
Packet Trace Manipulation Framework for Test Labs

Andy Rupp Holger Dreger Anja Feldmann Robin Sommer
Ruhr-Universität Bochum TU München TU München TU München

arupp@crypto.ruhr-uni-bochum.de dreger@in.tum.de anja@in.tum.de sommer@in.tum.de

ABSTRACT
Evaluating network components such as network intrusion
detection systems, firewalls, routers, or switches suffers from
the lack of available network traffic traces that on the one
hand are appropriate for a specific test environment but on
the other hand have the same characteristics as actual traf-
fic. Instead of just capturing traffic and replaying the trace,
we identify a set of packet trace manipulation operations
that enable us to generate a trace bottom-up: our trace
primitives can be traces from different environments or arti-
ficially generated ones; our basic operations include merging
of two traces, moving a flow across time, duplicating a flow,
and stretching a flow’s time-scale. After discussing the po-
tential as well as the dangers of each operation with respect
to analysis at different protocol layers, we present a frame-
work within which these operations can be realized and show
an example configuration for our prototype.

Categories and Subject Descriptors: C.2.0 [Computer-
Communication Networks]: General.

General Terms: Measurement.

Keywords: Network, measurement, trace generation, eval-
uation, network intrusion detection.

1. INTRODUCTION
When evaluating network components such as network

intrusion detection systems, firewalls, routers, or switches
there are two basic approaches, each of which has advan-
tages as well as drawbacks: while capturing and replaying
live traffic provides us with realistic traffic, its characteris-
tics are fixed. On the other hand when generating traces
artificially (e.g., by using a network simulator), tuning indi-
vidual parameters is possible, but the resulting trace often
does not show the wide variability of actual traffic. There-
fore, we propose an alternative approach: generating traffic
bottom-up from traces gathered from different sources (cap-
tured or crafted), by combining and adapting them. For
this purpose we introduce a set of basic trace manipulation
operations which try to minimize the impact of these mod-
ifications to the anticipated application.

This work originated in the context of evaluating network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’04, October 25–27, 2004, Taormina, Sicily, Italy.
Copyright 2004 ACM 1-58113-821-0/04/0010 ...$5.00.

intrusion detection systems (NIDSs). To assess a NIDS,
one often injects attack-traffic into high-volume background
traffic to measure false-negative and false-positive rates (see,
e.g., [13]). The main difficulty with this approach is that it is
non-trivial to vary parameters, such as the attack rate, with-
out changing the overall characteristics of the trace, indicat-
ing that one needs various degrees of flexibility for inserting
attack traces into background traffic. Yet we also note that
it is possible to decompose the complex insert attack trace
operation into several more basic operations. These include
merging of two traces into a single stream (the attack and
the background trace); adapting one trace to another (the
address space of the attack traffic to the background traf-
fic’s one); stretching or compressing flows (e.g., to change
the length of the attack); moving a flow in time (e.g., an at-
tack flow to the beginning); and duplicating flows (e.g., an
attack or a background flow). While the complex operation
insert is difficult to realize, these primitives are much easier
to define and their impacts are easier to analyze.

Motivated by this application scenario, in this paper we
examine packet trace manipulation in detail. First, we iden-
tify a set of basic operations and examine, with respect to
our application scenario, whether they hinder specific kinds
of analysis at the various protocol layers (e.g., is a NIDS
able to detect the trace manipulation?). Knowing the im-
pacts of our base operations might enable us to adapt real
traffic in a way that cannot be recognized by the system
under test. We present a general framework for composing
complex traffic manipulations from these primitives: Plug-
ins realize basic operations as well as mechanisms to inter-
connect them. The parameterization of the plug-ins and
the set-up of the interconnections are done using a custom
language. This provides us with fine-grained control capa-
bilities for manipulating packet traces as well as their traffic
characteristics. We believe that the framework will prove
its usefulness in test-lab contexts different from our original
motivation. For example, to evaluate traffic measurement
tools, such as alternatives to Cisco NetFlow [4], or to stress
routers [8]. Performance evaluations within such applica-
tion scenarios require reproducable and scalable work-loads
or put differently many different traces. However it depends
on the application which aspect of the trace can or cannot be
manipulated. Accordingly the application determines which
operations are appropriate and which ones are inappropri-
ate.

