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Abstract
Many network intrusion detection systems (NIDS) rely
on protocol-specific analyzers to extract the higher-level
semantic context from a traffic stream. To select the cor-
rect kind of analysis, traditional systems exclusively de-
pend on well-known port numbers. However, based on
our experience, increasingly significant portions of to-
day’s traffic are not classifiable by such a scheme. Yet for
a NIDS, this traffic is very interesting, as a primary rea-
son for not using a standard port is to evade security and
policy enforcement monitoring. In this paper, we dis-
cuss the design and implementation of a NIDS extension
to perform dynamic application-layer protocol analysis.
For each connection, the system first identifies potential
protocols in use and then activates appropriate analyz-
ers to verify the decision and extract higher-level seman-
tics. We demonstrate the power of our enhancement with
three examples: reliable detection of applications not us-
ing their standard ports, payload inspection of FTP data
transfers, and detection of IRC-based botnet clients and
servers. Prototypes of our system currently run at the
border of three large-scale operational networks. Due to
its success, the bot-detection is already integrated into a
dynamic inline blocking of production traffic at one of
the sites.

1 Introduction

Network intrusion detection systems (NIDSs) analyze
streams of network packets in order to detect attacks
and, more generally, violations of a site’s security pol-
icy. NIDSs often rely on protocol-specific analyzers to
extract the higher-level semantic context associated with
a traffic stream, in order to form more reliable decisions
about if and when to raise an alarm [38]. Such analysis
can be quite sophisticated, such as pairing up a stream of
replies with previously pipelined requests, or extracting
the specific control parameters and data items associated
with a transaction.

To select the correct analyzer for some traffic, a NIDS
faces the challenge of determining which protocol is in
use before it even has a chance to inspect the packet
stream. To date, NIDSs have resolved this difficulty by
assuming use of a set of well-known ports, such as those
assigned by IANA [19], or those widely used by con-
vention. If, however, a connection does not use one of
these recognized ports—or misappropriates the port des-
ignated for a different application—then the NIDS faces
a quandary: how does it determine the correct analyzer?

In practice, servers indeed do not always use the port
nominally associated with their application, either due
to benign or malicious intent. Benign examples include
users who run Web or FTP servers on alternate ports
because they lack administrator privileges. Less be-
nign, but not necessarily malicious, examples include
users that run servers offering non-Web applications on
port 80/tcp in order to circumvent their firewall. In
fact, some recently emerging application-layer protocols
are designedto work without any fixed port, primar-
ily to penetrate firewalls and escape administrative con-
trol. A prominent example is the voice-over-IP appli-
cation Skype [2], which puts significant efforts into es-
caping restrictive firewalls. Sometimes such applications
leverage a common protocol and its well-known port,
like HTTP, to tunnel their payload not just through the
firewall but even through application layer proxies. In
these cases, analyzing the application’s traffic requires
first analyzing and stripping off the outer protocol be-
fore the NIDS can comprehend the semantics of the
inner protocol. Similarly, we know from operational
experience that attackers can attempt to evade security
monitoring by concealing their traffic on non-standard
ports or on ports assigned to different protocols: tro-
jans installed on compromised hosts often communicate
on non-standard ports; many botnets use the IRC proto-
col on ports other than 666x/tcp; and pirates build file-
distribution networks using hidden FTP servers on ports
other than 21/tcp.



It is therefore increasingly crucial to drive protocol-
specific analysis using criteria other than ports. Indeed,
a recent study [37] found that at a large university about
40% of the external traffic could not be classified by a
port-based heuristic. For a NIDS, this huge amount of
traffic is very interesting, as a primary reason for not us-
ing a standard port is to evade security and policy en-
forcement monitoring. Likewise, it is equally pressing
to inspect whether traffic on standard ports indeed corre-
sponds to the expected protocol. Thus, NIDSs need the
capability of examining such traffic in-depth, including
decapsulating an outer protocol layer in order to then ex-
amine the one tunneled inside it.

