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Abstract

It is becoming increasingly difficult to implement effec-
tive systems for preventing network attacks, due to the
combination of (1) the rising sophistication of attacks
requiring more complex analysis to detect, (2) the re-
lentless growth in the volume of network traffic that we
must analyze, and, critically, (3) the failure in recent
years for uniprocessor performance to sustain the ex-
ponential gains that for so many years CPUs enjoyed
(“Moore’s Law”). For commodity hardware, tomorrow’s
performance gains will instead come from multicore ar-
chitectures in which a whole set of CPUs executes con-
currently.

Taking advantage of the full power of multi-core pro-
cessors for network intrusion prevention requires an in-
depth approach. In this work we frame an architecture
customized for parallel execution of network attack anal-
ysis. At the lowest layer of the architecture is an “Active
Network Interface” (ANI), a custom device based on an
inexpensive FPGA platform. The ANI provides the in-
line interface to the network, reading in packets and for-
warding them after they are approved. It also serves as
the front-end for dispatching copies of the packets to a set
of analysis threads. The analysis itself is structured as an
event-based system, which allows us to find many oppor-
tunities for concurrent execution, since events introduce
a natural, decoupled asynchrony into the flow of analysis
while still maintaining good cache locality. Finally, by
associating events with the packets that ultimately stim-
ulated them, we can determine when all analysis for a
given packet has completed, and thus that it is safe to
forward the pending packet—providing none of the anal-
ysis elements previously signaled that the packet should
instead be discarded.

1 Introduction

In previous work [13], we have argued that the perfor-
mance pressures on implementing effective network se-
curity monitoring are growingfiercely in multiple dimen-
sions: (1) attacks continue to improve due to the adver-
sarial nature of network security; (2) the power of sim-
ple “signature matching”—looking for specific strings or
regular expressions within packets or reassembled byte
streams—has drastically dwindled due to the major prob-
lems of false positives, polymorphism, and “zero day”
attacks; (3) moving beyond signature-matching requires
sophisticated analysis of protocols at higher semantic
levels, and incorporating context correlated across mul-
tiple connections, hosts, sensors, and over time; (4) in-
creasingly, we need to not only analyze traffic but trans-
form it (“normalization” [8]) to eliminate broad classes
of evasion threats, and, even more critically, to realize
intrusion prevention systems); and (5) all of this in the
presence of ever-increasing traffic volumes and rates.

In addition, in the face of all these performance
pressures we have also lost our traditional ace-in-the-
hole, Moore’s Law for uniprocessors. Starting around
2002, the performance scaling curve for single CPUs
has slowed precipitously. Over the fifteen prior years,
uniprocessor performance increased 50–60% per year.
But by 2006, performance was a factor of three slower
than had the pre-2002 curve continued.

To perform sophisticated network analysis, it is hugely
advantageous if we can draw upon the flexibility and in-
expensive system costs of using general-purpose CPUs
rather than custom hardware such as FPGAs and ASICs.
Recently, hardware vendors have begun delivering com-
modity CPUs that again reflect Moore’s Law-style
scaling—but with the parallelization gains coming from
multi-core/multi-thread architectures. However, while
the aggregated throughput of such processors does in
fact still follow Moore’s law, to exploit the full power



of these architecture we must explicitly structure our ap-
plications in a highly parallel fashion, dividing the pro-
cessing into concurrent tasks while minimizing inter-task
communication.
Taking advantage of the full power of multi-core pro-

cessors requires an in-depth approach in order to real-
ize speedups for sophisticated analyses that require fine-
grained coordination between concurrent threads. First,
to provide intrusion prevention functionality (i.e., ac-
tive blocking of malicious traffic), we must ensure that
packets are only forwarded if all relevant processing
gives approval. Second, to perform global analysis (e.g.,
worm contact graphs [6] or content sifting [18]) we must
support exchange of state across threads, but we must
minimize such inter-thread communication to maximize
performance. Similarly, we must understand how the
memory locality of different forms of analysis interacts
with the ways in which caches are shared across threads
within a CPU core and across cores. We need to be able
to express the analysis in a form that is independent to
the memory and threading parameters of a given CPU,
so we can automatically retarget the implementations of
analysis algorithms to different configurations. Finally,
we must ensure that our approach is amenable to analy-
sis by performance debugging tools that can illuminate
the presence of execution bottlenecks such as those due
to memory or messaging patterns.
In this work we frame an architecture customized for

