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ABSTRACT
User-supplied content—in the form of photos, videos, and text—is
a crucial ingredient to many web sites and services today. However,
many users who provide content do not realize that their uploads
may be leaking personal information in forms hard to intuitively
grasp. Correlation of seemingly innocuous information can create
inference chains that tell much more about individuals than they
are aware of revealing. We contend that adversaries can system-
atically exploit such relationships by correlating information from
different sources in what we term global inference attacks: assem-
bling a comprehensive understanding from individual pieces found
at a variety of locations, Sherlock-style. Not only are such attacks
already technically viable given the capabilities that today’s mul-
timedia content analysis and correlation technologies readily pro-
vide, but we also find business models that provide adversaries with
powerful incentives for pursuing them.

1. INTRODUCTION
“I have the advantage of knowing your habits, my

dear Watson,” said [Holmes]. “When your round is a
short one you walk, and when it is a long one you use a
hansom. As I perceive that your boots, although used,
are by no means dirty, I cannot doubt that you are at
present busy enough to justify the hansom.” “Excel-
lent!” I cried. “Elementary,” said he. “It is one of
those instances where the reasoner can produce an ef-
fect which seems remarkable to his neighbor, because
the latter has missed the one little point which is the
basis of the deduction.

—Watson and Holmes in “The Crooked Man”

Correlation of seemingly innocuous information can create infer-
ence chains that tell much more about individuals than they are
aware of revealing. Consider this example: Public records indicate
you own a house. A friend’s photo taken at a party you gave, posted
to Flickr with exact GPS coordinates, reveals others who also at-
tended. Among them, face recognition software identifies a guest
recently arrested for a drug offense [31]. Given these correlations,

others might conclude that you associate with known convicts, with
unpredictable implications for your reputation. Combining such
scenarios with the web’s tendency to “never forget,” we have en-
tered a world where minor indiscretions—and even innocuous per-
sonal facts subject to misinterpretation—can live on forever [10].

No wonder that the new generation of “social web services,” such
as Facebook, Flickr, and Foursquare, raise the concern of pri-
vacy activists. When Google jump-started “Buzz” (their now de-
funct social network that drew upon Gmail contacts), they “faced
a firestorm of criticism” [48]. Facebook’s introduction of “Places”
likewise drew significant criticism for its default settings, which
make it easy to reveal someone else’s location [53]. In some coun-
tries, Google’s StreetView has even prompted lawmakers to debate
“Google Laws” outlawing comprehensive photography of whole
neighborhoods [37].

It can be hard to separate hype from actual risk in such discus-
sions. Still, online privacy research has clearly not yet sufficiently
addressed protecting users from unexpected harm. In particular, the
discussion so far has all but ignored an area that is poised to open up
a whole new class of powerful privacy attacks: automated content
analysis enabling cross-site correlation of personal information.

User-supplied content—in the form of photos, videos, and text—is
a crucial ingredient to many web sites and services today. Many
are adding “social features” for rating and sharing at a fast pace,
often with direct interfaces to the major social networks such as
Facebook and Twitter.

However, many users providing content do not realize that their
uploads may be leaking personal information in forms hard to in-
tuitively grasp. Publishing a variety of heterogeneous information
across sites and services creates a cloud of information that, taken
together, can reveal a quite comprehensive picture of a person, even
if individually none of the pieces may be worrisome on their own.
As a simple example, having photos of the same person on sepa-
rate profile pages immediately links the involved accounts. Like-
wise, hearing the same speaker in different videos may lead from
an innocuous professional setting to an embarrassing recording.

We contend that adversaries can systematically exploit such rela-
tionships by correlating information from different sources in what
we term global inference attacks: assembling a comprehensive un-
derstanding from individual pieces found at a variety of locations,
Sherlock-style. Not only are such attacks already technically viable
given the capabilities that today’s content analysis and correlation
technologies readily provide, but we also find business models that



provide adversaries with powerful incentives for pursuing them.

Unfortunately, the privacy controls that web services offer today
are quite ineffective against such attacks. They typically operate at
the level of coarse sharing permissions, granting the right to see in-
formation to some users but not to others. However, as they do not
consider the actual content of what is being shared, these simple
policies provide no help with limiting the unanticipated impact of
global inference. Consider the objective of keeping one’s current
location private: when in Paris, one probably knows better than
publishing a picture of the Eiffel tower on Facebook; however, what
about the photo having no visual clue of Paris but showing some-
body else who has just announced his location on Twitter? We
argue that individuals are extremely unlikely to take such consid-
erations into account, while at the same time there are no technical
protections in place that help them assessing their impact.

To develop support for users, we need to better understand infer-
ence capabilities and their impact on privacy. The primary concep-
tual challenge here concerns assessing the trade-off between the
benefits that providing personal information to web services offers,
versus the risks that doing so entails. While users value a personal-
ized experience—for sites such as Facebook, that is the very reason
for using them in the first place—they also tend to underestimate
the implications for their privacy. Making matters worse, commer-
cial web sites often have incentives to collect personal information
comprehensively, both for individualizing their services and for at-
tracting income via targeted ads [27]. We deem it crucial to ana-
lyze both benefits and risks from a user’s perspective by assessing
an individual’s capabilities to understand, define, and enforce their
personal “privacy sweet-spot.”

