
Predicting the Resource Consumption
of Network Intrusion Detection Systems

Holger Dreger Anja Feldmann Vern Paxson Robin Sommer
Siemens AG, Corporate Technology Deutsche Telekom Labs/TU-Berlin ICSI/LBNL LBNL/ICSI
holger.dreger@siemens.com anja@net.t-labs.tu-berlin.de vern@icir.org robin@icir.org

ABSTRACT
When installing network intrusion detection systems (NIDSs), op-
erators are faced with a large number of parameters and analysis
options for tuning trade-offs between detection accuracy versus re-
source requirements. In this work we set out to assist this process
by understanding and predicting the CPU and memory consump-
tion of such systems.

Categories and Subject Descriptors: I.6.5: Model Development.

General Terms: Measurement, Security.

Keywords: NIDS, Performance Model.

1. INTRODUCTION
Operators of network intrusion detection systems (NIDSs) face

significant challenges in understanding how to best configure and
provision their systems. The difficulties arise from the need to un-
derstand the relationship between the wide range of analyses and
tuning parameters provided by modern NIDSs, and the resources
required by different combinations of these.

In addition, a NIDS must operate in compliance withsoft real-
time constraints, to issue timely alerts or blocking-directives for
intrusion prevention. Such operation differs fromhard real-time
in that the consequences of the NIDS failing to “keep up” with
the rate of arriving traffic is not catastrophe, but ratherdegraded
performance in terms of some traffic escaping analysis (“drops”) or
experiencing slower throughput (for intrusion preventionsystems
that only forward traffic after the NIDS has inspected it).

Soft real-time operation has two significant implications in terms
of predicting the resource consumption of NIDSs. First, because
NIDSs do not operate in hard real-time, we eschew performance
evaluation techniques that aim to prove compliance of the system
with rigorous deadlines (e.g., assuring that it spends no more than
T microseconds on any given packet). Given the very wide rangeof
per-packet analysis cost in a modern NIDS, such techniques would
severely reduce our estimate of the performance a NIDS can pro-
vide in an operational context. Second, soft real-time operation
also means that we cannot rely upon techniques that predict asys-
tem’s performance solely in terms of aggregate CPU and memory
consumption: We must also pay attention tosurges in CPU load,
for understanding the degree to which in a given environmentthe
system would experience degraded performance (packet drops or
slower forwarding).

In our experience the operational deployment of a NIDS is often
a trial-and-error process, for which it can take weeks to converge on

Copyright is held by the author/owner(s).
SIGMETRICS’08, June 2–6, 2008, Annapolis, Maryland, USA.
ACM 978-1-60558-005-0/08/06.

an apt, stable configuration. In our work1 we set out to assist opera-
tors with understanding the resource consumption trade-offs avail-
able to them when operating a NIDS that provides a large number
of tuning parameters and analysis options. In this context,a partic-
ular difficulty regards how resource consumption intimately relates
to the specifics of the network’s traffic—such as its application mix
and its changes over time—as well as the internals of the particular
NIDS in consideration.

2. METHODOLOGY
We begin towards our goal by devising a general NIDS resource

model to capture the ways in which CPU and memory usage scale
with changes in network traffic. We then use this model to predict
the resource demands of different analysis depths for specific envi-
ronments. Finally, we develop an approach to derive site-specific
NIDS configurations that maximize the depth of analysis given pre-
defined resource constraints.

2.1 Modeling NIDS Resource Usage
When modeling the resource consumption of a NIDS, our main

hypothesis concernsorthogonal decomposition: i.e., the major sub-
components of a NIDS are sufficiently independent that we canan-
alyze them in isolation and then extrapolate aggregate behavior as
the composition of the contributions from these individualcompo-
nents. In a different dimension, we explore the degree to which we
can estimate the system’s overall resource requirements byextrapo-
lating from fine-grain sampled network traffic coupled with coarse-
grain traffic summaries. Even though this simplification disregards
many of the internals of a NIDS’s operation, we experimentally as-
sess our claim and find that in general it holds for the quite-complex
Bro NIDS [3]. While we do observe some complications due to the
unusually high degree (compared to other NIDS) of flexibility that
the Bro system provides to the operator, our study shows thatin
practice these issues do not tend to be of major concern.

If orthogonal decomposition holds, we can systematically ana-
lyze a NIDS’ resource consumption by capturing the performance
of each subcomponent individually, and then estimating theaggre-
gate resource requirements as the sum of the individual require-
ments. We partition our analysis along two axes: type of analy-
sis, and proportion of connections within each class of traffic. We
find that the demands of many components scale directly with the
prevalence of a given class of connections within the aggregate traf-
fic stream. This observation allows us to accurately estimate re-
source consumption by characterizing a site’s traffic “mix.” Since
such mixes change over time, however, it is crucial to consider both
short-term and long term fluctuations.

1For a more detailed discussion see [1].



We stress that, by design, our model doesnot incorporate a no-
tion of detection quality, as that cannot reasonably be predicted
from past traffic. We focus on identifying the types of analyses
which arefeasible under given resource constraints. With this in-
formation the operator can assess which option promises thelargest
gain for the site in terms of operational benefit, considering the
site’s security policy and threat model.