parallel execution of network attack analysis. The goal
is to support the construction of highly parallel, inline
network intrusion prevention systems that can fully ex-
ploit the power of modern and future commodity hard-
ware. We first discuss related work, including the large
potential of parallel processing for network security anal-
ysis (§ 2). We then sketch a high-level overview of our
architecture (§ 3), and explore what pursuing it would
mean in more concrete terms (§ 4), before briefly sum-
marizing (§ 5).

2 Related Work

Parallelizing analysis. To date, efforts on exploit-
ing parallelism for network security monitoring have
focused heavily on signature scanning, i.e., detecting
whether a packet (or sometimes a reassembled byte
stream) contains a string of interest or matches a regu-
lar expression, and executing an action (such as drop or
alert) associated with the signature. Much of this work
has drawn inspiration from the popularity of “Snort” [16]
and its large set of byte-level signatures. This work in-
cludes use of nondeterministic finite automata to match
regular expressions [17], compiling regular expressions
into deterministic finite automata [12], building opti-

mized Aho-Corasick trees for sets of strings [21], and
specialized architectures based on collections of highly
optimized tiny state-machines [20].
A vital point regarding much of the previous paral-

lel hardware design research is that it presumes a nearly
stateless approach to attack detection. The systems ei-
ther operate on single packets or assume that a separate
process reassembles the TCP byte stream. Parallelizing
richer, stateful hardware elements, such as TCP stream
reassembly, have not been explored in as much depth;
see our previous work in [4] and the discussion of prior
efforts therein, including the vulnerability to such TCP
processors to evasion attacks [15, 8].
In terms of parallelizing higher-level network security

analysis, we take our main inspiration from the work of
Kruegel et al, who explored the design of front-endNIDS
load balancers [10]. They introduced the notion of slic-
ing: splitting up traffic not simply at a per-connection
granularity, but in a NIDS-analysis-aware fashion to en-
sure that packets germane to possible attack scenarios are
all available to the processing element that assesses their
associated scenarios.
However, the issue of such front-end dispatch be-

comes subtle because of the many forms of global anal-
ysis. For example, content sifting [18] requires looking
at a large pool of potentially suspicious strings that may
be taken from any connection, and contact graph analy-
sis [6] can efficiently detect new worms, but requires a
global connection history within a time window. Many
attacks seen today involve complex application-level ses-
sions that span multiple connections and sometimes mul-
tiple hosts.
Thus, for in-line intrusion prevention operation, we

need to go significantly beyond Kruegel’s slicing ap-
proach to also incorporate (i) ways of structuring the
analysis itself such that it is amenable to multi-core par-
allelization, and (ii) support for prevention (blocking)
functionality.
Modern general-purpose CPUs. By relying on cus-

tomized hardware rather than general-purpose CPUs,
commercial systems have difficulty in tracking Moore’s
Law-style scaling, due to the low level at which paral-
lelism must be expressed (FPGA and ASIC designs) or
weak memory caching semantics (network processors).
Modern CPU designs include symmetric multi-

threaded CPU cores [1, 11], which allow a single CPU
to switch between multiple independent threads of exe-
cution, and multi-core systems, where a single die holds
multiple CPUs [2, 11]. Recent systems support both:
multiple CPUs each executing multiple threads.
It is critical to recognize that to exploit the power of

such processors, programs must be specifically designed
to have a parallelizable structure. However, when devel-



oping software for these systems, not only is it crucial to
parallelize the program’s execution structure, but also its
memory access patterns. Although multi-thread/multi-
core CPUs preserve the semantics of shared memory
with cache-coherence, memory locality and behavior can
completely dominate a program’s ultimate performance.
In a multi-threaded core, the threadsmust share a com-

mon working set, lest thrashing significantly degrade
performance [9]. In contrast, on a multi-core system
having disjoint working sets on different cores can be a
benefit, as the L1 and often also the L2 caches are inde-
pendent. When coupled with independent memory con-
trollers [3], it becomes vital to create and feed the threads
in a memory-aware manner.