We note that, in general, unrealistic packet constellations
cannot be avoided when manipulating traffic traces. Hence,
we do not claim that we offer a complete solution. Rather
we argue that we can often minimize the impact of manip-
ulations if we understand what characteristics are modified
and how this affects our concrete application. For exam-

251

ple, if we evaluate tools for round-trip-time estimation, we
should better leave inter-packet times untouched. On the
other hand, to our knowledge there is no NIDS that takes
RTTs into account. Thus, when evaluating NIDSs it does
not do any harm to “stretch” a connection by multiplying
the inter-packets gaps by a constant factor 1.

There exist other tools to process and manipulate traffic
traces in test-lab environments. Libpcap [17] provides an
OS-independent interface for processing packet traces. We
utilize it as an input plug-in. NetDuDE [12] is a visual
packet editor. While it provides a rich set of operations, its
main focus is interactive use. We are considering to leverage
parts of its general-purpose manipulation library, though.
Click [11] is a modular router whose architecture is similar
in spirit to our framework. It focuses on forwarding packets
rather than changing traffic characteristics. Tcpreplay [18]
and TCPivo [9] play traces back into a live network and thus
provide us with output back-ends. Alternatively, we could
use a DAG network interface card [6] to replay packets with
accurate timings. Network simulators like NS [2] are useful
for generating traces but are not the appropriate tools for
manipulating captured or artificially crafted network traffic.
When used as a network emulator NS interacts with the
live network but lacks the necessary packet manipulation
operations.

Simply using replay tools such as TCPivo to replay the
traces and a router or switch to intermix the packets lacks
reproducibility. This could be overcome by using a network
emulator or by capturing the merged trace. Yet the result-
ing trace would have several drawbacks: first, one has no
chance of adopting the trace to the test-bed environment;
second, the inter-packet spacing of flows crucial for the anal-
ysis may not be preserved; third, packets can get lost if the
switch/router does not have sufficient buffering; fourth, de-
pending on the input trace the output trace may loose its
variability (since the new utilization is always 100%). In this
case removing some of the flows before the merge might have
been more appropriate. Overall one should note that replay
tools can be used to realize one basic operation. Tools such
as libpcap filters allow us to realize part of another basic op-
eration. Yet they do not provide us with the full flexibility
of the framework proposed in this paper.

In Section 2, to motivate the work, we briefly discuss two
application scenarios. In Section 3 we identify our basic
trace manipulation operations and examine both their po-
tential and their dangers. Section 4 presents our general
framework and Section 5 demonstrates how to compose a
complex trace using these operations. Finally, Section 6
briefly summarizes and discusses future work.

2. APPLICATION SCENARIO
To motivate our approach to manipulation of traffic traces,

we discuss two example applications: evaluation of network
intrusion detections systems and traffic measurement tools.

2.1 Network Intrusion Detection
A common approach to evaluating NIDSs uses captured

packet traces to create realistic network work-loads. While
this provides us with a reproducible setting, it is hard to
record a “real-world” trace containing the exact character-

1By using large factors we may exceed certain time-outs of
the NIDS but those are usually several orders of magnitude
larger than a connection’s RTT.

istics one wants to test for. Therefore one usually modifies
the captured trace to vary some of its parameters. For ex-
ample, a straight-forward yet hard to realize operation is to
insert separately recorded attack traffic into a trace that pro-
vides representative background traffic for the environment
under test. Unfortunately, inserting one trace into another
is much more complex than simply mixing packets.

Initially, the attack has to be adapted in order to fit seam-
lessly into the background traffic. While this ensures that
the trace looks like being appropriate for the chosen environ-
ment (e.g., the changed IP addresses from the attack trace
match those in the background trace) it is nearly impossi-
ble to identify all interactions caused by inserting the attack
traffic into the background traffic. For example, if the in-
jected attack is a successful attack on an FTP server this
can imply that the FTP server is no longer available after
the end of the attack. In this case, to preserve realism, one
would have to remove all connections from the background
trace that involve the FTP server after the attack took place.
Such kinds of adaptations are especially crucial if one consid-
ers an anomaly-based system. Here the NIDS might detect
some artifact caused by the trace insertions instead of ac-
tually recognizing the attack, implying that its performance
looks much more impressive in the test-lab than in the real
world.

Fortunately, not all trace interactions influence the test re-
sults. Yet, it is not obvious which artifact affects a NIDS’s
detection process or some other network traffic analysis.
Therefore it is hard to judge whether a specific trace, gen-
erated from other traces, poses an acceptable loss of realism
or not.

