broadband routers), altering them to a well-kngstrof malicious remote
systems. We thus classify a system as reflecting a Zlob infeitit uses one of those
known DNS resolvers. We note that Zlob targets both WindavesMac systems, sub-
verting systems using social engineering in the guise okea adec download.

Another malware family that has attracted much attentioGasficker [15]. For
April 2010, the Conficker Working Group [4] reported 5-6 Mtitist Conficker A+B
infected IPs and 100-200K distinct Conficker C infected ste however that the
number of IPs does not necessarily provide a good estimafioine population size



due to aliasing. The group estimates the true populatiantsibe between 25-75 % of
the IP addresses seen per day.

To find rendezvous points, Conficker A and B generate a lisb6fdifferent domain
names each day (Conficker C uses 50,000 domains) and therréydive them. Since
the algorithm for generating the domain names is known [22],can compute the
relevant domain names for our observation periods and ciwbath local hosts try to
resolve any of these. To account for potential clock skewhendient machines, we
also include the domain names for the days before and aftexbmervation period.

Conficker C sometimes generates legitimately registeredadtts, due to its fre-
quent use of very short names. To rule out false positiveghesefore only flag a sys-
tem as manifesting a Conficker infection if it issued0 lookups for known Conficker
domains. We note that Conficker also uses address-scammniimgltother vulnerable
machines and spread itself. Thus, we expect to find a caoelaétween address scan-
ning and Conficker lookups.

We use the Zeus Domainblocklist [25] to identify local sysseinfected with Zeus.
Since the list does not only contain seemingly random domames but also some in-
dicating scare-ware (e.g.,updateinfo22.com) or typo squatting (e.g.,
googl e-anal ytiics.cn), we require> 4 lookups per system and day to classify a
system as infected. We found that fewer lookups often refietiedded ads or other
artifacts not due to compromise. Since we initially lackembatinuous feed of the Zeus
domain list, we used a one-day snapshot from Mar 23, 201h&tSP trace andir-
Jaldi1/AirJaldi2. We used another snapshot from May 6, 2010 for LBNL aimdhaldi3.
For Univ, we were able to continuously update the list during the nnegent period.

Alternative Manifestations of Compromised SystemsWe also examined further al-
ternative approaches to detect compromised systems, Wwhigéver did not turn out to
generate sufficiently reliable results.

One obvious approach is to leverage a NIDS’ output dire@lynsequently, we
attempted using a standard signature set: the EmergingiBhneles [7] loaded into
Snort [18]. We excluded all rules that are labeled as aimtrfqding “inappropriate”
activity (e. g., gaming traffic or P2P) as such is not in scapefir study. Still, analyzing
a single day of ISP traffic, we get more than 1 million hits, §lexgy more than 90 % of
the monitored local systems. Clearly, such results havedode many false positives.

We can reduce the number of hits by restricting the analgsexamine only out-
bound activity, and whitelisting rules that are likely togflaenign activity. However,
Snort still reports too many alarms to be a reliable indic&dous. The main problems
with the Emerging Threats rules are their sheer size (mare 3600 rules in total), and
a general lack of documentation (many rules are not docuedeattall). In particular,
the rules do not include any indication on how tight they are.(what their likelihood
of false positives is), nor how severe one should consideattivity they target (e.g.,
is this rule triggered by a C&C channel or by adware).

Another approach we tried as an indicator of likely systemmgmmise is check-
ing whether a local system’s IP address appears on an anti-Hpacklist, such as
Spamhaus. However, we find that doing so proves difficult insedtings: address as-
signments are dynamic and can often reflect numerous difféiasts over short time
intervals. Thus a single blacklist entry can tar the repaabf many distinct local



systems. In addition, some anti-spam providers proagtivkcklist all dynamically
assigned IP address ranges.

3 Security Hygiene and Risky Behavior

To analyze whether residential users are aware of potdmizdrds and take recom-
mended countermeasures, we analyjjzehether local systems use anti-virus scanners;
(ii) if they regularly update their OS software (e. g., Windowslalie); andiii) whether
they download Google’s Safe Browsing blacklist.