3 Overview of the Architecture

Figure 1 illustrates the overall structure of our architec-
ture. At the bottom of the diagram is the “Active Net-
work Interface” (ANI). This component provides the in-
line interface to the network, reading in packets and later
(after they have been approved) forwarding them. It also
serves as the front-end for dispatching copies of the pack-
ets to the analysis components executing on different
cores/threads.
The ANI drives its dispatch decisions based on a large

connection table indexed by packet header five-tuple.
The table yields a routing decision for each packet: ei-
ther (i) which thread will analyze the packet, (ii) that the
ANI should drop the packet directly without further pro-
cessing, or (iii) that the ANI should forward the packet
directly (to enable some forms of off-loading, as dis-
cussed below). There is an analogous table indexed by
IP addresses to provide per-host blocking, and also de-
fault routing for packets not found in either table.
The analysis components populate the ANI’s table en-

tries to control its dispatch procedure. For example, a
component can install a drop action to cut off a misbe-
having connection, or alter the thread associated with a
connection for purposes to improve locality of reference.
The ANI dispatches packets for analysis by writing

them into queues in memory associated with the thread
(and core) assigned to analyze the corresponding flow.
It also sends a corresponding descriptor used to subse-
quently refer to the packets. The ANI holds copies of the
packets locally pending approval to forward them, which
an analysis component can signal by sending a control
message that includes the descriptor back to the ANI.1

1As shown by the solid line from CPU Core 1 to the ANI in the
figure, the analysis components can also rewrite pending packets. This
functionality is necessary to support normalization, which may require
altering the contents of packets [8].

Conceptually, the packet queues reside in the proces-
sor’s shared memory. In general, these writes will di-
rectly target the processor’s shared L2 cache. On mod-
ern multi-core systems, such a write will invalidate the
L1 cache entries local to the individual cores, enabling
the threads executing in that core to detect that they have
a new packet waiting for them and load it from L2 cache
to L1 cache.
An important point is that unlike for the rest of the

architecture, we make the presumption that the ANI
is custom hardware, specialized for the task. Our re-
cent work has shown that we can construct such hard-
ware efficiently and affordably using a simple FPGA
design [24]. There are already at least two suitable
Gbps Ethernet FPGA platforms available, the four-port
GigE copper NetFPGA [23] and the 6 SPF (fiber) port
HyperTransport-based HTX board [7].
We structure the analysis components as an event-

based system, which we have developed in previous
work as offering great power for network security analy-
sis [14]. Doing so allows us to find many opportunities
for concurrent execution, since events introduce a natu-
ral, decoupled asynchrony into the flow of analysis. By
associating events with the packets that ultimately stim-
ulated them, we can determine when all analysis for a
given packet has completed, and thus whether it is safe
to forward the pending packet.
Parallelizing event execution requires care, however.

First, temporal relationships exist between events, which
means that their their subsequent handlers cannot execute
in arbitrary order. Second, event handlers tend to share a
large amount of state, and thus need to access the same
memory, potentially blocking execution of other threads.
Our architecture envisions addressing these issues by in-
troducing multiple event queues which collect together
semantically related events for FIFO execution. Because
the events are related, keeping themwithin a single queue
localizes memory access to shared state. This in turn al-
lows for efficient threaded execution of events since the
threads can efficiently communicate (and lock data struc-
tures, when necessary) by exploiting the per-core mem-
ory caches.
The analysis proceeds in stages. The initial stages con-

cern low-level tasks such as TCP stream reassembly and
normalization, suitable to a single thread of execution.
This stage requires very little inter-thread communica-
tion. It outputs events parameterized with parsed packet
headers and payload byte streams. The next stage per-
forms application-layer protocol parsing. The outputs
from this stage are events reflecting application-level
control information (requests and responses) with associ-
ated ADUs. Finally, these events are consumed by mul-
tiple high-level analyzers that detect attacks both within
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Figure 1: Structure of proposed architecture for parallel execution of network attack analysis.

application dialogs and across multiple connections and
hosts.
In the figure, each core has two queues associated

with it, one for receiving packets from the ANI and
one for managing the events that its analysis generates
and consumes. (Sharing queues across all of a core’s
threads minimizes potential thrashing of the limited L1
cache.) Communication between threads occurs either
via the shared memory or by passing events. Events
exchanged between threads executing in the same core
generally use the core’s event queue, while communica-
tion across cores can use separate per-core queues (e.g.,
“Core 1 MSG-Event-Q” in the figure). The figure shows
Core 1 inserting elements into the queue for Core 2, and
reading from its own MSG-Event-Q. Similarly, the sys-
tem can receive externally generated events (e.g., from a
host-based IDS) and send events to external agents (e.g.,
a global management console such as HP OpenView) via
“External MSG-Event-Q”.

