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Abstract
The performance pressures on implementing effective
network security monitoring are growing fiercely due to
rising traffic rates, the need to perform much more so-
phisticated forms of analysis, the requirement for inline
processing, and the collapse of Moore’s law for sequen-
tial processing. Given these growing pressures, we argue
that it is time to fundamentally rethink the nature of using
hardware to support network security analysis. Clearly,
to do so we must leverage massively parallel computing
elements, as only these can provide the necessary perfor-
mance. The key, however, is to devise an abstraction of
parallel processing that will allow us to expose the paral-
lelism latent in semantically rich, stateful analysis algo-
rithms; and that we can then further compile to hardware
platforms with different capabilities.

1 Introduction

Effective network security monitoring is growing in-
creasingly difficult. Given the adversarial—and hence
constantly evolving—nature of the problem space, plus
the inherently limited power of signature matching in the
face of false positives, polymorphism, and zero day at-
tacks, we need tools capable of sophisticated analysis
of protocols(i) at higher semantic levels, and(ii) incor-
porating context correlated across multiple connections,
hosts, sensors, and over time. For such analysis, the
monitor must both perform much more computation and,
crucially, undertake sophisticated management of large
quantities of complex state.

Such monitors also need toalter traffic to elimi-
nate broad classes of evasion threats (i.e., “normaliza-

1International Computer Science Institute. vern@icir.org, robin@
icir.org, nweaver@icsi.berkeley.edu.

2Massachusetts Institute of Technology. krste@cag.csail.mit.edu.
3Nuova Systems. sarang@nuovasystems.com.
4Washington University, St. Louis. lockwood@arl.wustl.edu.
5Princeton University. rpang@CS.Princeton.EDU.

tion” [HPK01]) and to progress beyond simply detecting
attacks to instead realizing intrusionpreventionsystems.
But forcing the monitoring into the forwarding path as
an active, inline element now runs the risk of imposing
direct limits on the performance of production network
traffic.

Worse, traffic volumes and rates continue to race for-
ward, outpacing raw CPU performance now that unipro-
cessor speeds no longer track Moore’s Law, rendering
the detection task beyond the performance that tradi-
tional hardware approaches can provide. While the main
alternatives—ASICs and FPGAs—support vastly more
parallelism, they require highly deliberate, customized
programming, which is directly at odds with the press-
ing need to perform diverse, increasingly sophisticated
forms of analysis.

Given these growing pressures—more sophisticated
forms of analysis, conducted inline, at higher rates, on
non-uniprocessor hardware—we argue that it is time to
fundamentally rethink the nature of using hardware to
support network security analysis. Clearly, to do so we
must leverage massively parallel computing elements, as
only these can provide the necessary performance. The
key, however, is to devise anabstractionof parallel pro-
cessing that will allow us to expose the parallelism latent
in semantically rich, stateful analysis algorithms; and
that we can then further compile to hardware platforms
with different capabilities.

In the next section we sketch the fundamentally lim-
ited nature of current hardware approaches for support-
ing network security analysis. We then in Section 3 de-
velop an argument that the task of performing such anal-
ysis includes a great deal of potential parallelism, even
for quite sophisticated forms of analysis, if only it can
be exposed. In Section 4 we describe in high-level terms
how we envision such an alternative paradigm for hard-
ware support could be achieved. We offer final thoughts
in Section 5.



2 The Limited Nature of Current Hard-
ware Approaches

To date, the literature of hardware designs to support net-
work security analysis has focused heavily onsignature
scanning, i.e., detecting whether a packet (or sometimes
a reassembled byte stream) contains a string of inter-
est, or matches a regular expression, and executing an
action, such as drop or alert, associated with the sig-
nature. Much of this work has drawn inspiration from
the popularity of “Snort” [Roe99] and its large set of
byte-level signatures. Along these lines, within the past
five years approaches have been devised based on NFAs
(e.g., [SP01, FCH02]) and DFAs (e.g., [MLLP03]),
supplemented by optimizations such as character de-
coding [CS04], architectural features [SP04, CMS05],
TCAMs [LNZ+03], Bloom filters [DKSL04], optimized
Aho-Corasick trees [TSCV04], and “tiny” state ma-
chines [TS05].