Most anti-virus and OS software updates are done using HafidPthey use spe-
cific user-agents and/or HTTP servers. Searching for thiés&saus to classify a local
system as a software updater and/or anti-virus user. Ldewlhe HTTP servers serving
Google’s blacklist are well-known, and we can thus identidfyal systems which use
the blacklist. Moreover, we also check if local systems doading the blacklist still
request any blacklisted URLs. Such behavior clearly hastadnsidered risky. For
finding such “bad” requests, we determine whether a reqd&#R was blacklisted at
the time of the request by keeping a local change historyeobtacklist over the course
of our measurement interval.

We note that me might over-estimate the number of actual @&tdwvirus updates.
OS updaters often only check whether an update is availaioléheen ask the user to
install it, however the user might decline to do so. Likewmsati-virus products might
download (or check for) new signatures but not use them srfesuser has a current
license for the anti-virus software. Our analysis flagsé¢hesses as anti-virus user and
OS updater respectively. However, we cross-checked oultsdsy only considering a
local system as anti-virus user if the anti-virus softwaemsferred at least 1 MB and
100KB of HTTP body data.

3.1 European ISP

Figure 2 shows the fraction of active DSL lines vs. lines perfing anti-virus or OS
updates. On any given day 57—65 % of DSL lines perform OS soéwpdates, and 51—
58 % update their anti-virus signatures (or engines). Ftoencumulative data we see
that over the 14 day observation period up to 90 % of lineskferaipdates to their OS
and 81 % use anti-virus software. This highlights that thex-lmse in principle exhibits
elementary “security hygiene” and performs recommendedaartions.

When focusing on DSL lines exhibiting exclusively MacOSatt, we find that up
to 2% do anti-virus updates and up to 78 % perform softwaretgsd

But what about risky behavior such as requesting potenta@dingerous URLs?
Overall, we find that only about 0.03 % of all HTTP requestsegspn Google's Safe
Browsing blacklist. However, investigating the per-DShedibehavior, we find that on
any given day up to 4.4 % of the DSL lines request at least oaeklisted URL (see
Figure 3). Across the whole 14-day period we see that a styikb % of lines request
at least one blacklisted URL.

To check if the browser may have warned the user about doaggthequests, we
next examine if the user-agent placing them actually doaahéal the blacklist from
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Fig. 2. Fraction of active lines, lines with anti-virus updatesd aoftware updates for daily and
cumulative data sets from the ISP.

Google earlier. For doing so, we distinguish three caseswahgser accesses a black-
listed URL:

— notDownloaded: The browser did not download the blacklist at all, thus tkeru
could not have been warned.

— beforeBlacklisted: The browser downloaded the blacklist, however the URL was
requestedbeforeit appeared on the blacklist, thus the user could likewigehage
been warned.

— whileBlacklisted: The browser downloaded the blacklist and requested the URL
while it was blacklisted. That is, the user placing the rej@eresumably by click-
ing on a link)should have been warndxy the browser that the URL is considered
malicious.

In Table 3 we list for each combination of cases the fractidd®L lines exhibiting
this combination. We find that for the majority of lines regtieg blacklisted URLSs the
browser either did not download the blacklisb{Downloaded), or the request occurred
before the URL was blacklisted and thus the browser coulchawe warned the user
about the URLs potential malignity. However, we find a siguaifit number, 33.6 %,
of DSL lines that request blacklisted URLs even though thersushould have been
warned by their browsers (any combination in whidfileBlacklisted is present). When
we investigate how often DSL lines request URLs that are ongBs blacklist, we

2 We allow for a 1 hr grace period, relative to the time when a URk appeared on our local
copy of the list. Google suggests that browser developepteiment a 25—-30 minute update
interval for the blacklist. Furthermore, Google stateg thavarning can only be displayed to
the user if the blacklist is less than 45 minutes old, thusifigr browsers to regularly update
the list.
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Fig. 3. Fraction of lines requesting URLSs blacklisted by Google.

Table 3. Possible cases when DSL lines access blacklisted URLs Pdigaset. 100 % repre-
sents all lines requesting at least one blacklisted URL.

