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Abstract We contend that current and future advances in Internet scale multimedia
analytics, global inference, and linking can circumvent traditional security and pri-
vacy barriers. We therefore are in dire need of a new research field to address this
issue and come up with new solutions. We present the privacy risks, attack vectors,
details for a preliminary experiment on account linking, and describe mitigation and
educational techniques that will help address the issues.

7.1 Introduction

The growth of multimedia as demonstrated by social networking sites such as Face-
book and YouTube combined with advances in multimedia content analysis (face
recognition, speaker verification, location estimation, etc.) provides novel opportu-
nities for the unethical use of multimedia. In small scale or in isolation multime-
dia analytics have always been a powerful but reasonably contained privacy threat.
However, when linked together and used on an Internet scale, the threat can be
enormous and pervasive. The multimedia community therefore has an obligation to
understand these risks, mitigate the effects, and educate the public on the issues.

Imagine a future where multimedia query engines just work. You can search by
topic, location, person, camera identity, and time — even when the uploader did
not explicitly include such information. An unscrupulous attacker could query for
videos recently recorded at resorts and then find videos taken with the same camera
in nearby wealthy residential neighborhoods. This would produce an ideal “hit list”
of targets who are likely away from home, which the thief could then refine. As
reported in previous work (see Section 7.2), cybercasing already occurs, but with
a multimedia query engine, simple methods of anonymizing posts and suppressing
metadata will no longer be enough. Rather, the multimedia community must work to
educate the public about the risks of inferencing at the Internet scale, invent meth-
ods to identify when information (such as the “identity” of the camera) is being
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unintentionally leaked, and develop mitigation techniques to reduce the potential
harm.

After defining the topic and presenting prior work (Section 7.2), we outline exist-
ing and future multimedia content analysis and linking techniques that could support
unethical use and describe possible attack vectors (Section 7.3). Next, we describe
some preliminary experiments providing evidence that multimedia analytics can cir-
cumvent one aspect of privacy by linking accounts (Section 7.4). Finally, we outline
mitigation and educational techniques (Section 7.5) and conclude that this is a new
topic to be explored (Section 7.6).

7.2 Definition and Prior Work

Privacy is a concept that is hard to define. As a consequence, many definitions exist,
including “privacy is the right to be left alone” [35] and more modern definitions,
such as U.S. President Barak Obama’s “Framework for Protecting Privacy” [24].
Merriam Webster defines privacy as “a) the quality or state of being apart from com-
pany or observation and b) freedom from unauthorized intrusion” [41]. While all of
the definitions aim at the same goal, they are too broad for our engineering purposes.
Therefore, in this paper we restrict ourselves to a more technical definition. We de-
fine privacy as “practically securing the implications of communication”, which sets
it apart from the field of secure communication, which is “securing the properties
of the communication itself” [42] through methods of cryptography, steganography,
identity hiding, and other well-known computer science topics. In other words, our
privacy research is not about securing a communication line between several par-
ties; it is to make sure that publicly available information conveys only the data the
author intended. We acknowledge that this goal, like the aims of secure commu-
nication, will most likely never be achieved perfectly. However, improvements in
methods can make communication “more private”. Given that even our narrower
definition is still a very broad goal, we will limit ourselves to attack vectors that
pose an actual criminal threat and/or directly influence life-changing decisions.

While the scientific community has investigated correlation between different
data sets in terms of privacy implications, most of these efforts have focused on
de-anonymizing or compromising a single data set with the help of auxiliary infor-
mation. Except for the few exceptions described below, efforts have mostly concen-
trated on structured data, ignoring multimedia content analysis.

7.2.1 Work on Structured Data

In 1997, Sweeney [37] showed that anonymously published medical records can
be de-anonymized when correlated with external data, triggering a large body of
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follow-up work on designing anonymous statistical databases as well as understand-
ing their limitations [13, 14, 38, 10, 1].