A vital point regarding nearly all of the previous hard-
ware design research is that it presumes a nearlystateless
approach to attack detection. The implementations either
operate on single packets, or require some other process
to reassemble the TCP byte stream. This leaves them
vulnerable to evasion attacks [PN98, HPK01], which, if
addressed at all, are countered by dropping out-of-order
packets, with potentially major detrimental effects on
performance and network load under congestion. Richer,
stateful hardware elements, such as TCP stream reassem-
bly, have not been explored in nearly as much depth1

(e.g., using a small, fixed amount of state per connec-
tion [SL03]). It is in fact striking that one of the sim-
plest, most basic next steps—TCP stream reassembly
coupled with consideration of an adversary—had been
wholly unexplored in the literature until less than a year
ago [DP05]. This appears to reflect an historical gulf be-
tween hardware expertise and network security expertise
that could yield immense benefits once bridged.

What is missing? A great deal. First, signature-
matching is fundamentally limited in its expressive
power. Its nature is syntactic rather than semantic, a
weakness that leads to intrinsic difficulties in interpret-
ing the significance of a match (resulting in false posi-
tives, and also the easy ability of an adversary to over-
stimulate the system) and in detecting variants of attacks
that differ syntacticly but have semantics equivalent to
known attacks. We have previously argued that we can
ameliorate some of these deficiencies by incorporating

1Hardware-based intrusion detection is an area abuzz with commer-
cial activity. Almost nothing is available in the peer-reviewed literature
regarding the designs that underly these systems. From vendor litera-
ture, it appears clear that some of the systems use extensive, expensive
ASIC components, but whether these serve simply to parallelize low-
level matching operations similar to the work described above, or also
exhibit true innovations for higher-level processing, remains uncertain.

contextinto byte-level signature matching—but doing so
requires either maintaining significantstate, and/or per-
forming significant semantic processing [SP03].

Second, network protocols contain a wide range of
ambiguous cornercases that create evasion opportunities
beyond those that arise just due to the syntactic nature
of signatures [PN98]. To prevent attackers from ex-
ploiting these ambiguities to elude detection, we need
to remove the ambiguities vianormalization, in which
an inline network element selectivelyrewrites traffic to
disambiguate it [HPK01]. However, performing such
normalization again requires maintaining significant per-
connection state.

Third, once we have a security element operating in-
line rather than passively, we again have an opportu-
nity to do significantly more powerful analysis: intrusion
prevention(blocking traffic that bears an attack as de-
termined by NIDS analysis) rather than meredetection.
When doing so, however, our willingness to tolerate false
positives diminishes precipitously, again calling out for
detection approaches more powerful than the weak one
of signature-matching.

Fourth, if we can bring more sophisticated, stateful
processing to bear, then we enable a wealth of richer
types of analysis. One large class comes fromprotocol
parsing: recovering the higher-layer semantics conveyed
in a byte stream in order to understand the specific re-
quests, responses, status messages, error codes, and data
items embedded in a connection dialog. Analyzing these
at the application layer, as opposed to the syntactic byte-
string layer, opens up much greater insight into the nature
and context of the exchange between two hosts, allowing
much more precise detection decisions—but at a cost of
the hardware managing a great deal more state, and per-
forming much more processing.

Finally, other higher-level forms of analysis evaluate
activity acrossmultiple connections or hosts. For exam-
ple, “content sifting” identifies worms by detecting sub-
strings that repeatedly appear in traffic between multi-
ple hosts [SEVS04]; “stepping stone” detection can de-
termine that two connections, potentially with no host
in common, in fact represent elements of a chain along
which a single set of commands and responses propa-
gate [ZP00]; and “scan detection” attempts to rapidly de-
termine that the activity of a host reflects malicious prob-
ing with high probability [JPBB04]. Supporting these
again requires significant state and processing.