Fraction| Cases

43.8 %| notDownloaded

19.5 %) beforeBlacklisted

16.9 %| whileBlacklisted

11.0 %| whileBlacklisted, beforeBlacklisted
3.0 %| notDownloaded, whileBlacklisted
2.7 %| notDownloaded, whileBlacklisted, beforeBlacklisted
3.1 %| notDownloaded, beforeBlacklisted

find that 53 % of such lines do so on only a single day. This iamtgis that although
many lines request blacklisted URLs, they do not requedt BIRLs every day.

3.2 University

Analyzing security hygiene at theniv environment, we find that 78 % of all local IP
addresses perform OS software updates over the 7-day tumagosh, and that 60 %
perform anti-virus updates. While these numbers are loh@n the numbers for the
European ISP, we note that we observe significantly more dlPeades on which only
MacOS systems (and no Windows systems) are active than Btutlopean ISP. For IP
addresses on which we only observe Macs, we find that 45 % pedati-virus and
73 % perform software updates.

When we turn to risky behavior we find that after the 7-day oletéon period
roughly 20 % of local IP addresses have requested URLs liséettlby Google. This
is higher than at the European ISP, where we reach 19 % afaysi(after the first



7 days the European ISP environment reaches 14 %). Simildwet¢SP we find that
36.4 % of the IPs requesting blacklisted URLs do so althohgtbrowser should have
warned the user.

3.3 AirJaldi

Comparing security hygiene at the European ISP with theafdrhetwork in India,
we find them quite similar. In terms of HTTP requests, we finat @t AirJaldi ap-
proximately 0.02 % are blacklisted by Google (European 563 %), and 0.5-1.12%
are related to anti-virus software (European ISP: 1%). FérsOftware updates, the
numbers differ more: up to 2.8 % of all HTTP requests at Adilals. only 0.3 % at
the European ISP. Assessing security hygiene on a per heist isadifficult in this
environment, however, given the layered NAT structure. \Wd that 29.6 %—40.7 %
of the observed sites at AirJaldi perform anti-virus and OBnsare updates, and 3.8—
5.4 % request blacklisted URLs. Recall, however, that edelcan connect anywhere
between a handful and several hundred users.

3.4 LBNL

We next turn to security hygiene at LBNL. We find relativelyflosts there updating
anti-virus software (24 %) or operating systems (31%). Tais be explained how-
ever by the fact that LBNL uses centralized, internal updatievers. The operating
system distribution also differs notably from the ISP eomment, with significantly
more Linux and Mac hosts in use at LBNL. Turning to risky bebgwve find that only
0.01% of all HTTP requests are blacklisted. In terms of thetfon of hosts requesting
blacklisted URLSs, we also find a smaller number than at thepgean ISP: up to 0.92 %
of hosts per day and less 1.25% overall. However, we find thatsiat LBNL still re-
quest blacklisted URLs even though they should have beeneddny their browser;
23.4% of IPs requesting blacklisted URLs do so.

4 Malicious activity

After finding that even though users appear to be securityeaamad take appropriate
precautions they still engage in risky behavior, we now usemdicators for identify-
ing malicious behavior. Moreover, we also study the inflgeatsecurity awareness,
risky behavior, NAT deployment, and operating systems dection probability. We
emphasize that the overall estimate of malicious activibt tve derive can only be a
lower bound of the total present in these environments.

We start by studying the characteristics of the DSL custsméthe European ISP
since that is our richest data set. We then compare the sdsoith the European ISP
with those from the university dormglfiv), the AirJaldi community network, and the
LBNL setting, as applicable.
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Fig. 4. Probability that a line triggers malicious activity indioes (isbad) for the ISP, shown
separately for the daily and cumulative data sets.

4.1 European ISP

Figure 4 shows the likelihood that a DSL line triggers anytod malicious activity
indicators for the European ISP. We find that both on a perbdays as well as overall
only a small fraction of local systems manifest overtly mialus activity;< 0.7 % and
< 1.3 %, respectively. Moreover, these percentages do not vachracross days.