4 Building Scalably Parallel Intrusion Pre-
vention Systems

Given the architecture presented in the previous section,
we now discuss what would go into a concrete instance
of such a system.
First, in contrast to conventional network interface

cards, the ANI is a stateful device whose functionality

can be dynamically refined by the backend analysis en-
gine. This is the one non-commodity component of our
architecture, which we keep structurally simple to enable
implementing it in low-cost (≈ $2,000) specialized hard-
ware, as already somewhat explored in [24].

As argued in [13], the first task of a parallel analy-
sis pipeline is flow demultiplexing: routing packets to
analysis threads. For each packet, the ANI consults its
flow table to decide which thread(s) is in charge of the
corresponding flow and appends the packet to the packet
queue of that thread’s core, directly copying the packet
into the thread’s memory (L2 cache). This avoids the op-
erating system having to move the packets from a sin-
gle queue over to the proper thread. If the ANI does
not find a flow-table entry, it forwards the packet to a
dispatcher thread that computes which thread should as-
sume responsibility for the flow’s packet-level analysis
and update’s the ANI’s flow table accordingly. An im-
portant performance observation is that the tables the
ANI uses needn’t be “perfect” [24]—we can tolerate oc-
casional inconsistent entries in the tables, since the result
of those entries is that packets are forwarded to the dis-
patcher thread—which simplifies the hardware.

For in-line operation and potential intrusion preven-
tion blocking, analysis threads inform the ANI about
their go/no-go using packet descriptors that the ANI in-
cludes with copies of the packets that it dispatches. The
ANI also supports packet rewriting necessary for nor-
malization [8].



Regarding the higher-level analysis components, to ef-
fectively use multi-core CPUs to exploit the potential
parallelism in network monitoring, we must: (1) identify
the optimal thread granularity for a given hardware ar-
chitecture so we can structure the data-flow accordingly,
(2) devise scalable inter-thread communication schemes,
(3) resolve intrusion-prevention go/no-go decisions in
a timely and reliable fashion, and (4) support effective
evaluation, profiling and debugging of such systems.
In our envisioned approach, we assume there is ex-

actly one thread responsible for the packets of a particu-
lar flow, to which the ANI dispatches the flow’s packets;
however, this thread may instantiate new threads on de-
mand, to either supplement or replace its analysis.
The first stages of analyzing a flow consist of relatively

fixed blocks of functionality, such as reassembling a TCP
stream or decoding a particular application-layer proto-
col. We can structure these blocks into individual threads
by following the data-flow of the processing, which pro-
ceeds along the edges of an analyzer tree [5]. Assum-
ing a supply of inexpensive threads, the natural approach
promises the greatest gain: one thread per analyzer will
exploit the benefits of both data pipelining (for serial
components of the dataflow, e.g., TCP decoding after
IP decoding) and parallel processing (for computations
that we can perform concurrently, e.g., running multiple
application-layer analyzers). At this point we do not re-
quire any inter-thread communication.
After the initial, fairly fixed stages of analysis comes

the execution of handlers for the events produced by the
protocol parsers. Each packet can stimulate execution of
multiple event handlers, and these handlers can gener-
ate further events, or cause side effects such as changing
global state. We cannot blithely execute in parallel the
event handlers triggered by an arriving packet because
events have a temporal order among them. To control the
parallel execution of events, we definemultiple, indepen-
dent event queues. Within the architecture, the semantics
of these queues allows processing of events from sepa-
rate queues to execute concurrently; but all events inside
a single queue are processed sequentially.
In our design, we assign one such event queue to each