More relevant to the multimedia community, Narayanan et al. present an algo-
rithm and proof for de-anonymizing sparse datasets [31]. They apply their algo-
rithm to anonymized Netflix movie ratings: given knowledge of a subset a person
has rated (e.g. learned from a lunch conversation or public ratings), the system is
able to identify all movies in the database that the user has rated. In [32], the same
idea is used to de-anonymize a social network graph by leveraging a graph from a
second network with real identities as auxiliary data. Researchers from Parc inves-
tigated inference using web search engines in order to analyze whether anonymized
(or obfuscated) private documents that are going to be released publicly can be de-
anonymized [36, 8]. They do not consider multimedia content nor inference between
information that is already publicly available.

Griffith et al. [20] correlate public birth, death and marriage records from the
state of Texas to derive the mother’s maiden name of more than 4 million Texans.
Balduzzi et al. [3] automatically query 8 social networks with a list of 10 million
e-mail addresses to retrieve the associated user profiles. They then correlate that
profile information across the networks and are able to identify mismatches be-
tween them. (i.e. they find users who chose different names, age, etc. in different
networks). More generally, Bishop et al. [4] discuss the need to go beyond “closed
worlds” when sanitizing a data set and consider external knowledge explicitly.

With geo-location information being a popular key to image and video retrieval,
another area of related research is locational privacy. The Electronic Frontier Foun-
dation published an overview of locational privacy aspects [5]. Locational privacy
in vehicular systems, e.g. toll collection, is addressed in [34, 23]. Zhong et al. [43]
present protocols for secure privacy preserving location sharing. The upcoming
HTML 5 standard will include APIs to query a client’s location. The Cree.py [21]
application uses geolocation data from social networks and media hosting services
to track a person’s movements.

Several web sites highlight the potential of information leakage users might not
be aware of:

Sleeptime.org estimates sleep patterns of Twitter users.
Stolencamerafinder.co.uk crawls for digital camera serial numbers in on-

line photos in order to find pictures taken with stolen cameras.
Icanstalku.com published geotags found in tweets.
pleaserobme.com used status updates form social networks to locate users who

were currently not at home but had published their home address.

7.2.2 Work on Multimedia Data

The above section was presented to outline current work on structured data. History
has shown that work on multimedia data follows in the footsteps of structured data
with a delay (for example, work on compression, messaging capabilities, or even
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World Wide Web content itself). As a result, we see an initial growth in multimedia
articles that present work on privacy. We see this early work as evidence for our
hypothesis of a new field of research.

In a recent effort [19], we analyzed the privacy implications of geotagging, i.e.
high-accuracy location information attached as meta-data to audio, image, and video
files. Specifically, we examined the risk that such geotags pose for what we termed
“cybercasing”: using online data and services to mount real-world attacks. More-
over, we showed that geo-tags are not needed as they can be replaced by multimedia
analytical location estimation techniques [17].

In [28] Lukas et al. propose a method for the problem of digital camera iden-
tification from images based on the sensor’s pattern noise. For each camera un-
der investigation, they first determine its reference pattern noise, which serves as a
unique identification fingerprint. This is achieved by averaging the noise obtained
from multiple images using a denoising filter. To identify the camera from a given
image, they consider the reference pattern noise as a spread-spectrum watermark,
whose presence in the image is established by using a correlation detector. Experi-
ments on approximately 320 images taken with nine consumer digital cameras are
used to estimate false alarm rates and false rejection rates.

Many researchers have worked on automatic video blurring (for example [11, 27,
16]); however, [33] showed that many of the proposed techniques are not effective.
In response to this problem, [12] has presented an initial framework to validate video
privacy.

7.3 Privacy Risks and Possible Attacks

In this section, we describe some existing and future multimedia analytic techniques
that pose a privacy risk including how these risks could be exploited. This is by no
means an exhaustive list.

Location Estimation Multimedia location estimation formed the genesis of our
interest in privacy in multimedia, and was reported in previous work (see Sec-
tion 7.2). Using multimodal methods, state-of-the-art algorithms can estimate the
location of about 40 % of Flickr videos with an accuracy better than 100 m, and
over 50 % with an accuracy better than 1 km. This extends the amount of exactly
trackable multimedia by a significant factor without requiring actual GPS sensors.