However, even though the cumulative probabilities remaialf they are increasing
over our 14-day period. This indicates that over time we ate # identify more lines
that manifest malicious activity, and it may imply that l@eng@bservation periods would
reveal even more lines manifesting such activity.

We find thatoverall the malware families and spammers contribute most to the
observed manifestations of compromised systems, whilengra are less prominent;
see Table 4. On per-daybasis, only the malware-based indicators are prominent.

More than 44% of the spammers are only active on a single daythey trigger the
indicator only on a single day. In contrast, only 11% of tharstdng activity is limited
to a single day. On average (mean and median) scanners arfosdalays.

For most indicators, we observe a difference between the meaber of days that
the indicator is triggered and the median number of days ifldicates that there is no
consistent behavior by the local systems manifesting moalécactivity. Indeed, an in-
depth analysis reveals that some spammers and scannéthatamalicious behavior
as soon as the DSL line becomes active, while others stopotemily or are only active
for a short period. The fact that the malware families tylyctrigger on 5-8 days
(mean) confirms that the bots engage in activity on a regasisbHowever, malicious
activity such as port scanning or spamming seems to be tingtsub-periods.

We find only a small overlap among the lines that trigger arthefindicators. Most
lines that manifest malicious activity trigger only a siaghdicator (92 %); about 7 %



Table 4. Probability that a DSL line triggers a malicious activitydioator. The daily numbers
summarize the range of the probability values per day. Timast¢ the persistence of the activity,
we include the mean/median number of days that each inditéggered and the percentage of
lines for which the indicator triggered only on a single day.

Probability Activity prevalence
Indicator | daily prob.| cumm. prob.|| mean / median only single day activity
Spam 0.03-0.10 % 0.25% 3.6 /2 days| 44%
Scan 0.01-0.06 % 0.09% 4.3/ 4 days 11%
Port Scan| 0.01-0.03 % 0.06 % 3.5/2 days 39%
Zlob 0.13-0.19 % 0.24%|| 8.4/10days 10%
Conficker| 0.17-0.26 % 0.23% 6.5/6 days 27%
Zeus 0.07-0.15% 0.28% 4.9/2 days 38%
Total 0.50-0.66 % 1.23% 5.9/4 days 28%

trigger two. There is some correlation (0.227) betweenslitiat manifest Conficker
and scanning activity, as we would expect due to Confickegsilar network scans in
search of further vulnerable hosts. We also observe a atioelof 0.109 between DSL
lines triggering the Spam and Zeus metrics.

Next we check whether the likelihood that a local system hests malicious ac-
tivity is influenced by other parameters.

Security Hygiene We start our investigation by examining the impact of atits
deployment and OS software updates. Surprisingly, we de@etany strong effects
in this regard. Anti-virus software does not noticeablyueeithe likelihood of a DSL
line manifesting malicious activity (1.10 % with anti-vews. 1.23 % without, consid-
ering all indicators). We cross-check these numbers fortarpial over-estimation by
only considering DSL lines that transferred at least 100 KBIB) of anti-virus HTTP
payload, we find that still 1.06 % (0.82 % for 1 MB) of lines &g our metrics. While
the latter is a drop of roughly 30 %, anti-virus softwarel stdems less effective than
one might presume. Likewise, we do not observe any partiémpact of performing
OS updates. We verified that these findings are not biased AgdBSL lines with
multiple hosts. That is, even for lines that do not show midthosts, the likelihood of
infections is not significantly changed by using anti-viousloing updates.

Google Blacklist Given the large fraction of DSL lines requesting blackistRLS,
we next study whether such behavior increases the chanceumfesting malicious
activity (see Figure 5). Indeed, we find that the probabiitya line triggering any of
our indicators rises by a factor of 2.5, up to 3.19 % (from 2&3f we also observe the
same line requesting at least one URL found on Google’s b&ckVhile in absolute
terms the elevated level still remains low, our indicatarlydrackovertmanifestations
of security issues, so the more salient takeaway conceemadine-than-doubled rate of
host compromise for systems with poor “security hygiene”.