3 Opportunities for Much Richer Forms of
Parallelism

We could provide hardware support for each of the
many desirable forms of in-depth analysis by handcraft-
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Figure 1: The spectrum of parallelism present in a high-level network security analysis pipeline.

ing intricate, individual hardware designs. But the labor
involved—both for accommodating different platforms
with different capabilities, and as the types of analysis
continue to mushroom—renders this a losing game, re-
quiring enormous effort and resources. Instead we need
to find ways to(i) express such analysis in high-level
terms, allowing us to readily refine our detection algo-
rithms and develop new ones,(ii) with a means for trans-
lating the high-level descriptions into hardware realiza-
tions,(iii) for which we can effectively take advantage of
the hardware’s capabilities.

This final consideration is crucial: the only benefits
we gain from implementing analysis in hardware come
from the alternate execution model that hardware can of-
fer. Otherwise, we might as well simply execute the anal-
ysis on a general purpose CPU—which is no longer vi-
able given the failure for such CPUs to track the rates
at which both network traffic and the desired richness of
analysis grow.

Indisputably, the key to unlocking potential hardware
performance gains is parallelism. Indeed, the massive
parallelism of FPGAs is what has driven many of the
efforts in boosting NIDS performance with hardware to
date, as outlined above. However, we argue that we can
find further exploitable parallelism in network analysis
tasks, even very high-level ones,if we structure the tasks
to expose it.

Figure 1 illustrates the parallelism potentially avail-
able across a pipeline of increasingly higher levels of net-
work security analysis. A crucial point is that we need to
extract parallelism at each stage of the pipeline or else
Amdahl’s Law will fundamentally limit the speedup that
hardware can provide. In the figure, vertical boxes re-
flect different types of analysis, increasing in semantic
level and breadth from left to right. The progression of
arrows indicate how information flows from one level to
the next, with the thickness of an arrow indicating the rel-

ative volume of data within the flow. Thinner arrows thus
indicate fewer threads of analysis that need to execute at
the next stage relative to the previous stage; hence if the
later stage offers fewer opportunities for parallel execu-
tion, but also receives fewer flows to analyze, then we
can still “keep the pipeline full” as we analyze flows at
increasingly high levels. Of particular note is the large
degree oftask-levelparallelism, which can be leveraged
either by pipelining or by constructing multiple, indepen-
dent functional units. Even at the highest level of global
analysis, there are potentially tens to even hundreds of
independent tasks.

Fanout of arrows indicates multiple analyses that can
be executed in parallel with little conflict between the
threads of processing. Fan-in indicates multiple sources
of information flows being analyzed together at a higher
level. Finally, the numbers shown such as “≈ 10

4 in-
stances” convey an order-of-magnitude sense of the vol-
ume of parallelism available if we are monitoring a busy
link with a capacity of 1–10 Gbps. (We use these num-
bers just to convey a sense of opportunity.)

We work through the figure as follows. The first stage
(“Stream Demux”) demultiplexes incoming packets to
per-connection processing. Although a sequential task,
experience has shown that one can efficiently implement
stream demultiplexors in line-rate, pipelined hardware.
On a link of 1–10 Gbps, we might have, say,10

4 concur-
rent connections, and thus we can then parallelize and/or
pipeline the process of TCP stream reassembly and nor-
malization amongst these10

4 independent streams.

After performing TCP stream reassembly, we then for-
ward the resulting flows for protocol analysis. This stage
exhibits still more parallelism: today, we can no longer
reliably determine the application protocol used for a
given connection based on the transport port numbers as-
sociated with the flow. However, a powerful means by
which to analyze application protocols even in the ab-



sence of reliable port numbers is torun different possi-
ble application parsers in parallelto determine which
parser finds the flow syntactically and semantically con-
sistent [DFM+06]. Thus, here we have fanout as exe-
cution tries a plethora (10 in the Figure) of different ap-
plication parsers, and then fan-in as only one of those
parsers actually accepts the flow.