We note that modifications to traces can lead to artifacts
at almost all layers of the protocol stack: at the link layer,
some ARP requests may be missing or obsolete; at the net-
work layer, IP-fragments may be missing or reordered; at
the transport layer, an end-point’s round-trip-time estima-
tion may no longer be valid; at the application layer, it is
possible to violate inter-connection semantics. The greater
the complexity of the manipulations to the traffic the larger
the difficulty of understanding their impact. Therefore, we
propose to decompose the trace manipulations into basic
operations, and analyze their potentials and dangers.

2.2 Traffic Measurement
When developing traffic measurement models and tools,

evaluating their performance systematically is rather diffi-
cult. For example, while several new flow models have been
proposed recently (see, e.g., [7, 15]), to assess their feasibil-
ity we need very fine-grained control over the characteristics
of a packet stream. In particular we need the ability to
tune the utilization of the link implied by such a stream.
Unfortunately, given a packet trace it is non-trivial to pre-
dictably modify its link utilization without creating unre-
alistic packet constellations. A naive approach to increase
the utilization is to merge-in a second trace packet-wise. As
Figure 2.2 demonstrates, this very likely leads to short-term
spikes that exceed a link’s capacity. Figure 2.2 shows the
bandwidth usage of two merged one-minute traces with an
average bandwidth of 39 and 52 Mbit/s. While the aver-
age stays below the link’s capacity of 100 Mbit/s there are
plenty of peaks that cannot occur on a real 100Mbit/s link.

A more fine-grained mechanism to increase a link’s utiliza-
tion is the duplication of individual flows. When we operate
on a single flow at a time, we can often avoid unrealistic

252

artifacts. If the duplication of a flow exceeds the bandwidth
of the link, most of the time it is due to spikes amplifying
each other. Then it may already help to either move the new
flow slightly in time or to stretch its time-scale by increasing
inter-packet gaps. For a flow-level model these operations
are not observable as an unrealistic constellation (of course
if we duplicate a flow we have to assign new IP addresses to
the copy).

3. TRACE MANIPULATION
In this section we first identify a set of basic operations

and then analyze their impact with regards to different lay-
ers of the protocol-stack. That is, assuming a system that
performs per-protocol analysis, we try to identify whether it
may perceive the modifications. For example, most NIDSs
extract IP addresses on the network-layer, reassemble TCP
streams on the transport-layer, and watch out for suspicious
HTTP requests on the application-layer.

3.1 Basic operations
We start by defining basic operations for trace manipu-

lation that can be applied either to a single packet or to
the set of packets corresponding to some flow. A flow cor-
responds to a sequence of packets involving the same two
end-points where the time difference between in-sequence
packets is smaller than some timeout. An end-point con-
sists of its IP address, the encapsulated protocol, and for
TCP and UDP the port number.

Adapt: As highlighted by the example in Section 2 the
first step of many trace manipulations is the adaptation of
the packet-level headers to the particular environment. By
changing the protocol header fields, such as MAC addresses
(Ethernet link-layer) and IP addresses (network-layer), to-
gether with appropriate adjustment of the checksums, the
packets become consistent with the test environment. De-
pending on the local configuration other protocol fields such
as the time-to-live also have to be adapted in order to en-
able (or disable) packets to reach their ”new” destination.
In addition for some test environments it might be necessary
to change the TCP or UDP port numbers.

Merge: If more than one recorded trace is involved a sec-
ond basic operation is needed: merging. To preserve inter-
packet times of interdependent traffic they should be merged
according to their packet timestamps (i.e., in chronological
order). Since the timestamps in the traces rarely overlap and
a concatenation of traces usually is not sufficient, we pro-
pose to use relative timestamps for all packets and all traces.
This normalizes the timestamp of first packet of each trace
to zero. After choosing one of the traces as a base trace the
remaining traces are injected at specified points. One prob-
lem inevitably arises from this method: how to maintain the
nominal packet rate on the link (i.e., how to adhere to the
minimal time-distances between adjacent packets). Other-
wise the network link becomes overloaded. The following
operations are helpful in addressing this issue.

Scale: One possibility to resolve time-distance conflicts
is to compress or to stretch the traces. For compression, all
inter-packet gaps of a trace (or of a flow) are multiplied by
a constant factor smaller than one. Accordingly, stretching
corresponds to multiplying the inter-packet gaps by a factor
greater than one. Although this operation is inappropriate
when applied to a whole trace [10], it is suitable for small
adjustments as well as adjustments of individual flows.