Time Estimation The date and time that a multimedia document was recorded
can be estimated using cues such as sun location or measuring shadow lengths.
More powerfully, if you can determine that Video A was recorded at the same time
and place as Video B, and you know or can infer Video A’s time, you now know
Video B’s time. Just excluding time/date metadata from your vacation video does
not protect you if somebody else includes it in theirs.

Person Detection In the image realm, this is usually known as face detec-
tion; in audio, speaker recognition. While the uploader can take active methods to
anonymize the foreground participants if privacy is an issue (e.g. replacing their
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face with a black box, replacing their audio with a bleep sound), the privacy of
background participants is problematic because the uploader may not care about
incidental privacy breaches of the background participants.

Object Detection Detecting an iphone in a person’s hand might make them a
more desirable robbery target. Marketers could target people based on the furniture
quality in the background of a video. Note that mitigation techniques are particularly
problematic with object detection, since one cannot simply remove all objects from
a multimedia document without severely impacting the document’s content.

Environmental Acoustic Noise Uploaders often recognize the need to obscure
faces. However, when recording video data they often forget that the audio track
includes a unique signature that might break their anonymity. This has been shown
in several studies, including our previous work (Section 7.2). Also, the combination
of such linking methods with other methods such as location estimation leads to
even more powerful privacy invading possibilities.

Sensor Detection It is already possible to narrow down or even uniquely identify
what camera was used to record a video or what microphone was used to record
audio based on the artifacts of the sensor. For example, pixel noise is unique to
a particular camera; the exact frequency response of a microphone might be used
to narrow down the possible microphones. This provides a whole new avenue of
linking, completely bypassing other means of anonymization.

3D Recordings Time-of-flight cameras, light field camera, stereo cameras, and
microphone arrays are all becoming more pervasive. It is clear that similar devices
will continue to be developed. Each comes with its own sets of issues, and have the
potential to capture even more unwanted data. Since this trend will only accelerate,
it is necessary for the multimedia community to address these issues.

Exotic Sensors Everything from air pressure sensors to heart rate monitors are
becoming more common, and it is likely data from these sensors will be incor-
porated into multimedia documents much as GPS is now. Since users often have
no real notion of what is being collected or how accurate it is, they have little or
no intuition on the privacy implications. A prominent historic example is GPS —
it was only recently that the profound privacy implications of geotagging became
commonly known.

We outline a small number of specific attacks that can now or could shortly be
used to invade privacy in detrimental ways using Internet scale multimedia analytics
and linking.

Today, one can readily access much of the structured information available online
via programmatic interfaces: major services like Google, Facebook, Twitter, Flickr,
YouTube, and LinkedIn all offer extensive APIs that make automatic retrieval trivial.
These APIs often offer more comprehensive access than the corresponding web
interface, and their availability is the primary driver behind the wide range of 3rd
party “apps” that constitute a key part of today’s social networking space.

We contend that as multimedia retrieval technology matures, it will eventually
become part of such APIs, making the capabilities available to everybody able to
write a few lines of Python code. For example, Google already provides simple
forms of image and video search, and rumor has it that face recognition is ready
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for mass deployment as part of their Goggles service. Facebook has already inte-
grated face recognition into their platform, and though it is not yet exposed via the
Facebook API, third party companies such as face.com are already providing pro-
grammable access to face recognition of Facebook content.

Having large-scale multimedia retrieval at one’s fingertips provides an opportu-
nity for amazing next-generation online services. However, we believe that it will
also open up a new dimension of privacy threats that our community has not yet
understood.

The availability of Internet-scale multimedia retrieval capabilities allows a wide
range of attacks that threaten users’ privacy. Whereas today’s search queries remain
limited to mostly textual information, attackers will eventually query for audio and
video content. Criminals could leverage that to reliably locate promising targets.
For example, they may first identify individuals owning high-value goods within a
target area and then pinpoint times when their victims’ homes are unattended.