NAT . Next, we evaluate whether NAT influences the probabilitirigigering our mali-
cious activity indicators. We find that DSL lines that conmaaltiple hosts are 1.5 times
more likely to trigger one (1.81 %). Lines on which no NAT geé is present are as
likely to trigger an indicator as all DSL lines.
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Fig. 5. Probability that a line triggers any malicious activity icator (isbad) given it requested a
blacklisted URL (BIKLst) for ISP.

Malicious activity on Macs. Next, we turn to DSL lines on which all traffic is from
Macs (2.7 % of all lines) and evaluate their likelihood of rii@sting malicious activity.
When analyzing the full 14-day observation period, we firat tlac lines trigger one
of our indicators at less than half the rate of all systems4@ vs. 1.23%), and they
do so via a single indicator, infection with Zlob. In this eed, however, Macs are more
thantwiceas likely to manifest an infection as all systems (0.24 %).

These findings are somewhat difficult to interpret. They appe suggest that in
general, Mac systems fare better than Windows systemanstefresisting infection—
but possibly only because most infection targets only thiedaand when infection
also targets Macs, they may in fact be more vulnerable, psrdae to less security
vigilance.

4.2 University

We next turn to manifestations of malicious activity in teiv dorm environment. As
the dorm network provides central DNS resolvers to all Isgatems, we are not able to
observe DNS requests from local systems unless they spadlgitonfigure a different,
external DNS resolver. This implies that we cannot use ougtidsed indicators (Con-
ficker and Zeus) for directly identifying infected local ssis. We are however able to
observe DNS requests from the central resolvers, allowéng vecognize whether any
local systems are infected. Analyzing the DNS requestsnin’s traffic, we find no
Conficker lookups at all, indicating that no hosts infectathwConficker were active
(outside the containment network) during our measurenmgatval. We do however
observe lookups for Zeus domains.



When using the other indicators, we observe that only a feallsystems (0.23 %)
manifest overtly malicious activity during our 7-day obssion period. At the Euro-
pean ISP, 1% of DSL lines manifest such activity over 7 day83% over 14 days),
and 0.8 % excluding Zeus. In contrast to the European ISP,ngetiiat port scanners
at Univ contribute most to the overall number of local systems nestiifig malicious
activity. Scanners trigger on 0.13 % of local systems andthkr indicators combined
trigger on 0.1 % of local systems.

We do not observe any local systems that trigger more thanfome malicious ac-
tivity indicators. This is however not surprising giventka cannot observe Conficker
and Zeus activity. Recall that at the European ISP, thes¢édamebto correlate most with
other indicators.

Similar to the European ISP, we find that risky behavior (esging blacklisted
URLS) nearly doubles the rate of manifesting maliciousvagtiwith the 0.23 % overall
figure rising to 0.4 % in that case. Again, we find that neith8rg0ftware nor anti-virus
update activities affect the rate at which security protdenanifest.

4.3 AirJaldi

AirJaldi 1 AirJaldi 2 Airdaldi 3
Site 1 zeuS ZeuS, B
Site 2 Conficker(799)SW Conficker(275)SW . Iipafuv w
Site 3 BLK AV SW AV sw BLEcar:\v sw
Site 4 X X SIMn:\v sw
Site 5 X X BI_stam sw
Site 6 X X Bl_stan:\v
Site 7 X X BLSKpan:\v
Site 8 BLK AV Sw BLﬁcar/‘\V SwW BLK AV sw
Site 9 BLK sw R BLK AV SW
Site 10 Conficke:\(\?QﬂSW A sw N sw
Site 11 Spam? Scan x X
Site 12 s AV AV

AV = anti-virus SW = software update BLK = Blacklist hit

Shaded background = malicious activity

Fig. 6. Summary of malicious activity and security hygiene for alJaldi traces.

