Predicting the Resource Consumption
of Network Intrusion Detection Systems

Holger Dreger

Siemens AG, Corporate Technology Deutsche Telekom
holger.dreger@siemens.com

ABSTRACT

When installing network intrusion detection systems (N$R®p-
erators are faced with a large number of parameters andsimaly
options for tuning trade-offs between detection accurargus re-
source requirements. In this work we set out to assist tluisgas

by understanding and predicting the CPU and memory consump-
tion of such systems.

Categories and Subject Descriptors: 1.6.5: Model Development.
General Terms. Measurement, Security.
Keywords: NIDS, Performance Model.

1. INTRODUCTION

Operators of network intrusion detection systems (NID&sgf
significant challenges in understanding how to best cordigund
provision their systems. The difficulties arise from thedhezun-
derstand the relationship between the wide range of armbsé
tuning parameters provided by modern NIDSs, and the ressurc
required by different combinations of these.

In addition, a NIDS must operate in compliance wstift real-
time constraints, to issue timely alerts or blocking-direcivier
intrusion prevention. Such operation differs frdrard real-time
in that the consequences of the NIDS failing to “keep up” with
the rate of arriving traffic is not catastrophe, but rattegraded
performance in terms of some traffic escaping analysis (“drops”) or
experiencing slower throughput (for intrusion preventgystems
that only forward traffic after the NIDS has inspected it).

Soft real-time operation has two significant implicatiomsdrms
of predicting the resource consumption of NIDSs. First,dose
NIDSs do not operate in hard real-time, we eschew performanc
evaluation technigues that aim to prove compliance of tis¢éesy
with rigorous deadlines (e.g., assuring that it spends neeri@n
T microseconds on any given packet). Given the very wide rahge
per-packet analysis cost in a modern NIDS, such techniqoesiw
severely reduce our estimate of the performance a NIDS aan pr
vide in an operational context. Second, soft real-time afgan
also means that we cannot rely upon techniques that predis-a
tem’s performance solely in terms of aggregate CPU and memor
consumption: We must also pay attentionstmges in CPU load,
for understanding the degree to which in a given environnteat
system would experience degraded performance (packes adnop
slower forwarding).

In our experience the operational deployment of a NIDS ieroft
a trial-and-error process, for which it can take weeks tovemye on

Copyright is held by the author/owner(s).
S GMETRICS 08, June 2—6, 2008, Annapolis, Maryland, USA.
ACM 978-1-60558-005-0/08/06.

Anja Feldmann

anja@net.t-labs.tu-berlin.de vern@icir.org

Robin Sommer
LBNL/ICSI

robin@icir.org

Vern Paxson

Labs/TU-Berlin ICSI/LBNL

an apt, stable configuration. In our worke set out to assist opera-
tors with understanding the resource consumption trafseaohil-
able to them when operating a NIDS that provides a large numbe
of tuning parameters and analysis options. In this conteggrtic-
ular difficulty regards how resource consumption intimatelates

to the specifics of the network’s traffic—such as its appidcamix

and its changes over time—as well as the internals of théecpbat
NIDS in consideration.

2. METHODOLOGY

We begin towards our goal by devising a general NIDS resource
model to capture the ways in which CPU and memory usage scale
with changes in network traffic. We then use this model to isted
the resource demands of different analysis depths for §peavi-
ronments. Finally, we develop an approach to derive siesifip
NIDS configurations that maximize the depth of analysis rgjwes-
defined resource constraints.

2.1 Modeing NIDS Resource Usage

When modeling the resource consumption of a NIDS, our main
hypothesis concerrsthogonal decomposition: i.e., the major sub-
components of a NIDS are sufficiently independent that weacan
alyze them in isolation and then extrapolate aggregateviomhas
the composition of the contributions from these individoatnpo-
nents. In a different dimension, we explore the degree tchviie
can estimate the system’s overall resource requiremergstbgpo-
lating from fine-grain sampled network traffic coupled witacse-
grain traffic summaries. Even though this simplificatiorrelimrds
many of the internals of a NIDS’s operation, we experimeyias-
sess our claim and find that in general it holds for the quiteyalex
Bro NIDS [3]. While we do observe some complications due & th
unusually high degree (compared to other NIDS) of flexipititat
the Bro system provides to the operator, our study showsitthat
practice these issues do not tend to be of major concern.

If orthogonal decomposition holds, we can systematicatig-a
lyze a NIDS’ resource consumption by capturing the perforcea
of each subcomponent individually, and then estimatingatigre-
gate resource requirements as the sum of the individuaireequ
ments. We partition our analysis along two axes: type ofyanal
sis, and proportion of connections within each class ofitratVe
find that the demands of many components scale directly Wwéh t
prevalence of a given class of connections within the aggesgaf-
fic stream. This observation allows us to accurately esémet
source consumption by characterizing a site’s traffic “infince
such mixes change over time, however, it is crucial to cardidth
short-term and long term fluctuations.

'For a more detailed discussion see [1].

We stress that, by design, our model doesincorporate a no- o measured CPU e .
tion of detection quality, as that cannot reasonably be igted + predicted CPU time oy Be
from past traffic. We focus on identifying the types of analys
which arefeasible under given resource constraints. With this in-
formation the operator can assess which option promisdaripest
gain for the site in terms of operational benefit, considgitime
site’s security policy and threat model.