Another threat is background checks becoming much more invasive than today:
many companies have strong incentives to examine their customers’ private life for
specifics impacting business decisions. An insurer, for example, might refuse pay-
ment to a customer receiving disability where the insurer finds Facebook photos of
the customer skiing. Likewise, an employer seeking new hires might check a candi-
date’s Twitter followers for potentially embarrassing information that could be used
against the company in the future and refuse to hire such candidates.

A whole new realm of marketing techniques are enabled by multimedia retrieval
and linking. A company could extract all videos of people wearing branded mer-
chandise, cluster them by location and time, and target that location for direct mar-
keting. The privacy implications of such broad and automatic analysis have been
insufficiently studied.

The new capabilities make stalking easier by providing the means to not only
quickly locate the victims, but also profile their typical behavior patterns, friends,
relatives, and acquaintances.

7.3.1 Example

In this section, we will exemplify the power of multimedia retrieval in combination
with structured-data retrieval in a mockup scenario adopted from [18].

Consider the following business: Fred works for Schooner Holdings and wishes
to gain (possibly illicit) inside information on future profits at the chipmaker Letin.
Fred hires Eve, who runs an “expert network”. Eve puts Fred in touch with Bob, a
Letin employee. In the process of consulting for Fred, Bob is encouraged to reveal
information about Letin’s upcoming products.1

1 In many countries, this practice is possibly illegal but exists in a gray area and is seemingly
routine practice. The Galleon insider trading trial [9] was based largely on the use of expert network
consultants.
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Currently, the greatest limit on this process is Eve finding experts like Bob who
(perhaps unknowingly) possess potential insider information and are willing to act
as consultants. Eve would greatly improve her business if she could find “corrupt-
ibles”: individuals in the business of interest who might be favorable to legitimate
or illegitimate offers.

Thus Eve starts searching social networks for individuals who are compatible
with her desired level of (il)legality. She instructs her crawler to begin with LinkedIn
and web searches, crawling the names and contact information for personnel at com-
panies of interest.

Then her crawler shifts to Facebook, Twitter, other social networks, and blogs,
beginning with all candidates found in the first pass. This crawler does not just look
at the candidates but also at friends of candidates.

She also searches any media, including images and videos, for links to other
people that the social network might not provide directly. Face recognition for ex-
ample can provide probable connections to other profiles. She also examines media
for any compromising material, such as illegal acts, drug paraphernalia, or party
photos. Eve knows that her automated content analysis does not need to be perfect:
she leverages crowdsourcing services like Mechanical Turk [2] to validate potential
candidate matches using human labor at a very low cost.

Eve’s crawler also queries further public and semi-public records. There are com-
mercial services that map an email address to a mailing address. Her crawler uses
these to discover where candidates live and how much their property is worth (e.g.
by using Zillow.com’s access to property tax data and sales history).

With all this data, Eve’s crawler can now create “inference chains” which esti-
mate the probability that any given candidate in her set has a potential weakness,
enabling Eve to search for possible points of corruptibility. An individual who is
dating someone with a reputation as a gold digger, or who purchased their house
at the height of the real estate bubble, might have financial problems. Such candi-
dates could be honestly corrupted by offering consulting positions, allowing Eve to
expand her expert network.

Eve might also contract with those operating outside the law. Then blackmail be-
comes an attractive option, especially if considering guilt by association. Someone
with a security clearance may be vulnerable if his associates are drug abusers, or if
he is having an affair that can be inferred through social patterns.

Nothing in the preceding scenario is unrealistic: every step Eve takes can be
constructed using today’s technology. It is simply a matter of putting all the pieces
together to collect and analyze the reams of data which exist on today’s social net-
works and other databases.

Unfortunately, there is also hardly any protection in place against somebody like
Eve. Furthermore, while structured data still plays a dominant role in this scenario,
it is easy to see how multimedia data will blur the boundaries even more. For ex-
ample, if we assume that face recognition technology reaches close to perfection,
user names will no longer provide a boundary as long as a face photo is part of the
website. Moreover, speaker recognition, location estimation, and other techniques
described in Section ?? will add even more possibilities. Finally, note that the meth-
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ods need not be perfect — Eve needs only a small number of likely hits to follow
up on to allow nefarious actions to proceed.