The remainder of our discussion digs further into motivation and
examples for global inference attacks, including evidence we col-
lected on their feasibility. If not stated otherwise, the basic threat
model we assume is that of an external adversary accessing pub-
licly available information for learning specifics about victims who
are unaware of providing them, either directly or indirectly. In §2
we start by discussing a fictional yet realistic example of exploit-
ing global inference for purposes in a legally gray area, and then
discuss related work in §3. In §4, we then look more systemati-
cally at attackers capabilities and potential “business models”. §5
examines specifically the potential of automated content analysis
systems for finding and linking seemingly unrelated information,
and §6 discusses privacy protection in the face of such attacks. We
conclude in §7.

2. SHERLOCK GOES CRAWLING: AN
EXAMPLE

We start our discussion with an example scenario. Consider the
following business: Fred works for Schooner Holdings and wishes
to gain (possibly illicit) inside information on future profits at the
chipmaker Letin. Fred hires Eve, who runs an “expert network”.
Eve puts Fred in touch with Bob, a Letin employee. In the process
of consulting for Fred, Bob is encouraged to reveal information
about Letin’s upcoming products.1

Currently, Eve’s greatest limit is finding experts like Bob who (per-
haps unknowingly) possess potential insider information and are

1This practice is possibly illegal but exists in a gray area and is
seemingly routine practice. The current Galleon insider trading
trial [9] is based largely on the use of expert network consultants.

willing to act as consultants. Eve would greatly improve her busi-
ness if she could find “corruptibles”: individuals in the business of
interest who might be favorable to legitimate or illegitimate offers.

Thus Eve starts searching social networks in search of individuals
who are compatible with her desired level of (il)legality. She in-
structs her crawler to begin with LinkedIn and web searches, crawl-
ing the names and contact information for personnel at companies
of interest. Then her crawler shifts to Facebook, Twitter, other so-
cial networks, and blogs, beginning with all candidates found in the
first pass. This crawler does not just look at the candidates but also
at friends of candidates.

She also searches any media, including images and videos, for links
to other people that the social network might not provide directly.
Face recognition for example can provide probable connections to
other profiles. She also examines media for any compromising ma-
terial, such as illegal acts, drug paraphernalia, or party photos with
Charlie Sheen. Eve knows that her automated content analysis does
not need to be perfect: she leverages crowdsourcing services like
Mechanical Turk [4] to validate potential candidate matches using
human labor at a very low cost.

Eve’s crawler also queries further public and semi-public records.
There are commercial services that map an email address to a mail-
ing address, such as spokeo.com or pipl.com. Her crawler uses
these to discover where candidates live and how much their prop-
erty is worth (e.g., by using Zillow’s access to property tax data and
sales history).

With all this data, Eve’s crawler can now create “inference chains”
which estimate the probability that any given candidate in her set
has a potential weakness, enabling Eve to search for possible points
of corruption. An individual who is dating someone with a reputa-
tion as a gold digger or who purchased their house at the height of
the real estate bubble, might have financial problems. Such candi-
dates could be honestly corrupted by offering consulting positions,
allowing Eve to expand her expert network within the bounds of
the law.

Eve might also contract with those operating outside the law. Then
blackmail becomes an attractive option, especially if considering
guilt by association. Someone with a security clearance may be
vulnerable if his associates are drug abusers, or if he is having an
affair that can be inferred through social patterns.

The inference chains produced by Eve’s crawler are probably
flawed with many false matches. This however does not pose a
problem for her, as she can easily verify the crawler’s inferences
manually. If it takes Eve a minute to validate an inference chain,
Eve will find three to four candidate matches a day even if just 1%
of the results are true positives. With each corruptible worth a sub-
stantial sum to Eve’s business, her labor is highly cost effective.

Eve can also apply further, and purely legal, inference analysis to
a corporation as an entity. The US Army already recognizes the
effect of subtle information leakage, down to the timing and quan-
tity of food orders [49]. How much valuable information is leaked
about corporate activities when the whole of the company is ex-
amined: synchronized lack of vacation, comments by significant
others about travel plans, the presence of individuals from different
companies at corporate parties, and other seeming trivia?



Nothing in the preceding scenario is unrealistic: every step Eve
takes can be constructed using today’s technology. It is simply
a matter of putting all the pieces together to collect and analyze
the reams of data which exist on today’s social networks and other
databases. Unfortunately, there is also hardly any protection against
somebody like Eve in place.

3. SHERLOCK’S FRIENDS: RELATED
WORK

Even though one already finds web sites offering cross-site corre-
lation of user information as a commercial or government activity,
the full capabilities of global inference have not yet seen much at-
tention in either the academic community or by private enterprises.
However, many past efforts have examined the potential of extract-
ing personal information out of individual data sets using more nar-
row local inference techniques. Many of these approaches are quite
relevant for our discussion in the sense that the individual tech-
niques deployed for either attacking privacy or defending against
threats, might be well suited as individual links in global inference
chains. We summarize some of this work in the following.