The output of the application analysis is a series of
“events” reflecting a distillation of application-level ac-
tivity such as the parameterization of requests, items and
status codes associated with replies, error conditions,
and so on. We can then analyze these events on a per-
connection basis, maintaining the earlier parallelism we
gained during the demux stage, and allowing us to eval-
uate per-connection policies.

Next, a subset of these events, gathered across mul-
tiple connections involving a given host or a given con-
nection type, feed into analysis policies that execute at
an aggregate level. For example, for scan detection we
assess to how many different servers a given host has
attempted to connect, and with what success. The par-
allelism available here is a function of how many such
analyses we perform, and to what degree they can exe-
cute without conflict.

At the last stage, at a still higher level of aggregation
we execute analyses that use events drawn across not
only multiple connections but also multiple hosts, such
as the “content sifting” and “stepping stone” analyses
mentioned in the previous section.

Finally, an important point concerning this pipeline
is that its processing doesnot have to execute in only
a few microseconds in order to ensure that we can for-
ward packets at line rate. Rather, due to the exploitation
of parallelism we can pipeline the processing of many
concurrent streams, allowing potentially hundreds of mi-
croseconds or even more for any one stream, while still
sustaining line rate for the aggregate. For each given
stream, incurring a millisecond or two of additional la-
tency is quite acceptable, and allows us to perform much
richer analysis than what we could realize in the absence
of parallelism.

4 Extracting the Parallelism

The previous section argues that the task of network se-
curity analysis includes a great deal ofpotentialparal-
lelism, but the major challenges of exposing it and map-
ping the execution to hardware remain. We envision
pursuing these using three fundamental elements: (1) a
high-level language for expressing rich forms of network
analysis; (2) a powerful abstraction of parallel execution
to which we target compilation of the elements of the
language; and (3) a final step of compilation from that

abstraction to concrete hardware implementations. We
briefly examine these now, top-down.

We can partition the first element into three compo-
nents: a set of fixed function blocks, a set of protocol
analyzers, and a domain-specific analysis language. The
function blocks implement universal analysis prerequi-
sites such as connection state management and stream
reassembly (second stage of Figure 1). These might be
implemented as handcrafted hardware modules. For pro-
tocol analyzers, if we specify them using a language such
as BinPAC [Pan06, PPSP06] (which supports describ-
ing protocol syntax and semantic logic declaratively, at
a high level), then we could retarget the compiler for the
language to generate code for our parallelism abstrac-
tion rather than uni-threaded C++ (third stage). Finally,
for higher levels of analysis (remaining stages), we pic-
ture expressing them in a language such as that used by
our Bro intrusion detection system [Pax99], which in-
cludes asynchronous event-oriented execution, sophisti-
cated state management primitives, and explicit support
for coordinating concurrent execution among multiple
processes. Such a set of language features offers natu-
ral opportunities for mapping high-level analysis scripts
to our parallelism abstraction. Compilation of both pro-
tocol analyzers and higher-level analysis requires aggres-
sively optimizing compilers that can identify the depen-
dencies we must address for concurrent processing. We
can consider the compilation in the other direction, too:
what kind of features or restrictions might we incorpo-
rate into an existing language to facilitate the discovery
of parallelism?

For the model of parallel execution to target, we
envision an intermediary form such as theTransac-
tor abstraction we have been developing, and which is
used as the basis of the RAMP project design frame-
work [GSA06]. This architecture represents a paral-
lel computation as a communicating network of stateful
“transactional actor” processing units. Each unit has four
components: local architectural state; buffered input and
output channels that provide decoupled connections be-
tween units; a set of atomic transactions that can read
from the input channels, mutate private state, and write
to the output channels; and a scheduler that selects the
next transaction to perform.