7.4 Preliminary Experiments

This section presents technical details on a preliminary experiment on matching
user accounts based on consumer-produced videos, demonstrating that multimedia
retrieval can circumvent traditional security and privacy barriers, such as the as-
sumption that different account names will separate the same persona.

Consider the following scenario: A professor at a University is proud to present
lectures to a very large audience on a public video distribution site. These lectures
contain her voice, her face, and her name in the credits, making their authorship
anything but anonymous. At the same time, she is dating online and follows the
dating site’s suggestion to provide introduction videos of herself to make her profile
more personable. The suggestion comes with the assurance that, unless the author
of the introduction video identifies herself, the video will remain anonymous.

In the following, we will provide evidence that this promise of anonymity is hard
to keep in the face of increasingly accurate multimedia retrieval technologies.

7.4.1 Dataset

Fig. 7.1 A histogram visualizing the duration of the videos of the data set used in our experiments.
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We begin by describing the data sets used in this experiment. The audio tracks
are extracted from the videos distributed as training and test sets for the Placing Task
of MediaEval 2011 [30], a multimedia benchmark evaluation. The Placing Task in-
volves automatically estimating the location of each test video using one or more
of: metadata (e.g. textual description, tags), visual/audio contents, and social infor-
mation. The videos are not pre-filtered or pre-selected in any way to make the data
set more relevant to the user-verification task, and are therefore likely representative
of videos selected at random.

A total of 10,857 Creative Commons licensed Flickr videos, uploaded by 2,943
Flickr users, were used in our experiments. Flickr requires that an uploaded video
must be created by its uploader (if a user violates this policy, Flickr sends a warn-
ing and removes the video). This policy generally ensures that each uploader’s set
of videos is “personal” in the sense that they were created by the same person and
therefore likely have certain characteristics in common, such as editing style, record-
ing device, or frequently recorded scenes/environments, etc.

From a by-hand examination of 123 short-duration videos from the data set, we
found that most of videos’ audio tracks are quite “wild”. 59.3 % of the videos are
home-video style with ambient noises. 47.2 % of the videos had heavy ambient
noises such as crowds chatting in the background, traffic noise, and wind blowing
into microphone. 25.2 % of the videos contained music, either played in the back-
ground of the recorded scene, or inserted at the editing phase. 59.3 % of the videos
did not contain any form of human speech at all, and even for the ones that contained
human speech, 64 % were from multiple subjects and crowds in the background
speaking to one another, often at the same time. Although we found that 10.5 % of
videos contained audio of the person behind the camera, there is no guarantee that
the owner of the voice is the actual uploader; it is possible that all videos from the
same uploader were recorded by different people (such as family members).

Figure 7.1 displays a histogram of the lengths of the 10,857 videos used in our
dataset. All videos are limited to 90 seconds, accounting for the peak at 90 seconds.
71.8 % of videos have less than 50 seconds of playtime, while 50 % have less than
30 seconds of playtime.

7.4.2 Technical Approaches

This section describes the multimodal user verification experiments based on audio
and a set of five visual features. Note that the task of user verification is to determine
if two videos are uploaded by the same user or different users. The i-vector-based
approach [7], which is currently the state-of-the-art in the field of speaker recogni-
tion, is used to perform classification and audio-visual feature combinations. The
approach involves extracting a set of low-dimensional vectors to represent the user
identity of each video. The vectors can be derived from either the audio or visual
features.
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To extract the audio-based low-dimensional vectors, which are known as the i-
vectors in [7], a total variability matrix T is first trained to model the variability (both
user-, acoustic environment-, and acoustic channel-related) of the high-dimensional
Baum-Welch statistics obtained from the MFCC C0-C19+∆+∆∆ (60 dimensions
total) audio feature vectors of each video. The matrix acts as a projection matrix used
to obtain the low-dimensional vectors, which characterize the user of each video
based on its audio. Specifically, for each video, the audio track is first extracted,
and a vector of first-order Baum-Welch statistics M of the audio feature vectors,
centered around the means of a GMM world model, is obtained. The statistics can
be decomposed as follows:

M = m+T ω (7.1)

where m is the GMM world model mean vector, and ω is the low-dimensional vec-
tor. The GMM contains 1,024 mixtures, and each mixture contains 60 mean dimen-
sions corresponding to the dimensionality of the MFCC features. Hence, the total
dimensionality of M is 61,440, which the T-matrix projects onto a set of 400 dimen-
sions to form the low-dimensional audio-based vectors.