Correlation across different data sources is already used as a mar-
keting tool. For example, IBM’s Business Analytics and Optimiza-
tion offers social network analytics for banking and financial in-
dustries [22], thereby extending traditional data-mining approaches
to human-readable data with the aim of identifying opinion lead-
ers and social connections from different channels. Furthermore,
global inference chains have received attention as a way of “con-
necting the dots” [47] for identifying terrorist threats.

Ad networks like DoubleClick track users using HTTP cookies to
obtain user profiles for better ad targeting. In addition, many web
sites rely on third-parties like Google Analytics to provide them
with detailed usage statistics for their sites; which in turn enables
these providers to track the surfing behavior of individual users.
Such analytics sites have become quite significant: more than 1%
of all HTTP requests originating at our small research institute are
due to the master Google Analytics script reporting back to Google
what pages people are visiting. Facebook’s “Like” button offers
Facebook a similar capability as it records not just who “Likes” a
page but who visits a page.

While the scientific community has investigated correlation be-
tween different data sets in terms of privacy implications, most
of these efforts have focused on de-anonymizing or compromis-
ing a single data set with the help of auxiliary information. In
1997, Sweeney [45] showed that anonymously published medical
records can be de-anonymized when correlated with external data,
triggering a large body of follow-up work on designing anony-
mous statistical databases as well as understanding their limita-
tions [2, 12–14, 46]. Narayanan et al. present an algorithm and
proof for de-anonymizing sparse datasets [32]. They apply their al-
gorithm to anonymized Netflix movie ratings: given knowledge of
a subset a person has rated (e.g., learned from a lunch conversation
or public ratings), the system is able to identify all movies in the
database that the user has rated. In [33], the same idea is used to
de-anonymize a social network graph by leveraging a graph from a
second network with real identities as auxiliary data. Researchers
from Parc investigated inference using web search engines in order
to analyze whether anonymized (or obfuscated) private documents
that are going to be released publicly can be de-anonymized [8,44].
They do not consider multimedia content nor inference between in-
formation that is already publicly available. Nevertheless, their ap-

proach can be a valuable tool for building global inference chains.
Griffith et al. [19] correlate public birth, death and marriage records
from the state of Texas to derive the mother’s maiden name of more
than 4 million Texans. Balduzzi et al. [5] automatically query 8 so-
cial networks with a list of 10 million e-mail addresses to retrieve
the associated user profiles. They then correlate that profile infor-
mation across the networks and are able to identify mismatches
between them.

Another area of related research is locational privacy. The Elec-
tronic Frontier Foundation published an overview of locational pri-
vacy aspects [7]. Locational privacy in vehicular systems, e.g., toll
collection, is addressed in [21,41]. Zhong et al. [56] present proto-
cols for secure privacy preserving location sharing. The upcoming
HTML5 standard will include APIs to query a client’s location.
The Cree.py [20] application uses geolocation data from social net-
works and media hosting services to track a a person’s movements.

In a recent effort [16], we analyzed the privacy implications of geo-
tagging, i.e., high-accuracy location information attached as meta-
data to audio, image, and video files. Specifically, we examined
the risk that such geotags pose for what we termed “cybercasing”:
using online data and services to mount real-world attacks. The
work was based on the observation that an extensive and rapidly
growing set of online services is already collecting, analyzing, and
integrating geoinformation. We presented three scenarios demon-
strating the ease of correlating geotagged data with publicly avail-
able information compromising a victim’s privacy. First, we exam-
ined tracking a specific person, in this case TV show host Adam
Savage. Images posted to his twitter feed allowed us to pinpoint
the location of his home and studio. Then we used Craigslist to
find For Sale classifieds containing geotagged images but no ad-
dress in the textual description. A fair amount of the geotagged
postings offered high-valued goods, such as diamonds apparently
photographed at home; making them potential targets for burglars.
Finally, we demonstrated how one can semi-automatically identify
the home addresses of people who normally live in a certain area
but are currently on vacation using video postings on YouTube.

Several recent studies have examined privacy protections for web
users. Shankar et al. [43] and Yue et al. [54] present an automatic
HTTP cookie management system to find an optimal per-domain
policy for accepting / denying cookies. Aggrawal et al. [3] ana-
lyze “private browsing” modes in modern web browsers and find
that (i) the definition of what is supposed to be kept private dif-
fers widely between browsers, and (ii) all current implementations
have flaws that leak information. Krishnamurthy et al. [28–30] an-
alyze privacy loss in web browsing and social networks. For social
networks they analyze what profile information leaks, how privacy
settings affect the leakage and they report on the default settings
used by social networks. Wondracek et al. [52] demonstrate that so-
cial network users can be fingerprinted using their group member-
ships, allowing malicious sites to identify users via “history steal-
ing”. Other work [6, 55] addresses further privacy issues in online
social networks. Jagatic et al. [24] show that phishing attacks [25]
have a significantly higher success rate when the victim’s social
context is considered.

Several web sites highlight the potential of information leakage
users might not be aware of. Sleeptime.org estimates sleep pat-
terns of Twitter users. Stolencamerafinder.co.uk crawls for
digital camera serial numbers in online photos in order to find pic-
tures taken with stolen cameras. Icanstalku.com publishes geo-



tags found in tweets, and pleaserobme.com used status updates
form social networks to locate users who were currently not at
home but had published their home address.