CPU time per second

00 05 10 15 20 25

2.2 Example NIDS Resource Usage ° w ‘ — ‘

Tue 18:00 Wed 0:00 Wed 6:00 Wed 12:00

To assess our approach of modeling a NIDS's resource demands
as the sum of the requirements of its individual componeants,
scaling linearly with the number of connections, we examine Figure1: Measured CPU timevs. predicted CPU time.
example NIDS. Among the two predominant open-source NIDSs,
Snort [4] and Bro [3], we chose to examine Bro for two rea-
sons: (i) Bro provides a superset of Snort’s functionality, since
it includes both a signature-matching engine and an apjgica
analysis scripting language; arfd) it provides extensive, fine-
grained instrumentation of its internal resource consionptsee
[2] for the specifics of how the system measures CPU and memory
consumption in real-time. Snort does not provide similgratsli-
ties.

For our analysis we captured a 24-hour full-packet tracéat t
border router of a major university campus. This facilitpyides
10 Ghps upstream capacity to roughly 50,000 hosts at twormajo
universities, along with additional research institutesaling 2-
4 TB a day. The trace encompasses 3.2 TB of data in 6.3 billion
packets and 137 million connections. 76% of all packets &B.T
We refer to this trace asanmpus- f ul | .

We first verify that the NIDS’ resource usage generally scale
linearly with the number of connections on the monitoredvoek
link. Then we assess our hypothesis that we can consideethe r 3. CONCLUSION
source consumption of the NIDS'’s components as indeperafent In this work we set out to understand and predict the resource
one another. We find that for the Bro NIDS, both assumptioms ge requirements of network intrusion detection systems. Welde
erally hold for CPU and memory. Doing so can however overesti a methodology tcautomatically derive NIDS configurations that

local time

Such logs can, for example, come from NetFlow data, fronfi¢raf
traces with tools such as tcpreduce [6], or from the NIDSlfitse
(Bro generates such summaries as part of its generic coonect
analysis). Such connection-level logs are much smaller fht
packet traces (e.g«< 1% of the volume), and thus easier to collect
and handle. Indeed, some sites already gather them on aeouti
basis to facilitate traffic engineering or forensic analysi

Figure 1 shows the per-second consumption for processing th
canpus-ful |l trace: projected by using connection logs plus
the analysis results on a 20-minute packet trace, as peedimnt
ni dsconf (crosses), versus actual per-second CPU consumption
exhibited by running a basic Bro configuration (circles). eBv
all, the predicted CPU time matches the variations in thesueal
CPU time quite closely.

mate the memory demand for some components. maximize the systems’ detection capabilities while kegtire re-
o source load feasible, and sketch a tool we built that deriwalistic
2.3 Resource Prediction configurations for the open-source Bro NIDS.

After validating that we can often compose NIDS resource us- An interesting avenue for future work is predicting whatin
age in terms of per-component and per-connection scaliaghen of equipment a network link requires to lhdly analyzed, rather
employ these observations to expose tradeoffs for difterenfig- than estimating the amount of analysis one can afford witiveng
urations for operating a NIDS in a new network environmenfdo set of resources. This is not as straight-forward as it migit
improving the configuration in an existing environment). alsidli- tially seem because—as for example [5] demonstrates fcBrtioet
tion, we can estimate when, for a given configuration andegee and Bro NIDSs—performance can vary greatly between seeyning
tion of traffic growth, the NIDS’s current computational oesces quite similar hardware platforms. Such effects make itkyrito
will no longer suffice. model the actual benefit that, e.g., a CPU upgrade would geovi

We start by devising a methodology for finding a suitable con-
figuration based on a snapshot of an environment’s netwaffictr 4. REFERENCES
Based on this methodology, we implemented an automaticgsonfi [1] H. Dreger.Operational Network Intrusion Detection:
uration tool,ni dsconf, for the Bro NIDS. The tool analyzes a Resource-Analysis Tradeoffs. PhD thesis, TU Miinchen, 2007.
20-minute network packet trace, sampled at a per-conmegtmn- [2] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer.
ularity, from whichni dsconf determines a set of Bro configura- Operation’al Experience,s with High:Vqume Network

t!ons, including sets (_Jf feaglble analyzers and suitabfeeotion Intrusion Detection. IACM Computer and Communications
timeouts. These configurations enable Bro to process thries Security, 2004

traffic within user-defined limits for CPU and memory.

Now that we can identify appropriate configurations based on
a detailed packet-level trace, we turn to estimating thg-@mm
performance of such a configuration. Such extrapolationusial
before running a NIDS operationally, as network traffic etalex-

[3] V. Paxson. Bro: A system for detecting network intrudiers
real-time.Computer Networks, 31(23-24):2435-2463, 1999.

[4] M. Roesch. Snort: Lightweight intrusion detection for
networks. InProc. Systems Administration Conference, 1999.

hibit strong time-of-day and day-of-week effects. Thuspafig- [5] R. Sommer and V. Paxson. Enhancing Byte-Level Network
uration suitable for a short snapshot may still overloadsystem Intrusion Detection Signatures with Context.AGM
at another time, or unnecessarily forsake some types of/sinal Computer and Communications Security, 2003.
during less busy times. [6] tcp-reduce.http://ita.ee.lbl.gov/htm/
For this purpose we require long-term, coarser-grained tifg contrib/tcp-reduce. htn .

connection information as an abstraction of the networffit.