The visual-based low-dimensional vectors are obtained from the result of a Prin-
cipal Components Analysis (PCA) projection of a set of pre-extracted visual fea-
tures onto a small set of its eigen-dimensions. The visual features are extracted using
the open source library LIRE [29]. The features used include Tamura (TAM), Ga-
bor (GAB), Auto Color Correlogram (ACC), Color and Edge Directivity Descriptor
(CEDD), and Fuzzy Color and Texture Histogram (FCTH). The TAM feature is a
texture-based feature. For our experiments, 24 dimensions are used to represent the
low-dimensional vectors for the GAB, ACC, CEDD, and FCTH features, and 12
dimensions are used for the TAM feature.

The audio and visual features are combined by concatenating the correspond-
ing low-dimensional vectors (in this way, the combined-feature experiments use
more parameters than the standalone-feature experiments). The system performs
a Within-Class Covariance Normalization (WCCN) [22] on the resulting vectors,
which whitens their covariance via a linear projection matrix. A generative Proba-
bilistic Linear Discriminant Analysis (pLDA) [26] log-likelihood ratio is then used
to obtain a similarity score between the low-dimensional vectors of each training
and test video. The generative pLDA log-likelihood ratio for similarity score com-
putation is shown below:

score(ω1,ω2) = logN
([

ω1
ω2

]
;
[

µ1
µ2

]
,

[
Σtot Σbc
Σbc Σtot

])
− logN

([
ω1
ω2

]
;
[

µ1
µ2

]
,

[
Σtot 0

0 Σtot

])
where ω1 and ω2 are the vectors for a pair of training and test videos, N(·) is the
normal Gaussian probability density function, and Σtot and Σbc are the total and
between-class scatter matrices computed from the training vectors. Hence, one user-
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similarity score is obtained for each training versus test video using the above ap-
proach.

The Brno University of Technology’s (BUT’s) Joint Factor Analysis Matlab
demo [15] is used to assist in the system development, and the open-source AL-
IZE toolkit [6] is used to train the UBM. The HTK Library [25] is used for MFCC
feature extraction.

7.4.3 Experiments and Results

A set of 1,268 Flickr users in the corpus were designated as training users, and
2,851 were designated as test users, with roughly 1,200 users in common with the
training users. Each training user is associated with one video in the training set,
and 4,869 videos are associated with the 2,784 test users. Overall, a set of 6,251
videos were used for training and testing. A separate set of 146 users with 4,605
videos were used to train the T-matrix, PCA projection matrices, and the total and
between-class scatter matrices used in the system. 2,302 videos from the 146 users
were used to train the GMM world model. A total of 6 million similarity scores
were computed between video pairs from the training and test users, with 3,385
of the scores from pairs with the same user. Table 7.1 shows the Equal Error Rate
(EER), and the Miss Rates at 1 % and 0.1 % False Positive (FP) rates for the 6
million scores of the system. A Miss occurs when a pair of same-user videos are
classified as having different users, and a FP (false positive) occurs when different-
user videos are classified as having same users, given a particular scoring threshold.
For the Miss rate at 1 % FP, the threshold is set such that 1 % of the different-user
pairs are classified as having same users. User verification results for both audio
and visual features, standalone and in combination, are shown. Also shown are the
number of dimensions used in the low-dimensional vectors used to compute the
user-similarity scores for each feature, or combination of features.