The W3C Platform for Privacy Preferences (P3P) initiative [40]
enables web sites to express their privacy policy in a machine-
readable form so that browsers can inform users about a site’s pol-
icy and automatically apply a user’s privacy preferences. However,
P3P relies on web sites accurately specifying their policy; there are
no enforcement mechanisms. In addition, the P3P working group
has suspended its work in 2007 as it found insufficient support from
browser implementations [40].

Finally there are commercial services aiming at protecting users’
privacy and identity. Reputation Defender [42] offers subscription
services that allows individuals or businesses to track information
published about them. Reputation Defender also offers attempt-
ing to correct or delete incorrect or embarrassing information; they
have successfully done so in a particular high-profile case [34].
Identity Theft 911 [23] focuses on business-to-business identity
theft management solutions as well as data breach handling and
defense.

4. UNDERSTANDING THE EVIL TWIN
When considering the actual risk of falling victim to global in-
ference attacks, one might wonder whether there are indeed suf-
ficient incentives for adversaries to develop the necessary corre-
lation techniques. In the following, we generalize our example
scenario from §2 by first categorizing attackers by their capabili-
ties (§4.1) and then discussing possible business models more sys-
tematically (§4.2). Seeing these, we predict that sophisticated in-
ference attacks will indeed become a common method of choice,
not unlike in recent years the evolution of malware has been driven
to a large degree by a well-organized underground economy.

4.1 Types of Attackers
In order to understand the threat model for inference attacks, we
start by constructing a taxonomy of attacker capabilities and objec-
tives, classifying them along the following dimensions:

Resources. Attackers differ by the resources they have at their dis-
posal, such as storage, bandwidth, and computational power. An
individual attacker wishing to construct a global inference attack is
often limited in both storage and computation: they can only fetch
and query data from external databases, can only do so at a rate of
a few Mbps to perhaps a few hundred Mbps, and only have access
to a small number of computers.

An institutional attacker has significant resources, including poten-
tially petabytes of storage, many Gbps of available bandwidth, and
massive amounts of computation, including possibly systems de-
signed specifically for these classes of problems such as the Cray
XMT supercomputer [11].

Finally, there is an in-between point, a moderate resource attacker.
Such an attacker either has a few thousand dollars to spend on cloud
computing services or has access to a botnet. Such attackers can
have a large amount of storage, bandwidth, and compute power,
but only for a limited period of time.

Database Access. The capabilities of an attacker also depend on
the data it has access to. With full data access, the attacker has
access to the complete set of desired information. This allows to

use whatever indexing or data transformation the attacker requires.
Such databases may be available for purchase by attackers (e.g.,
Twitter’s “firehose” costs $30,000/month [1, 50]); or might simply
be downloaded through crawling, i.e., fetching all entries which
may be of potential interest.

Almost as powerful is well-indexed access. In this model, the at-
tacker does not have access to the database, but the particular in-
dices and search tools are an effective substitute. For example,
there is no full data access to Google’s search database, but due to
the excellent indexing, an attacker only needs to construct suitable
queries.

With poorly-indexed access, a database may have the information
the attacker desires but is indexed in an unsuitable manner. For
example, many counties in the US provide online access to property
owner information but index only by property address, not owner,
making searching for a target’s house difficult. Such databases may
still be useful if the attacker is either able to crawl the database (to
effectively upgrade to full data access) or can use another database
as an anchor to use the index.

Finally, there is private data access. For example, Google has a
huge trove of information, including user search history, browsing
history via Google Analytics, and mail history via Gmail. Although
such data is ostensibly private, the entity which has acquired it may
use it, and third parties might also be able to gain access to the in-
formation (via, e.g., business relationships, subpoenas in lawsuits,
government warrants, intimidation, or break-ins).

Target Model. An attacker can be targeting a single targeted in-
dividual. In this case, the individual needs a suitable defense to
resist the attack, regardless of the status of the defenses of others.
Stalkers and related threats are examples of individual targeting.

An attacker can also be targeting the easiest K of N victims. This
is the classic parable of the “Bear Race” for an individual possible
victim2, and these cases require less extensive defenses. Often,
easiest K of N is the easiest to conduct for an attacker, as it can
have a large set of potential victims but only needs to succeed in
compromising the information concerning a small subset. In our
scenario in §2, Eve’s search for “consultants” is an example of such
a strategy.

One interesting property of both targeted and easiest K of N at-
tacks is that although finding an inference chain might be nearly
impossible for a human, manually validating the correctness of a
given chain is often straightforward. This makes these attacks po-
tentially more powerful, as an error-prone automatic inference pro-
cedure can be corrected by human validation of the few candidate
inferences. Even for larger candidate sets, an attacker can lever-
age crowdsourcing services such as Mechanical Turk [4] to validate
high-noise components of inference chains.

Finally, there are entities who wish to target everyone, including
both corporations and governments. Such adversaries do not nec-
essarily intend to exploit the information they find about all targets
but may just not know whom to target initially, and then later select
subsequent targets meeting the particular objectives.