Remove/Duplicate: In order to maintain the crucial
minimal inter-packet gaps it may be sensible to remove one
or more flows from a trace. On the other hand one could also
increase the bandwidth of the resulting trace by duplicating
flows.

Move: The move operation displaces single packets or
flows. Besides being a useful standalone operation it pro-
vides another way of circumventing unrealistically small inter-
packet gaps.

3.2 Problems with the basic operations
Each one of the basic operations introduces a number of

artifacts. An artifact is a sequence of packets which is, by
protocol or statistical analysis, distinguishable from the be-
havior of an actual interacting system. In the following
we identify a number of artifacts and discuss them in the
context of the network-layer within which their effects are
perceivable. Note that this is not a complete list. Rather
it serves the framework-user as a starting point for identi-
fying relevant artifacts for his application. Most artifacts
are caused either by disturbances to a state management at
a specific protocol-layer or by rearrangement of dependent
packets.

Network-layer: One main type of network-layer anal-
ysis are statistical summaries, e.g., number of packets per
second and number of bytes per second. All trace opera-
tions, except adapt, change these characteristics. The ex-
tent of the change depends heavily on the parameterization
and some bounds apply: for example, by stretching or com-
pressing a trace the metric “packets per second” is influ-
enced at most linearly by the multiplication factor, or by
moving only 1% of the traffic the mean of the distribution
should hardly change. Yet the extremes, e.g., 5th and 95th
percentile might change drastically.

In an Ethernet-environment, our base operations can dis-
turb the causal relationship between ARP and IP packets.
Since the effects imposed by ARP are local in scope and usu-
ally not part of the protocol analyses, the current operations
ignore them.

IP only needs to maintain state for IP fragment reassem-
bly. Accordingly all protocol-based analysis at the network-
layer should not be affected by the adapt, merge, and scale
operations independent of whether they are applied to sin-
gle packets or flows. The remove, duplicate and move op-
erations also does not bias any protocol analysis when ap-
plied to flows. Yet, if applied to IP fragments, fragment
reconstruction may no longer be possible and therefore the
network-layer analysis suffers.

Transport-layer: One has to differentiate between UDP
and TCP in order to decide which operations cause artifacts
that are perceivable via transport-layer protocol analysis.

UDP is a stateless protocol and, hence, similar to IP.
Therefore the same considerations that applied to IP (apart
from IP fragmentation) apply to UDP. This implies that all
of our basic operations do not affect UDP protocol analy-
sis independent of whether they are applied to individual
packets or to flows.

TCP, on the other hand, is state-full and offers a fault-
tolerant, in-order, byte stream service. If applied to indi-
vidual TCP packets, all of the operations are detectable if a
real endpoint would have responded differently to the new
packet sequence than it did in the trace. When applying the
operations to individual flows this does not have to be the

253

0 10 20 30 40 50 60

20
40

60
80

10
0

time [s]

B
an

dw
id

th
 u

se
d

[M
bi

t/s
]

0 10 20 30 40 50 60

20
40

60
80

10
0

time [s]

B
an

dw
id

th
 u

se
d

[M
bi

t/s
]

0 10 20 30 40 50 60

20
40

60
80

10
0

time [s]

B
an

dw
id

th
 u

se
d

[M
bi

t/s
]

(a) Trace 1 (b) Trace 2 Merged trace

Figure 1: Bandwidth usage (average bandwidth: trace 1: 39 MBit/s; trace 2: 52 MBit/s)

case. Let us start by assuming an ideal flow model: each
flow corresponds to exactly one TCP connection. In this
case one might presume it safe to apply the adapt, merge,
remove, duplicate, and move operations to flows, since either
all packets or no packet of the TCP connection is altered.
Therefore the protocol analysis should yield comparable re-
sults. However, in a congested network, especially long-lived
TCP connections adhere to congestion control and there-
fore compete for their fair share of the available bandwidth.
When the operations disturb such an interaction it is infea-
sible to recreate or repair this interaction by the per-flow
operations.

In contrast to the other operations, scaling changes the
inter-packet spacing and therefore influences the analysis
within a single TCP connection. For example, the initial re-
transmission timeout is computed by the end-system based
on fixed OS-dependent values. By choosing a large stretch
factor it is possible to excessively enlarge the initial inter-
packet gap to the extent that the actual end-system would
have experienced a timeout and therefore had retransmitted
the packet.