CPU core. However, event handlers can generate new
events which semantically might no longer be tied to a
particular flow anymore. For these, we include global
event queues into which analyzers can insert such events.
Again, we dedicate a thread to each global queue to over-
see the sequential execution of its corresponding event
handlers.
While concurrent event processing already promises

a large gain in performance by itself, there is further,
major performance consideration: patterns of memory
accesses. While a general-purpose processor presents a

single shared memory to all of its cores and their threads,
the system’s cache hierarchy imposes a nonuniform ac-
cess model. Memory caching has a major impact on
performance for highly stateful processing. Our archi-
tecture’s use of event queues promises to prove valuable
here, too. By processing all events that relate to the same
flow on the same core, we localize memory accesses, and
thus can benefit from that core’s memory cache. Simi-
larly, by placing related events into the same global event
queue, we can localize access patterns when executing
inter-flow analysis.

Global correlation requires significant communication
between individual threads. We have explored tightly
coupled multi-CPU intrusion analysis in our work on
“Bro Cluster,” where a set of commodity PCs each an-
alyze a share of the overall network traffic and synchro-
nize state via an interconnection network [22]. The syn-
chronization traffic between the cluster nodes can exhibit
significant overhead; however, within a single multi-core
system we can take advantage of its shared memory se-
mantics rather than explicit message-passing for thread
communication. However, we still need to carefully
align the execution-locality of elements in the network
analysis chain with the nonuniformities present due to
the underlying system’s cache hierarchy. We can pur-
sue this via restructuring detection algorithms in terms of
how theymodify or interpret shared state; or by changing
the semantics of the communication primitives, such as
introducing explicit loose synchronization [19] and em-
phasizing randomized analysis algorithms that by design
can cope with occasional irregularities.

For our system to realize intrusion prevention func-
tionality, a key problem is that the analysis events are
decoupled from the packets that ultimately trigger their
generation. A particular packet may trigger any from
zero to many events, and several packets may all con-
tribute to a single event. However, events directly trig-
gered by lower-level analysis will be generated very
shortly after the ANI receives the corresponding packet.
For these events it is feasible for the ANI to hold each
packet until all of the events it engenders execute to com-
pletion. This approach does not apply for more global
forms of analysis; however, due to the global nature
of such analysis, the blocking associated with detection
will in general refer to more coarse-grained entities than
flows. For example, upon detecting a scan it is very likely
tolerable that the packets of the scan (so far) have already
reached their destination—as long as one can ensure that
the system will block any further activity by the originat-
ing host.

Finally, for profiling and debugging of such systems,
we are particularly interested in: (i) identifying race con-
ditions, and (ii) understanding memory access patterns.



The key to systematically analyzing the behavior of such
programs is reproducibility. We have explored trace-
based reproducibility by augmenting the Bro analysis
system [14] with a pseudo-real-time mode: when ac-
tivated, packets from a trace are artificially delayed to
match real-time semantics. The mode also introduces
synchronization points at regular time intervals to en-
sure that the reproducibility of individual instances do
not drift too far from the trace they process.

5 Summary

The goal of our effort is to develop a framework to sup-
port the construction of highly parallel, inline network
intrusion prevention systems that can fully exploit the
power of modern and future commodity hardware. Ul-
timately, we aim to enable network intrusion prevention
to reap both the benefits of executing on general-purpose
CPUs, and the exponential scaling that Moore’s Law for
aggregate parallel processing continues to promise.
The key elements of achieving this vision are (i) iden-

tifying the optimal thread granularity for a given hard-
ware architecture so we can structure the data-flow ac-
cordingly, (ii) devising scalable inter-thread commu-
nication schemes, (iii) resolving intrusion-prevention
go/no-go decisions in a timely and reliable fashion, and
(iv) supporting effective evaluation, profiling and debug-
ging of such systems. We have sketched how we believe
we can achieve all of these by employing a custom front-
end component (the Active Network Interface) and struc-
turing our network analysis in an event-oriented fashion.
If successful, our approach will offer a design point

in terms of price and ease of scalability that significantly
differs from that offered by current approaches based on
FPGA, ASIC, or network processor hardware. Given
how parallel hardware appears likely to evolve in the fu-
ture, this paradigm could ultimately prove highly influ-
ential to industry.
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