Interesting instances of the latter category are “Advanced Persistent

2“I don’t have to outrun the bear, I just have to outrun you.”



Threats” [51], and also governments gathering intelligence for law
enforcement or counter-terrorism. The latter is often referred to as
agencies “connecting the dots”, and is arguably the best examined
application of building global inference chains today. However,
this work is often pursued behind closed doors and thus not avail-
able to the research community for further assessment. We note
that notions of “attackers” and “defenders” depend on perspective
here as well as on the trust one has into the entities pursuing the
analyses. For our discussion, the “attacker” remains the party de-
veloping correlations, even if for benign reasons.

From a research perspective, it seems most fruitful to assume the
threat model of an individual attacker with access to both well
indexed and poorly indexed data sources, with the specific target
model depending on the objectives of a particular approach and the
public data available. Doing so allows for developing case studies
demonstrating powerful attacks while not requiring a vast amount
of resources. It also mimics what most attackers are likely to have
access to. Furthermore, since this is the weakest attacker model,
if such an attacker can perform an attack, stronger adversaries are
also able to perform the same attack, although potentially more eas-
ily. Where helpful, one might also consider the moderate resource
attacker, using a modest amount of additional cloud services.

4.2 The Business Case for Attacks
The implications of an individually mounted attack are already sub-
stantial. However, the privacy threat of global inference is signifi-
cantly elevated by a number of actual underground business models
that can exploit such techniques to a significant effect:

Cyberstalking. There are numerous reasons why someone would
want a detailed profile of another, ranging from legitimate (e.g.,
background investigations prior to hiring) to questionable (screen-
ing potential dates) to downright illegal (actual stalking). Already
people use Google in this manner, it would be natural for compa-
nies to enhance and automate the process, possibly as a service for
others.

Cybercasing. Adversaries can use information from online and
multimedia sources to “case a joint” to carry out real world at-
tacks like burglaries. Sites like Pleaserobme.com and our previous
work [16] explore the potential threats of cybercasing.

Attack Preparation. There are many attacks, such as phishing,
targeted malcode, and social engineering, that work best when the
attacker has a detailed profile of the victim (see, e.g., [24]). By
performing inference, such attackers can thus increase the effec-
tiveness of their attacks through better targeting.

Economic Profiling. There are significant economic advantages to
understanding what activity a corporation is planning, be it from a
competitor or from someone hoping to make money in the stock
market. It is natural to consider how global inference targeting in-
dividuals could be used to create a picture of a company or insti-
tution’s activity. This can be the “single leak” case of first search-
ing for all members of the target institution and then looking more
specifically for those who inadvertently leaked important informa-
tion; and the “correlated leak” case where inference is attempted
among the individuals identified with a target institution in order to
develop a picture of what the institution is planning.

Espionage Targeting. When targeting espionage against a com-

pany or governmental institution, the adversary needs to know who
to target: what individuals may have potentially exploitable weak-
nesses, such as money troubles, a gambling habit, vices, or polit-
ical views which could be exploited; as the objective is often not
to compromise the institution directly, but to compromise one or
more individuals. Global correlation attacks are naturally very well
suited to targeting such activity. The adversary would first con-
struct a large list of possible targets, and then profile each target for
potential weaknesses.3

Cyberframing. If companies and institutions end up performing
“cybervetting” in an attempt to defend against having employees
targeted, this would naturally not only cause problems with false
positives but would also enable cyberframing: an attacker cre-
ates malicious additional information poisoning a global inference
chain, e.g., by adding in photos on an unrelated photostream that
somehow implicate the victim.

5. SHERLOCKWATCHES VIDEO
We now examine further to which degree today’s technology for
automated content analysis can be leveraged for building global
inference chains.

In the multimedia community, Multimedia Information Retrieval
(MIR)—i.e., the task of matching and comparing content across
databases—has rapidly emerged as a field with highly useful appli-
cations in many different domains. Serious efforts in this area can
be traced back to the early 1990s when devices like digital cameras
and camera phones, combined with progress in compression tech-
nology and availability of Internet connectivity, started to change
peoples’ lives. This rapid technological progress created a strong
demand for organizing and accessing multimedia data automati-
cally. Consequently, researchers from different areas of computer
science, including computer vision, speech processing, natural lan-
guage processing, Semantic Web, and databases, invested signifi-
cant effort into the development of convenient and efficient retrieval
mechanisms that target different types of audio and video data from
large, and potentially remote, databases.

5.1 Multimedia Information Retrieval
In order to understand potential inference attacks that multimedia
retrieval enables, it is crucial to examine the structure of its under-
lying analysis approaches. These are usually classified into detec-
tion, verification, and recognition (sometimes called identification)
algorithms. Detection algorithms search multimedia files for a cer-
tain event or object, returning success if found. Many tasks can
be reduced to a detection setting; e.g., face localization, which de-
termines pixels in an image that are a part of a face. A verification
task matches a given object or event with something learned a priori
(e.g., for authentication purposes, a fingerprint maybe compared to
a training set of authorized individuals). The output of a verifica-
tion algorithm is typically in the range between 0 and 1 and corre-
lates with the similarity of the verified entity. Finally, recognition
systems compare an open set of events or objects with a training
set. For example, speaker identification systems match candidate
speakers to learned profiles to see who of them they recognize. In
practice, many applications can be reduced to recognition tasks,

3This is an easiest K of N attack. For example, a student project
at MIT created such a tool to infer sexual orientation from Face-
book profiles [26], which would have been particularly well suited
to blackmailing career members of the US military if “Don’t Ask,
Don’t Tell” remained in effect.



which in turn might often be reduced to verification tasks. For
example, image location estimation is commonly implemented by
measuring image similarity within a spatially arranged database of
photographs.