Within the Indian AirJaldi network, we observe very limitadalicious activity.
However, given that AirJaldi uses a multi-tiered NAT hietay, we can only explore
malicious activity by customer site rather than per endesys Within each trace we
observe between 188 to 263 active customers sites. Eachnoeissite can connect



multiple, possibly hundreds, of hosts. However, exploting number of destinations
for scanners and spammers for each flagged site, we find #haatle well within the
range of what we observe at the European ISP. Therefore, meduzte that each of the
reported scanning and spamming sites is likely due to a smaiber of infected hosts.
Indeed, most likely it is due to a single one.

Across all three traces only a total of 12 customer sitegétigd any of our indica-
tors. Figure 6 summarize the results, listing all 12 custosites that triggered any of
our indicators. An “X” indicates that a site was not obserired particular trace. We
also further annotate each site with labels based on whetiyesf its systems requested
blacklisted URLs BLK), or updated anti-virusAV) or OS software$W).

A detailed look at the spammers shows tkdé 11contacted 56 remote SMTP
servers, less than our cutoff of 100. However, since no aliercontacts more than
10 SMTP servers, we flag this site as a likely spamrseafn?) rather than a certain
spammer $pam).

Only two sites trigger our malicious activity indicatorsrimore than one trace. We
never observe more than 7 sites manifesting maliciousifciivany single trace, and
in only one case do we find multiple forms of malicious acyiat a single customer
site. We note thagites 4—7are in the same /24 network and could potentially be a single
customer site using multiple IP addresses over the tracidor

Even though we cannot reliably determine the number of tefkbosts at each
customer site, we can attempt to estimate it. For Confickerishpossible since each
infected host will in general generate 250 DNS lookups pgr dhus we estimate the
number of infected hosts by dividing the total number of Gaddr lookups by 250. We
list the number of Conficker lookups per site in parentheSesficker(n)) in Figure 6.

Given the inability to identify end hosts, we cannot souratiyrelate activity levels,
anti-virus, OS software updates, or Google blacklist hithwalicious activity.

4.4 LBNL

At LBNL, our indicators trigger only for a small number of hgn hosts. Not sur-

prisingly, local mail servers are reported as “spammerst} hosts deployed by the
Lab’s security group for penetration testing purposes aggd as “scanners”. While
confirming that our detectors are working as expected, saisle falarms are unlikely
to occur in the residential environments. Other than thesegdo not find any further
malicious activity reported at LBNL.

5 Related Work

In our study, we examine several manifestations for malgiactivity including scan-
ning and spamming which are established indicators of commed systems. Most
network intrusion detection systems (NIDS), such as themeirce systems Snort [18]
and Bro [14], use simple threshold schemes to find scannessalBo provides a more
sensitive detectoThreshold Random Wa[l0], that identifies scanners by tracking a
system’s series of successful and failed connection aterhipwever, existing detec-
tors do not work well for findingoutboundscans, as needed for our study.



Spammings often countered by blocking known offenders via DNS-lasiack-
lists, such as SORBS [19] or Spamhaus [21]. However, dueddciggh IP address
churn we experience (for example, due to DSL lines freqyesithnging their IP ad-
dress [11]), such blacklists do not provide us with a reBabktric. Furthermore, many
blacklists include théull dynamic IP space. Ramachandran et al. [17] identify spam-
mers by observing the destinations they try to connect ts &liminates the need for
contentinspection. The Snare system [9] extends this appitoy building a reputation-
based engine relying on additional non-payload featurkes& approaches, however,
deploy clustering algorithms, and thus rely on suitablming sets, which are not avail-
able for our data set.

We also check our data sets for indicators of specific malveadiref which are ana-
lyzed and tracked in detail by other effor@onficker{4, 15]; Zlob [24]; and Zeus [25].
For example, Bailey et al. [2] survey botnet technology ardj@n et al. [5] examine
malware that changes a client's DNS resolver, includinglioé trojan.

Carlinet et al. [3] ran Snort on DSL traffic from about 5,00Gtumers of a French
ISP to study what contributes to a user’s risk of being irddatith malware. For their
study, Carlinet et al. simply removed the 20 Snort signattriggering the most alarms.
However, they do not further analyze how the remaining gigea contribute to the
overall results, what their false-positive rate is, or Wieetthere is relevant overlap
between them.