2.2 Example NIDS Resource Usage
To assess our approach of modeling a NIDS’s resource demands

as the sum of the requirements of its individual components,and
scaling linearly with the number of connections, we examinean
example NIDS. Among the two predominant open-source NIDSs,
Snort [4] and Bro [3], we chose to examine Bro for two rea-
sons: (i) Bro provides a superset of Snort’s functionality, since
it includes both a signature-matching engine and an application-
analysis scripting language; and(ii) it provides extensive, fine-
grained instrumentation of its internal resource consumption; see
[2] for the specifics of how the system measures CPU and memory
consumption in real-time. Snort does not provide similar capabili-
ties.

For our analysis we captured a 24-hour full-packet trace at the
border router of a major university campus. This facility provides
10 Gbps upstream capacity to roughly 50,000 hosts at two major
universities, along with additional research institutes,totaling 2-
4 TB a day. The trace encompasses 3.2 TB of data in 6.3 billion
packets and 137 million connections. 76% of all packets are TCP.
We refer to this trace ascampus-full .

We first verify that the NIDS’ resource usage generally scales
linearly with the number of connections on the monitored network
link. Then we assess our hypothesis that we can consider the re-
source consumption of the NIDS’s components as independentof
one another. We find that for the Bro NIDS, both assumptions gen-
erally hold for CPU and memory. Doing so can however overesti-
mate the memory demand for some components.

2.3 Resource Prediction
After validating that we can often compose NIDS resource us-

age in terms of per-component and per-connection scaling, we then
employ these observations to expose tradeoffs for different config-
urations for operating a NIDS in a new network environment (or for
improving the configuration in an existing environment). Inaddi-
tion, we can estimate when, for a given configuration and expecta-
tion of traffic growth, the NIDS’s current computational resources
will no longer suffice.

We start by devising a methodology for finding a suitable con-
figuration based on a snapshot of an environment’s network traffic.
Based on this methodology, we implemented an automatic config-
uration tool,nidsconf, for the Bro NIDS. The tool analyzes a
20-minute network packet trace, sampled at a per-connection gran-
ularity, from whichnidsconf determines a set of Bro configura-
tions, including sets of feasible analyzers and suitable connection
timeouts. These configurations enable Bro to process the network’s
traffic within user-defined limits for CPU and memory.

Now that we can identify appropriate configurations based on
a detailed packet-level trace, we turn to estimating the long-term
performance of such a configuration. Such extrapolation is crucial
before running a NIDS operationally, as network traffic tends to ex-
hibit strong time-of-day and day-of-week effects. Thus, a config-
uration suitable for a short snapshot may still overload thesystem
at another time, or unnecessarily forsake some types of analysis
during less busy times.

For this purpose we require long-term, coarser-grained logs of
connection information as an abstraction of the network’s traffic.

local time

C
P

U
 ti

m
e 

pe
r 

se
co

nd

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Tue 18:00 Wed 0:00 Wed 6:00 Wed 12:00

measured CPU time
predicted CPU time

Figure 1: Measured CPU time vs. predicted CPU time.

Such logs can, for example, come from NetFlow data, from traffic
traces with tools such as tcpreduce [6], or from the NIDS itself
(Bro generates such summaries as part of its generic connection
analysis). Such connection-level logs are much smaller than full
packet traces (e.g.,≪ 1% of the volume), and thus easier to collect
and handle. Indeed, some sites already gather them on a routine
basis to facilitate traffic engineering or forensic analysis.

Figure 1 shows the per-second consumption for processing the
campus-full trace: projected by using connection logs plus
the analysis results on a 20-minute packet trace, as predicted by
nidsconf (crosses), versus actual per-second CPU consumption
exhibited by running a basic Bro configuration (circles). Over-
all, the predicted CPU time matches the variations in the measured
CPU time quite closely.

3. CONCLUSION
In this work we set out to understand and predict the resource

requirements of network intrusion detection systems. We develop
a methodology toautomatically derive NIDS configurations that
maximize the systems’ detection capabilities while keeping the re-
source load feasible, and sketch a tool we built that derivesrealistic
configurations for the open-source Bro NIDS.

An interesting avenue for future work is predicting what kind
of equipment a network link requires to befully analyzed, rather
than estimating the amount of analysis one can afford with a given
set of resources. This is not as straight-forward as it mightini-
tially seem because—as for example [5] demonstrates for theSnort
and Bro NIDSs—performance can vary greatly between seemingly
quite similar hardware platforms. Such effects make it tricky to
model the actual benefit that, e.g., a CPU upgrade would provide.

4. REFERENCES
[1] H. Dreger.Operational Network Intrusion Detection:

Resource-Analysis Tradeoffs. PhD thesis, TU München, 2007.
[2] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer.

Operational Experiences with High-Volume Network
Intrusion Detection. InACM Computer and Communications
Security, 2004.

[3] V. Paxson. Bro: A system for detecting network intrudersin
real-time.Computer Networks, 31(23–24):2435–2463, 1999.

[4] M. Roesch. Snort: Lightweight intrusion detection for
networks. InProc. Systems Administration Conference, 1999.

[5] R. Sommer and V. Paxson. Enhancing Byte-Level Network
Intrusion Detection Signatures with Context. InACM
Computer and Communications Security, 2003.

[6] tcp-reduce. http://ita.ee.lbl.gov/html/
contrib/tcp-reduce.html.