Detection, verification, and recognition algorithms are applied to
acoustic, visual, and textual data. Textual or structured (computer-
readable) information accompanying multimedia data, calledmeta-
data, often dramatically increases the effectiveness of multimedia
content analysis.

Many typical visual detection tasks can potentially enable inference
attacks, including face detection, person detection, and movement
detection. Likewise, acoustic detection research has produced algo-
rithms that can reliably detect speech and music, and even generic
acoustic event detection is often accurate enough for retrieval use.
Visual verification and recognition tasks that might be of interest
are face recognition and generic image retrieval. Relevant acoustic
recognition tasks include speaker identification and keyword spot-
ting (based on speech recognition). Multimodal recognition tasks,
such as audio/visual speaker/face recognition or multimodal loca-
tion estimation are also promising candidates.

Consider this simple example for exploiting the capabilities of mul-
timedia technology: An old Facebook friend publishes a photo of a
person and tags its face accordingly. The face may then be matched
with one frame of an otherwise anonymized introduction video on
a specialized dating site, linking the persona and revealing not only
the identity of the person but also its circle of friends.

An example that requires more inference is the following: The uni-
versity of a famous professor has posted about 20 lecture recordings
of her on iTunes University. Since she wants keep her family live
private, she never uses her real name on social networking sites and
blurs faces on anything she posts for friends and family. Being a
security specialist, after all, she knows all the settings and makes
sure her Facebook friends are only close family. However, at one
point, her teenage nephew posts a video on YouTube showing ex-
cerpts of her moving speech at a family wedding ceremony. With
the many hours of iTunes university footage, speaker verification
reveals her nephew’s YouTube user name, which in turn is linked
to a Facebook account revealing his real name. Using the nephew’s
tagged MySpace photos – that he had long forgotten – all the mem-
bers of the family can be identified, even without some of them
having social network accounts. The names link back to geotagged
blog posts revealing home addresses and income status of the entire
family. Further published videos and Twitter messages of the col-
lected relatives allow to create a detailed profile of the professors’
activities, habits, and social connections. Global inference at work.

5.2 Dealing with Retrieval Errors
As discussed above, multimedia content analysis has rapidly pro-
gressed in recent years, and its accuracy can be quite high today for
specific applications. Some methods have already reached a preci-
sion suitable for integration into everyday products, e.g., camera-
based smiling-face detection. Computerized language identifica-
tion is reported to be better than humans [36], and face verification
can be tuned to err only in 29 out of 10,000 trials [39].

In general, however, retrieval accuracy is still a problem. Especially
matching across random noisy data sources remains challenging,
and working with “video in the wild” (as, e.g., found on web sites
such as YouTube and Flickr that do not have specific quality con-

Figure 1: Inferring the origin of a video based on its textual
description. In the MediaEval placing task, we presented an
engine that can determine the location of random Flickr videos
based on correlation with other online sources. As the graph
shows, over 42% of the videos were matched with maximum
accuracy.

trol in place) has just recently started to emerge as an important
research area [17].

However, as our scenario in §2 demonstrates, even a small percent-
age of “hits” can lead to a significant number of privacy compro-
mises just as a result of the sheer amount of data available. Sim-
ilarly, Mechanical Turk or black-market CAPTCHA solvers can
perform a validation if the problem is easily expressed as a non-
specialist question (e.g., “Is there a bong in this image?” or “Are
these two the same person?”).

That in turn suggests that even with relatively high error rates, mul-
timedia content analysis techniques can be used effectively for such
attacks by using “lop-sided” tuning, for example by favoring low
false alarm rates over high hit rates when scanning for potential
victims to attack. When used in combination with other inference
schemes and human verification, remaining retrieval errors will be
quickly weeded out.

5.3 Case Studies
Let’s examine two specific multimedia algorithms to better under-
stand how they can support inference attacks, including how appro-
priate tuning is performed in practice. The first example demon-
strates that one can reliably derive location information even with-
out having convenient geotags available; and the second uses auto-
mated speaker identification to match individuals across videos.

5.3.1 Estimating Locations Without Geotags
The cybercasing scenarios discussed in [16] demonstrate the threat
potential of location information, in particular when published ac-
cidentally. However, all scenarios discussed there still rely on the
presence of geotags, which we found available in only a few percent
of all images and videos, seemingly limiting the damage that can
be done. However, to demonstrate the power of global inference,
we repeated the study’s YouTube scenario that searches for videos
recorded by the same user at locations far apart within a short time
interval (indicating that the person may be on travel right now, and
their home thus unwatched). This time, however, we did not rely
on geotags but instead used a system for multimodal location esti-
mation [17].