We also leverage Google’s Safe Browsing blacklist [8]; thpraach used for col-
lecting the blacklist is originally described by Provos keira[16].

Stone-Gross et al. [20] try to identify malicious (or neelig) Autonomous Sys-
tems (AS). They analyze data from their honeyfarm to idgnifaddresses of botnet
C&C servers and use four data feeds to find IP addresses eflyhdownload hosting
servers and phishing servers. They correlate the infoom&tbom these sources and the
longevity of these malicious servers to compute a “malisiscore” for the ASes host-
ing such malicious servers. ASes with high scores can thdraoklisted or de-peered
by other ISPs or network operators. Thus their focus is orhtising infrastructure
rather than individual infected machines.

There has been some work on the prevalence of individual arelvirhe Conficker
Working Group states that 3 million infected hosts is a “@mative minimum esti-
mate”, and it cites the study of an anti-virus vendor thatdititht 6% of the monitored
systems are infected. Weaver [23] estimates the hourly Ga@rfiC population size in
March/April of 2009 to average around 400-700K infections.

6 Conclusion

In this work we have aimed to develop first steps towards wstdeding the extent of

security problems experienced by residential users. Sucles face major difficulties

in obtaining in-depth monitoring access for these usersthiwend, we have made
partial progress by acquiring network-level observatimngens of thousands of users.
However, we lack direct end-system monitoring, and as sodhis study we must

limit our analysis to security issues thatertly manifesin network traffic. On the other

hand, we were able to obtain such observations from a nunfletes that differ in



size, geographic location, and nature of the residentedsug his diversity then gives
us some initial sense of what facets of the residential #g@uperience appear to hold
regardless of the specific environment, and what relatipsshe find behind different
facets of each environment and the differing behavior oividdal users.

In this regard, our analysis develops a number of findings:

— A typical residential system is unlikely to engage in scagror spamming, nor to
contact known botnet command-and-control servers.

— Residential users generally exhibit good “security hygifemany of them update
their systems regularly and deploy anti-virus software.

— However, such hygiene does not appear to have much impabedikélihood of
becoming infected with malware.

— A significant subset of users exhibit risky behavior: theyteot malicious sites
even though, as best as we can deduce, their browsers hawvedthem in advance.

— Such risky behavior roughly doubles the likelihood of beawginfected with mal-
ware.

Our range of data sets allows us to also imédative comparisons between different
residential environments. Our main finding in this regarth& seemingly quite differ-
ent sites—a European ISP, a US university dorm complex, anchbindian network—
all exhibit similar levels of both security hygiene and gidkehavior. Fairly assessing
levels of overt malicious activity across these environta@challenging, in part due
to ambiguity and limited information for the rural Indiantmerk and limited observ-
ability (no DNS based metrics) at thiniv dorm environment. However, for both the
European ISP and théniv environment often only a single indicator manifests per lo-
cal system. In contrast, for our baseline system at LBNL, waak observe any overt
malicious activity, and significantly less risky behavior.

Finally, our work establishes that much more detailed dattde required to build
up a fully comprehensive picture of security issues in resiiil environments. We have
shown thabvert malicious activity is in fact fairly tame for these networl$e next,
very challenging, step is to determine how to construct adaunderstanding afovert
malicious activity.

7 Acknowledgments

We would like to thank Yahel Ben-David of AirJaldi for helgjrus with the AirJaldi
network and the anonymous reviewers for their valuable centm We would also like
to thank our data providers: the European ISP, the US Uniyegtise AirJaldi network,
and the Lawrence Berkeley National Laboratory.

This work was supported in part by NSF Awards CNS-0905631N#Bie-0433702;
the U.S. Army Research Laboratory and the U.S. Army Reseaffibe under MURI
grant No. W911NF-09-1-0553; a grant from Deutsche Telekahdratories Berlin;
and a fellowship within the postdoctoral program of the Gamm\cademic Exchange
Service (DAAD). Opinions, findings, and conclusions or moeendations are those of
the authors and do not necessarily reflect the views of theh&tScience Foundation,
the U.S. Army Research Laboratory, the U.S. Army Researtice)br DAAD.