In practice, due to resource limitations it is infeasible to
use the above notion of an ideal flow. For example, in a trace
we often do not see a complete 4-way-teardown of a connec-
tion (e.g., because we missed some packets while capturing;
or one of the hosts has been turned off). Thus, although
the TCP protocol allows arbitrary long idle times, in an
online system at some point one has to terminate each con-
nection. Otherwise, the state keeping can easily exhaust a
system’s resources [5]. Accordingly, we rely on a time-out-
based definition of a flow: “data exchanged between two
endpoints within some time”. This causes further artifacts
since it is now possible to apply operations on partial TCP-
connections.

Application-layer: At the application-layer, the impact
of each trace operation depends on the specific applica-
tion and the transport protocol (i.e., TCP or UDP) that
it uses. Since UDP-based application protocols often imple-
ment TCP-like error-recovery mechanisms which are per-
turbed by all basic per-packet operations they may perceive
the output of these when applied to single packets as arti-
facts.

The merge operation, when applied to flows, is likely to
cause the fewest artifacts at the application-layer: when the
flows are disjoint in terms of address space the merge opera-
tion does not trigger artifacts for most application protocols.
All other operations disturb the relationships between flows
at the application-layer: consider a protocol such as FTP
which uses a control connection and one or more separate

FilterNetworkController
An interface to the core system

MNCLInterpreter
An interpreter for the FilterNetwork Configuration Language

PluginRegistry
Plugin management

FilterNetworkComponent
The common component interface

ComponentContainer
The FilterNetwork

1

0..*

IntermediateComponentDataSink DataSource

Filter Pipe

uses

uses

stores components

InputSide
XFerDatatype:

OutputSide
XFerDatatype:

1..*

1

1..*

1

1..*1..*

1 1

Figure 2: Advanced Pipes and Filters Architecture

data connections. As long as one adapts, scales, removes,
duplicates or moves only one of these connections, one can
easily cause artifacts in terms of missing expected connec-
tions and occurrence of unexpected connections (adaptation,
merge, remove, duplicate); or wrong relative order of con-
nections (scale, move). A different kind of artifact can be in-
troduced by the scale operation: if one scales a whole trace,
one does not only scale network delays but also computa-
tional and user-controlled delays.

4. SOFTWARE ARCHITECTURE
Section 3 identifies a set of basic trace manipulation op-

erations that can be assembled to form arbitrary complex
operations. In this section we describe a software system
that provides us with a framework to realize such trace ma-
nipulation. Based upon a custom configuration language to
conveniently specify a set-up it provides us with the ability
to realize the basic operations and build more complex oper-
ations bottom-up using already specified ones as primitives.

Basic operations are implemented as small independent
data-processing components, i.e., filter plug-ins, to facili-
tate reusability and enable step-wise development of com-
plex manipulations. To enable the user to easily extend the
system to read and write the trace data in arbitrary for-
mats our design includes input plug-ins and output plug-ins.
For example the user might write a input-plugin for reading
trace data out of a specific database and a output plugin for
releasing trace data onto a specific network.

254

PCapFileSource
"bgt_source"

PCapFileSource
"attack_source"

 Attack Trace
 iis_dt

BG Traffic Trace
 bgt_1

01101

11010

01001

10100

11100

00100

IPSpoofer
"spoofer"

PushPullPipe
"p1"

PCapFileSink
"sink"

PushPullPipe
"p2"

PCapPacketSorter
"psorter"

 Traffic Trace
bgt_attack_mix

10100

11100

00100

Data Flow

Figure 3: Example Application: FilterNetwork

The core of our software, which enables the complex oper-
ations, is an Advanced Pipes and Filters Architecture that is
able to manage and control filter systems processing data of
arbitrary types. Its design is mainly based on the Pipes and
Filters and the Pluggable Component architecture pattern
presented in [3] and [19]. The main parts of the resulting
architecture are sketched in Figure 2.

The framework distinguishes between different types of
data processing components:

• DataSources provide a filter system with input data.

• DataSinks save data modified by a filter system.

• IntermediateComponents like Filters realize some data
manipulating operation(s) and Pipes can be used as
optional data buffers between two components.

In our design we define a generic interface that all these
components have to implement. A component may have an
arbitrary number of input-side and output-side “ports” to
exchange data and control-messages with other components.
The architecture provides plug-in developers with two types
of data transfer-mechanisms, i.e., push and pull. If a com-
ponent uses the pull mechanism on one of its input ports the
input data must be requested explicitly from the preceding
component. In the other case data arrives without demand.