We developed the estimation system originally for an indepen-
dent project aimed at identifying locations for consumer-produced



videos, based on their audiovisual content and textual descriptions.
This specific challenge is evaluated annually in the European Me-
diaEval Placing Task benchmark [38], in which participants aim
to automatically derive latitude and longitude for a random video
based on one or more of: textual descriptions (e.g., tags, titles), vi-
sual content, audio content, and social information. In addition, the
use of further open resources, such as gazetteers or geotagged ar-
ticles on Wikipedia, is explicitly encouraged. The goal is to come
as close as possible to geotags provided by users directly, which
are used as ground-truth. The evaluation data set contains 10,000
geotagged Flickr videos with textual descriptions, and 3.2 million
geotagged Flickr images.

Figure 1 shows our results on the official dataset. Our system esti-
mated the origin of 1,000 randomly selected Flickr-videos includ-
ing textual descriptions. It located more than 42% of the videos
with exact accuracy, and 72% within line of sight (5km) of a typ-
ical video camera. The high percentage of exact locations can be
explained by the rich detail in textual descriptions. Even if a tex-
tual description does not reveal the location per se, it can often be
matched with other information from the Internet or the training
set that contain geotags or other more explicit location descrip-
tions. For example, a video with the title “My kids Emma and
Noah playing in the garden” does not give away any global loca-
tion information directly if the video is not geotagged. However,
scanning a number of different web sites, one finds only a limited
set of videos, photos, tweets, blog entries, etc. that contain the
words “Emma” and “Noah” and/or “garden” and/or “kids”. Our al-
gorithm examines such hits for geotags and other location-explicit
textual context. For the latter, we match text against the public on-
line service geonames.org, which returns exact latitude and lon-
gitude coordinates for over 7 million place names, and further uses
Semantic Web technologies to infer locations from sites such as
Wikipedia if a description is not found in its core database. Our
algorithm then clusters the results spatially, defining the location
closest to most others as the desired result. As Figure 1 shows, this
rather simple algorithm already yields very precise results.

To repeat the YouTube cybercasing scenario with our location esti-
mation system, we used the same initial search keywords as in our
original experiment (“kids”, “yard”, “Berkeley”) to find homes in
a certain area. We then matched their textual descriptions against a
set of two million YouTube video descriptions to find further videos
the same user had recently uploaded more than 1,000 km away. Not
surprisingly, we were again able to identify a number of cases for
potential burglary, this time without the need for any geotags but
implicitly determining a user’s location from the videos’ context.
This preliminary experiment already demonstrates the potential of
global inference. A more systematic approach for understanding
inference possibilities would in addition crawl social networks such
as Twitter and Facebook, public databases such as property records,
and other openly available data sources. By correlating all this pub-
lic information, much can be found out about persons without them
having published many specifics explicitly.

5.3.2 Identifying Speakers
In our second example we discuss tuning a speaker identification
system for matching speakers across videos found on general web
sites, which is a setting quite different from the more well-defined
environments that such systems are normally deployed in. We first
briefly summarize background on how speaker identification typi-
cally operates, and then discuss the setting relevant for us in more
detail. We note that this example is representative of many other

content analysis schemes, which will require similar tuning [15].

Most current speaker identification systems have been imple-
mented for the speaker recognition paradigm established by NIST
evaluations. These involve a database of target speakers and a set of
test utterances. Each test utterance is matched against each speaker,
obtaining a score specifying the likelihood that the sample comes
from that speaker. Each such score represents a trial. Trials where
the speaker matches the utterance are known as target speaker tri-
als; trials where it does not, are called impostor trials. A threshold
across the scores is set, such that scores above the threshold are
classified as matches, and scores below as non-matches. Impostor
trials wrongly classified as matches are false alarms, while target
speaker trials classified incorrectly as non-matches are misses.

A speaker recognition system that we developed in earlier work
participated in the most recent NIST speaker recognition evalua-
tion (SRE10, [35]). In the clean telephone-telephone evaluation
condition—roughly 2.5 minutes of audio per speaker using clean
conversational telephone speech—the system’s false alarm rate was
only about 0.15% when tuned for a miss rate of 40%, meaning that
roughly 60% of all target speaker trials were correctly classified,
while only about 0.15% of the impostor trials were false alarms.
Considering a more difficult SRE10 condition—different speakers
recorded over different microphones in an interview setting but still
with a 2.5 minute sample—with a 40% miss rate, the false alarm
rate became about 0.35% percent, i.e., still quite low.

Working with audio downloaded from Web sites (such as the au-
dio track of a YouTube video) adds potentially high levels of envi-
ronmental background noise (e.g., music, traffic, noises from poor
microphone quality and audio sampling) to which current speaker
recognition systems are less accustomed. However, it is reason-
able to assume that many such videos will contain at least small
pockets of speech that have sufficiently low noise levels. If we
consider primarily these for the recognition task (extracted using a
speech/non-speech detector), the setting might resemble the NIST
10 sec–10 sec evaluation condition — the hardest condition evalu-
ated by NIST, i.e., 10 seconds of audio taken from each speaker,
using clean telephone channel recordings. For this, our system was
able to achieve roughly 5% false alarms at a 40% miss rate; and a
less than 1% false alarm rate at a 60% miss rate.