References

N =

[S20F

© 00~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

. AIRJALDI NETWORK. http://wwmv. airjal di.org.

BAILEY, M., COOKE, E., AHANIAN, F., Xu, Y., AND KARIR, M. A survey of botnet

technology and defenses. Rmoc. Cybersecurity Applications & Technology Conferefure

Homeland Security2009).

. CARLINET, Y., ME, L., DEBAR, H., AND GOURHANT, Y. Analysis of computer infection
risk factors based on customer network usageé?rbt. SECUWARE Conferen¢2008).

. CONFICKERWORKING GROUP. http://www.confickerworkinggroup.org.

. DaGgoN, D., PrRovos, N., LEE, C. P.,AND LEE, W. Corrupted DNS resolution paths: The
rise of a malicious resolution authority. RProc. Network and Distributed System Security
Symposium (NDS$2009).

. DREGER H., FELDMANN, A., MAI, M., PAXSON, V., AND SOMMER, R. Dynamic
application-layer protocol analysis for network intrusidetection. InProc. USENIX Se-
curity Symposiung2006).

. EMERGING THREATS. htt p: // ww. emer gi ngt hreat s. net /.

. GOOGLE. Google safe browsing APhtt p: // code. googl e. cont api s/ saf ebr owsi ng/ .

. Hao, S., FEAMSTER, N., GRAY, A., SYED, N., AND KRASSER S. Detecting spammers

with SNARE: spatio-temporal network-level automated tepian engine. IfProc. USENIX

Security Symposiuif2009).

JNG, J., AXSON, V., BERGER A., AND BALAKRISHNAN, H. Fast portscan detection

using sequential hypothesis testing.Proc. IEEE Symp. on Security and Priva@004).

MAIER, G., FELDMANN, A., PAXSON, V., AND ALLMAN , M. On dominant characteristics

of residential broadband internet traffic. Broc. Internet Measurement Conference (IMC)

(2009).

MAIER, G., SCHNEIDER, F., AND FELDMANN, A. NAT usage in residential broadband

networks. InProc. Conf. on Passive and Active Measurement (P&d)1).

MAIER, G., SOMMER, R., DREGER H., FELDMANN, A., PAXSON, V., AND SCHNEI-

DER, F. Enriching network security analysis with time traveh Rroc. ACM SIGCOMM

Conferenc&2008).

PXSON, V. Bro: A system for detecting network intruders in reahé. Computer Networks

Journal 31 23-24 (1999). Bro homepadet:t p: / / www. br o- i ds. or g.

PORRAS, P., SAIDI, H., AND YEGNESWARAN, V. An analysis of Conficker’s logic and

rendezvous points. Tech. rep., SRI International, 2009.

Provos, N., MAVROMMATIS, P., RaJAB, M. A., AND MONROSE F. All your iIFRAMEs

point to us. InProc. USENIX Security Symposigf008).

RAMACHANDRAN, A., FEAMSTER, N., AND VEMPALA, S. Filtering spam with behavioral

blacklisting. InProc. ACM Conf. on Computer and Communications SecurityS)tZ007).

RoEscH M. Snort: Lightweight intrusion detection for networks Proc. Systems Admin-

istration Conference (LISA)LL999).

SORBShttp://ww:. au. sorbs. net.

STONE-GROSS B., KRUEGEL, C., ALMEROTH, K., MOSER A., AND KIRDA, E. FIRE:
FInding Rogue nEtworks. IfProc. Computer Security Applications Conference (ACSAC)
(2009).

THE SPAMHAUS PROJECT htt p:// ww. spanhaus. or g.

UNIVERSITAT BONN. http://net.cs. uni-bonn. de/wy/ cs/ applications/

cont ai ni ng- confi cker/.

WEAVER, R. A probabilistic population study of the Conficker-C beitnin Proc. Conf. on
Passive and Active Measurement (PA®)10).

WIKIPEDIA. Zlob trojan.ht t p: // en. wi ki pedi a. or g/ wi ki / ZI ob_troj an.

ZEUS TRACKER. https://zeustracker. abuse. ch.