Results in Table 7.1 indicate that the audio-based MFCC feature has the best
standalone performance - 26.1 % EER, 65.6 % Miss at 1 % FP, and 86.6 % Miss at
0.1 % FP. If the MFCC features are combined with the top-four standalone visual
features in terms of EER (ACC,CEDD,GAB,FCTH, and TAM), then the perfor-
mance improves to 24.0 % EER, 59.2 % Miss at 1 % FP, and 78.4 % Miss at 0.1 %
FP. This represents an 8.0 % relative EER improvement, a 9.8 % relative improve-
ment of Miss at 1 % FP, and a 9.5 % relative improvement of Miss at 0.1 % FP. The
results demonstrate the effectiveness of combining the audio and visual modalities
for this task. The standalone visual features perform significantly worse than the
MFCC feature.
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Table 7.1 User matching results for audio and visual features standalone and in combination.
Similarity scores were computed on 6 million pairs of videos, with a total of 1,268 training users
and 2,784 test users as described in Section 7.4.3.

Feature EER Miss at Miss at Vector
1% FP 0.1% FP Dims

ACC 35.1% 84.9% 96.0% 24
CEDD 35.0% 82.1% 91.4% 24
FCTH 34.9% 82.2% 91.5% 24
GAB 44.4% 97.3% 99.6% 24
TAM 33.9% 87.6% 98.8% 12

GAB+CEDD+ 33.0% 76.6% 91.5% 108
ACC+FCTH+

TAM
ACC+CEDD+ 32.4% 74.9% 89.7% 84
FCTH+TAM

MFCC 26.1% 65.6% 86.6% 400
MFCC+ACC+ 24.1% 60.0% 79.3% 508
CEDD+GAB+
FCTH+TAM

MFCC+CEDD+ 24.0% 59.2% 78.4% 484
ACC+FCTH+

TAM

7.4.4 Summary of Experimental Results

The outcome of the above experiment for user matching is certainly not yet a reason
for panic as user matching based on content is still very preliminary. However, given
that our best approach was able to match random, short consumer-produced videos
with an equal error rate of 24 % (compared to 50 % for chance), it means that a future
can be foreseen where attacks like this become feasible. Moreover, many attacks are
not targeted at matching one particular user. When finding victims from a large pool,
the miss and false alarm rates are more important. The above experiments show that
at 1 % false alarm, we would only miss about 60 % of the true positives. Given a
scenario where the 1 % false alarm does not represent many videos, one can search
through the 40 % of the non-missed true positives for a pair of videos containing the
same user uploader.

7.5 New Topics For Research

Countering the attacks described above is not straight-forward since filtering out
sensitive information from audio and video content is fundamentally harder than
with structured text data. We therefore propose a new topic in multimedia devoted
to considering both privacy research as well as education.
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7.5.1 Mitigation Research

A major challenge for conserving privacy in consumer produced videos is the de-
velopment of methods to identify the foreground information information that the
user considers important from the background information. It is this background
data that has the highest risk of incidentally leaking private information.

We believe that machine learning will play a key role in detecting such unnoticed
information leaks. For example, one can label who is an “extra” in a movie by the
number of times they appear and the number of lines they speak. The extras form the
semantic background to the movie – they are noticeable, but not directly relevant. A
machine learning algorithm could use “star” vs. “extra” as ground truth, and learn
models to distinguish the two. Applied to consumer-produced videos, the system
could then identify foreground vs. background participants using the trained model.

Once the information that is breaking privacy is identified, it must also be re-
moved or distorted sufficiently to reduce the threat. This is difficult with most exist-
ing multimedia analysis algorithms, since they are statistical in nature. If we under-
stood the specific cues the statistical methods learn, we could obscure those cues,
hopefully without distorting the rest of the content. For example, if the background
semantic “bird call of a Nene” is detected, you are leaking location information
(Hawaii). Just damping that sound may be enough to obscure the location. This sort
of cue detection is in the nascent stages for some methods (e.g. concept detection
as in TrecVID MED), and nearly non-existent for others. It is incumbent on the
multimedia community to develop an understanding of the cues so that mitigation
techniques can be developed.