Each component can be developed independently from the
core system. These are integrated by a plugin registry at
runtime. The plug-in registry is responsible for the man-
agement of available plug-ins. From the connection of sev-
eral component instances, a graph or network-like structure
evolves which we call the FilterNetwork (aka filter system).
The controller constitutes the most important part of the
architecture. It provides all necessary methods to build and
control the FilterNetwork. Thus, it becomes an interface (or
facade) to the core functionality of the architecture.

In order to hand-over the full flexibility of the plug-in
based design of the core to an end-user, the user interface
of the architecture is a scripting language which allows to
configure and interconnect the filter plug-ins as well as the
input/output plug-ins. The result is user-composed filter
systems that perform the desired manipulations on the cho-
sen input data.

The second part of our software system is a set of plug-ins
that realize some of the basic operations we defined earlier.
This package currently consists of

• the PCapFileSource plug-in whose instances can sup-
ply a FilterNetwork with network packets from libpcap-
compatible files, adjust packet timestamps2 and map

2Required by the merge operation.

packets to (transport-layer) flows on the basis of user-
supplied flow specifications.

• the PCapFileSink plug-in whose instances write pack-
ets that have been manipulated by the FilterNetwork
back to a libpcap-compatible file.

• the IPSpoofer plug-in whose instances can adapt the
addresses and ports of packet flows according to a
set of user-supplied spoofing rules that have a BPF-
like [14] syntax.

• the PCapPacketSorter plug-in whose instances merge
packets from multiple InputSides chronologically.

• the PushPullPipe plug-in whose instances simply act
as transfer-mechanism converters between the pull in-
terfaces of PCapPacketSorter instances and the push
interfaces of PCapFileSource, IPSpoofer or other PCap-
PacketSorter instances.

5. EXAMPLE APPLICATION
In this section we discuss how our software system can be

used to insert a trace into another originating from a dif-
ferent environment to test a NIDS. Assume that the trace
iis dt was recorded within a test-bed environment while ex-
ecuting an attack script that tries to exploit a vulnerability
in a Web server software. The trace contains network pack-
ets exchanged between the attacking system 192.168.0.2

and the victim host 192.168.0.1. Let us further assume
that the trace bgt 1 contains background traffic from the
network 134.96.223.0/24 that is appropriate for the envi-
ronment in which the NIDS is to be assessed. For example,
this trace may consist of regular traffic from and to the Web
server 134.96.223.242.

To insert the attack into the background traffic, we

• adapt the attack to the environment: we pretend that
the local Web server 134.96.223.242 is the victim of
an attack originating from some randomly chosen host
of the network 131.152.123.0/24.

• merge the traces while preserving the inter-packet gaps
of interdependent traffic.

For simplicity we assume that the attack has not been
successful and thus no further traffic interactions need to be
simulated.

Figure 3 shows a FilterNetwork that applies the neces-
sary operations. It is configured based on the configuration
shown in Figure 4. Bgt source and attack source pro-
vide the FilterNetwork with packets and flow information.

255

Components {
Background Traffic Source
Source bgt_source {

type PCapFileSource;
Config { pcap_src_list = "bgt_1"; }

}
Attack Traffic Source
Source attack_source {

type PCapFileSource;
Config {

pcap_src_list = "iis_dt [2.0, 5.0]";
}

}
IComponent spoofer {

type IPSpoofer;
Config {

spoofing_rules =
"dst port 80 -> src net 131.152.123.0/24

dst host 134.96.223.242";
}

}

IComponent psorter { type PCapPacketSorter; }
Sink sink {

type PCapFileSink;
Config { pcap_dst_file = "bgt_attack_mix"; }

}
Pipe between bgt_source and psorter
IComponent p1 { type PushPullPipe; }
Pipe between spoofer and psorter
IComponent p2 { type PushPullPipe; }

}

Connections {
bgt_source[0] -> p1[0];
attack_source[0] -> spoofer [0];
spoofer [0] -> p2[0];
p1[0] -> psorter [0];
p2[0] -> psorter [1];
psorter [0] -> sink[0];

}

Figure 4: Example Application: Configuration

The attack starts 2–5 seconds after the first packet of the
background traffic trace. The IPSpoofer instance is directly
connected to attack source. It rewrites the IP addresses
of packet flows belonging to the malicious HTTP session.
PushPullPipe instances (p1 and p2) are interposed between
the components psorter/bgt source and psorter/spoofer.
These simply serve as transfer-mechanism converter (push
to pull). The PCapFileSink instance sink completes the Fil-
terNetwork and stores manipulated packets in the libpcap-
compatible file bgt attack mix.