Returning to our inference application, we are interested in iden-
tifying pairs of online videos that share the same speaker. If for
each pair, we take (part of) one video’s audio channel as the target
speaker model and the other one as a test utterance, we can ap-
ply the results sketched above. Considering the generally increased
noise level, we speculate, based on the noise decrease observed
in the 2.5-minute scenario, that at 60% miss rate the false alarm
might be roughly 2-3%, and at the 80% miss rate perhaps about
0.3–0.4%. In other words, using conservative tuning it seems con-
ceivable that for a given YouTube video, we will be able to find
20% of all other videos having the same speaker, while suffering
barely from any false alarms. If we assume that only, say, half of
all videos will have sufficiently low noise levels to be processed,
we can still identify 10%.

We note that this a back-of-the-envelope calculation that also de-
pends on further technical issues that we skip discussing here.
These include computational performance of the recognition sys-
tem (which is much faster than realtime for each test-utterance and
highly parallelizable), and the need for segmenting the audio chan-



nel into pieces having only one individual speaker each (for which
there is technology available [18]).

We also emphasize that we do not expect that speaker recognition
is used in isolation, but combined with other approaches for linking
identities, such as analysis of textual descriptions and face recog-
nition. By tuning each scheme for a low false positive rate, we can
effectively combine their respective strengths.

6. YOU KNOWMYMETHODS, WATSON
We contend that the security and privacy community has not yet
paid sufficient attention to threats posed by correlating personal in-
formation across site boundaries. Specifically, our domain lacks
an understanding of the elevated risks that deployment of state-of-
the-art content analysis technology incurs. However, given that a
number of business models provide adversaries with incentives to
develop such attacks (see §4.2), we deem it crucial to better help
users with putting up defenses.

Clearly, we cannot expect to anticipate and counter all possible in-
ference attacks. Even when limiting ourselves to a specific threat,
it remains unlikely that we can identify all its potential variations.
Consider location information: while stripping geotags from pho-
tos prevents locating them directly, increasing the sophistication of
the attack can overcome that defense, per our discussion in §5.3.1.
We argue however that despite this fundamental problem, there is
significant practical benefit in helping users to understand the im-
pact of their actions, and providing them with tools for mitigating
the risks they face where possible. Compare this to phishing at-
tacks: Once users understand the risk of revealing their password
to a web site that an email asks them to visit, they are in a posi-
tion to choose not to do so. Along the same lines, once one knows
that geotags are attached to a photo, one can remove them before
uploading.

Unfortunately, however, when providing personal information on-
line, there is no clear-cut line between good and bad. The challenge
for the research community is to support users in finding their per-
sonal privacy “sweet spots” between the two extremes of not pro-
viding anything and just publishing everything. In particular, we
believe that bringing potential privacy issues—and even just sur-
prising inferences—to a user’s attention is already of great value.

As one concrete example for such an approach, consider today’s
identify theft services that monitor customer activity, such as credit
card transactions, for signs of fraud. In the online world, such a
service could take on a new role by proactively examining a cus-
tomer’s online sphere for possible correlations leaking personal in-
formation in unanticipated ways. Such a system could be operated
as a subscription service that continuously watches relevant web
sites, building inference chains like a potential attacker would. If
the service finds leaks that violate a user’s policy, it would notify
her, along with further instructions on impact and possible miti-
gation steps. A simple online version of such monitoring already
exists specifically for geotagged photos posted on Twitter: the site
icanstalkyou.com alerts authors of tweets that come with location
information. An extended system could generalize this approach
by monitoring for advanced inference potential.

7. CONCLUSION
The security and privacy community has an impressive track record
of revealing examples of individual web services and applications
leaking sensitive information to the public. However, the next,

more fundamental step that is still unexplored, concerns under-
standing global inference chains: what can adversaries derive about
individuals by correlating seemingly innocuous public information
across independent sources? While simple technical fixes can of-
ten stop direct leaks, such chains pose a much larger threat given
the fundamental difficulty of recognizing the latent possibility of
linking seemingly unconnected facts. Global inference has to date
received little attention, neither in the public discussion nor in the
academic literature.

Specifically, we call attention to recent technological advances de-
veloped by the multimedia community, which enable correlation of
images, videos, and textual information without requiring the avail-
ability of convenient machine-readable meta-data. When combined
with modern capabilities to efficiently collect, mine, and correlate
large volumes of online information from a variety of sources, such
technology opens up the potential for privacy attacks with much
more power than today’s users realize.

We call out as the first action item for our community to inform
users about potential risks they face. Enabling individuals to under-
stand what can indeed happen places them in a much better position
to adjust their behavior where they deem necessary. Educating the
broader public in concrete terms about what is technically possible
will help them discover what their already-disclosed information
reveals about them. As a concrete step forward, we envision fol-
lowing the spirit of traditional identify theft protection: a novel
online service could continuously monitor web resources for infor-
mation derivable abouts its subscribers, alerting them to potentially
sensitive correlation chains as it discovers them.
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