For other methods, more direct mitigation may be possible. For example, an up-
load tool could blur semantically background faces in a video (however, this might
not be enough, see also discussion in Section 7.2). A query tool could refuse to per-
form speech recognition and indexing on background voices. This would be very
similar to today’s common practice for copy machines to refuse the copying of bank
notes. A key component of such a system would be to ensure, possibly with the
interaction of the uploader, that foreground content is not compromised.

7.5.2 Education on Privacy

Independent of any technological protection, we believe a key ingredient to compre-
hensive mitigation must be education. University electrical engineering and com-
puter science curricula usually include an abundance of material on how to improve
retrieval based on the underlying multimedia content analysis but only rarely talk
about the negative impacts of these technologies. Privacy content is mostly limited
to traditional topics in secure communications such as steganography, encryption,
and other well-known techniques and/or even removed from consideration, as eth-
ical concerns are considered not to be part of engineering. Therefore, even when
acknowledged as a problem, many new technologists lack the knowledge of how
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Fig. 7.2 Education is part of the new topic. A mockup of an educational browser tool showing
that online image often includes meta-data that allows inference beyond the content of the image.

to react to society’s concerns and even mitigate easy-to-address risks. An argument
often heard from students is: “We’ll deal with privacy and social issues later – right
now we need to focus on development.” The truth, however, is that, for example,
if privacy and security had been a concern in the early stages of developing the In-
ternet, many of today’s issues, such as spam and phishing email, would most likely
be much less of a problem. Undergraduate and graduate engineering education cur-
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riculums should therefore include a strong component on privacy that makes future
technologists aware of the societal implications of their research and development.

The second line of education should concern users, especially young people.
Among the groups most affected by privacy concerns are high-school students [40].
They are the most frequent users of social-networking sites and apps, but often do
not have a full understanding of the potential consequences their current online ac-
tivities might have later in their lives. For example, a Facebook posting that a high-
schooler’s friends think is “cool” might be seen by a much larger audience than she
or he expected– including perhaps future employers who wouldn’t agree with the
high-schooler’s judgement. In addition, not understanding–or not thinking about–
the consequences of posting often leads to oversharing information about other peo-
ple, including friends and relatives. Consequently, users can take steps to protect
themselves once they realize the power that modern content analysis tools yield in
the hands of adversaries. They might then even choose not to post certain content in
the first place.

Figure 7.2 shows a preliminary mockup for a teaching tool that we created as
part of a project for social media privacy education for teenagers [39]. The input
for the web-based tool is an arbitrary image that has been published on the web.
The image is than analyzed for EXIF data. If found, the data is displayed textually.
Furthermore, if the EXIF data contains geo-tags, the location for the image is shown
on a map and all Twitter feeds that belong to that location are also shown. We saw
that people are often shocked, how much information an indoor image like the one
shown conveys and at the same time, how much can be inferred from that location,
e.g. when a photo that does not contain any faces actually maps back to their own
twitter feeds.

Building effective educational components that transfer knowledge on privacy
protection and the consequences of multimedia retrieval to younger adults who
are not yet capable of understanding deep research results constitutes a new do-
main for research. Here, educational research needs to team up with HCI and other
multimedia-related fields to attack this part of the new topic. The question is how to
enable educators to master an up-to-date, scientifically-informed understanding of
privacy, without having to rely on (often exaggerated) newspaper articles.

7.6 Conclusion

The growth of multimedia as demonstrated by social networking sites such as Face-
book and YouTube combined with advances in multimedia content analysis (face
recognition, speaker verification, location estimation, etc.) provides novel opportu-
nities for the unethical use of multimedia. The article surveyed the field and showed
that awareness of the issue is focused on structured data but does not extend to
multimedia retrieval. Using a scenario, a taxonomy of attacks, and a preliminary
experiment, we outlined how multimedia retrieval adds a new quality to privacy and
security research. We believe that mitigation is both a question of research as well
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as education. In summary, we believe the diversity of attacks and the complexity of
solving the privacy issues with multimedia content will require creative thinking of
a community of researchers and therefore spawn a new field in multimedia content
analysis. We believe web-scale multimedia privacy is not only a new topic, but also
a necessary new field.
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