6. SUMMARY
Motivated by the task of evaluating Network Intrusion

Detection Systems, we identify a set of trace manipulating
operations that aid in constructing packet traces for test-
labs. We discuss whether and under which circumstances
such operations generate irregularities that would not be
present in captured real-world traffic. Furthermore we ex-
plore what kind of analysis at what protocol-layer is biased
by such artifacts and might therefore draw conclusions based
on the artifact rather than the trace content.

We propose a flexible and expandable software system for
trace manipulations. The core of this software system is
an abstract architecture that is able to manage and con-
trol filter systems. The current set of plug-ins implements
some basic operations for trace manipulation. By means of
a convenient configuration language users can specify which
instances of these components should be interconnected in
what fashion to build complex filter systems. First experi-
ence and initial experiments demonstrate that the architec-
ture with the currently implemented set of components is a
valuable tool for flexible, fine-grained trace manipulations.
For a comprehensive description of the software (available
at [1]) and a more detailed discussion of architecture as well
as the artifacts we refer to [16].

7. REFERENCES
[1] Advanced pipes and filters architecture & TTM plugin package

project. http://www.net.informatik.tu-muenchen.de/~rdc/.

[2] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar,
M. Handley, A. Helmy, J. Heidemann, P. Huang, S. Kumar,
S. McCanne, R. Rejaie, P. Sharma, S. Shenker, K. Varadhan,
H. Yu, Y. Xu, and D. Zappala. Virtual InterNetwork Testbed:

Status and research agenda. Technical Report 98-678, University
of Southern California, July 1998.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture, A System of
Patterns. John Wiley & Sons Ltd, Chichester, England, 1996.

[4] Cisco Netflow. http:
//www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml.

[5] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer.
Operational experiences with high-volume network intrusion
detection. In Proc. 11th ACM Conference on Computer and
Communications Security, 2004.

[6] ENDACE measurement systems. http://www.endace.com/.

[7] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a
Better NetFlow. In Proc. of the ACM SIGCOMM, 2004.

[8] A. Feldmann, H. Kong, O. Maennel, and A. Tudor. Measuring
BGP pass-through times. In Proc. of the Passive and Active
Measurement Workshop (PAM), 2004.

[9] W. Feng, A. Goel, A. Bezzaz, W. Feng, and J. Walpole. TCPivo:
A High-Performance Packet Replay Engine. In Proc. of the
ACM SIGCOMM Workshop on Models, Methods and Tools for
Reproducible Network Research, 2003.

[10] P. Kamath, K. Lan, J. Heidemann, J. Bannister, and J. Touch.
Generation of High Bandwidth Network Traffic Traces. In Proc.
International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems,
2002.

[11] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The click modular router. ACM Transactions on Computer
Systems, 3(18), 2000.

[12] C. Kreibich. Design and Implementation of Netdude, a
Framework for Packet Trace Manipulation. In Proc. Usenix
Technical Conference, Freenix Track, 2004.

[13] R. Lippmann, R. K. Cunningham, D. J. Fried, I. Graf, K. R.
Kendall, S. E. Webster, and M. A. Zissman. Results of the 1998
DARPA Offline Intrusion Detection Evaluation. In Proc. Recent
Advances in Intrusion Detection, 1999.

[14] S. McCanne and V. Jacobson. The bsd packet filter: A new
architecture for user-level packet capture. In U. Association,
editor, Proc. Winter 1993 USENIX Conference. USENIX
Association, 1993.

[15] P. Phaal, S. Panchen, and N. McKee. sFlow, 2001. RFC 3176.

[16] A. Rupp. A Software System for Packet Trace Customization
with Application to NIDS Evaluation. Master’s thesis,
Universität des Saarlandes, Germany, 2004.

[17] The tcpdump/libpcap project. http://www.tcpdump.org/.

[18] The tcpreplay project. http://tcpreplay.sourceforge.net/.

[19] M. Völter. PluggableComponent - A Pattern for Interactive
System Configuration. In Proc. of the 4th European Conference
on Pattern Languages of Programming and Computing, 1999.

256