The basic model is built around guarded atomic ac-
tions [CM88], which provide clean handling of non-
deterministic input streams and shared mutable state, al-
lowing us to model a concurrent computation as a net-
work of transactor units connected by message queues.
Execution of the transactor network has serializable se-
mantics, in that any concurrent execution produces the
same result as some sequential execution in which one
transactor executes one transaction atomically at each
step.



The transactor model simplifies the generation of high
quality hardware in two main ways. First, by decoupling
global communication between units from local compu-
tation within units, the model naturally captures locality
in the computation and simplifies the generation of effi-
cient global interconnect fabrics. Second, by describing
computation within a unit as a set of guarded atomic ac-
tions rather than as a fixed execution schedule, the spec-
ification frees the implementation to map transactions
onto a variety of sequential, pipelined, or parallel exe-
cution structures. For example, the same specification
could be mapped to use greater or fewer resources on
an FPGA depending on the area available, and mappings
can change the area allocation between different pieces
of the analysis depending on the relative throughput re-
quirements.

Of course, a great deal of careful design work is still
required, paying particular attention to the capabilities
of different execution targets, private vs. shared memory
access, and state and timer management. But if we can
achieve such an approach, then we can(i) express our
analyses in a high-level, domain-specific language, and
(ii) decouple the labor and expertise of compiling the el-
ements of our analysis language to the parallelism ab-
straction, from the labor and expertise of compiling that
abstraction to platforms with different hardware capabil-
ities.

5 The Bigger Vision

Finally, we note that little in our resulting architectural
approach relates to the particular problem of network se-
curity analysis. Rather, the core of the new paradigm
can enable sophisticated, stateful network processing
in general. Thus, if successful, we could enable net-
work processing rich in semantics and context as arou-
tine capability provided by a network’s routers. The
same hardware will support reconfiguration for a wide
range of processing using recompilation rather than re-
design. With this shift will then come the opportu-
nity to rethink the full edifice of the network processing
architecture—which today begins with the fundamental
restriction “keep the primary forwarding path as simple
as possible,” but tomorrow might transform to “keep the
million parallel computational units busy if possible.”

6 Acknowledgments

This work was supported by NSF Awards STI-0334088,
ITR/ANI-0205519, and CCF-0541164, as well as a fel-
lowship within the Postdoc-Programme of the German
Academic Exchange Service (DAAD).

References

[CM88] K. Mani Chandy and Jayadev Misra.Paral-
lel Program Design: A Foundation. Addi-
son Wesley, 1988.

[CMS05] Y. Cho and W. Mangione-Smith. Fast
reconfiguring deep packet filter for 1+
gigabit network. In IEEE Symposium
on Field-Programmable Custom Computing
Machines, (FCCM), Napa, CA, April 2005.

[CS04] Christopher R. Clark and David E. Schim-
mel. Scalable multi-pattern matching on
high-speed networks. InIEEE Symposium
on Field-Programmable Custom Computing
Machines, (FCCM), Napa, CA, April 2004.

[DFM+06] Holger Dreger, Anja Feldmann, Michael
Mai, Vern Paxson, and Robin Sommer. Dy-
namic Application-Layer Protocol Analy-
sis for Network Intrusion Detection. In
USENIX Security Symposium, 2006.

[DKSL04] Sarang Dharmapurikar, Praveen Krishna-
murthy, Todd S. Sproull, and John W. Lock-
wood. Deep packet inspection using paral-
lel Bloom filters. IEEE Micro, 24(1):52–61,
January 2004.

[DP05] Sarang Dharmapurikar and Vern Paxson.
Robust TCP Stream Reassembly in the Pres-
ence of Adversaries. InUSENIX Security
Symposium, August 2005.

[FCH02] R. Fanklin, D. Caraver, and B. Hutchings.
Assisting network intrusion detection with
reconfigurable hardware. InProceedings
from Field Programmable Custom Comput-
ing Machines, 2002.

[GSA06] G. Gibeling, A. Schultz, and K. Asanović.
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