However, none of the NIDSs which are known to
us, including Snort [34], Bro [31], Dragon [14], and
IntruShield [20], use any criteria other than ports for
their protocol-specific analysis. As an initial conces-
sion to the problem, some systems ship with signatures—
characteristic byte-level payload patterns—meant tode-
tectthe use of a protocol on a none-standard port. But all
only report the mere fact of finding such a connection,
rather than adapting their analysis to the dynamically de-
tected application protocol. For example, none of these
systems can extract URLs from HTTP sessions on ports
other than the statically configured set of ports.1 With
regards to decapsulating tunnels, a few newer systems
can handle special cases, e.g., McAfee’s IntruShield sys-
tem [20] can unwrap the SSL-layer of HTTPS connec-
tions when provided with the server’s private key. How-
ever, the decision that the payloadis SSL is still based on
the well-known port number of HTTPS.

In this paper we discuss the design, implementation,
deployment, and evaluation of an extension to a NIDS
to perform dynamic application-layer protocol analysis.
For each connection, the system identifies the protocol
in use and activates appropriate analyzers. We devise a
general and flexible framework that (i) supports multi-
ple ways to recognize protocols, (ii) can enable multiple
protocol analyzers in parallel, (iii) copes with incorrect
classifications by disabling protocol analyzers, (iv) can
pipeline analyzers to dynamically decapsulate tunnels,
and (v) provides performance sufficient for high-speed
analysis.

We demonstrate the power our enhancement provides
with three examples: (i)reliable detection of applica-
tions not using their standard ports, (ii) payload inspec-
tion of FTP data transfers, and (iii) detection of IRC-
based botnet clients and servers. The prototype system
currently runs at the border of the University of Califor-
nia, Berkeley (UCB), the Münchener Wissenschaftsnetz
(Munich Scientific Network, MWN), and the Lawrence
Berkeley National Laboratory (LBNL). These deploy-

1To keep our terminology simple, we will refer to a single fixedport
when often this can be extended to a fixed set of ports.

ments have already exposed a significant number of secu-
rity incidents, and, due to its success, the staff of MWN
has integrated bot-detection into its operations, using it
for dynamic inline blocking of production traffic.

The remainder of this paper is organized as follows:
§2 presents the three network environments that we use
for our study. In§3 we analyze the potential of non-
port-based protocol detection and discuss the limitations
of existing NIDSs. In§4 we present the design and im-
plementation of our dynamic architecture and discuss the
trade-offs one faces in practice.§5 demonstrates the ben-
efits of the dynamic architecture with three example ap-
plications. In§6 we evaluate the performance of our im-
plementation in terms of CPU usage and detection capa-
bilities. Finally in§7 we summarize our experience.

2 Environments and Dataset

The impetus for performing protocol analysis free
of any assumptions regarding applications using stan-
dard ports arose from our operational experiences
with NIDSs at three large-scale network environments:
the University of California, Berkeley (UCB), the
Münchener Wissenschaftsnetz (Munich Scientific Net-
work, MWN)and theLawrence Berkeley National Labo-
ratory (LBNL) [10]. We found that increasingly signifi-
cant portions of the traffic at these sites were not classi-
fiable using well-known port numbers. Indeed, at UCB
40% of all packets fall into this category [37].

All three environments support high volumes of traf-
fic. At UCB, external traffic currently totals about
5 TB/day, with three 2 Gbps uplinks serving about
45,000 hosts on the main campus plus several affiliated
institutes. The MWN provides a 1 Gbps upstream ca-
pacity to roughly 50,000 hosts at two major universities
along with additional institutes, totaling 1-3 TB a day.
LBNL also utilizes a 1 Gbps upstream link, transferring
about 1.5 TB a day for roughly 13,000 hosts.

Being research environments, the three networks’ se-
curity policies emphasize relatively unfettered connec-
tivity. The border routers impose only a small set of fire-
wall restrictions (e.g., closing ports exploited by major
worms). MWN uses a more restrictive set of rules in or-
der to close ports used by the major peer-to-peer (P2P)
applications; however, since newer P2P applications cir-
cumvent such port-based blocking schemes, MWN is
moving towards a dynamic traffic filtering/shaping sys-
tem. In a first step it leverages NAT gateways[16] used
to provide Internet access to most student residences, and
the IPPP2P system for detecting peer-to-peer traffic [21].

In §5 we report on our experiences with running
three different example applications of our extended
NIDS on live traffic. To enable a systematic evalua-
tion (see§3.2 and§6), we captured a 24-hourfull trace



at MWN’s border router on October 11, 2005, using a
high-performance Endace DAG capturing card [13]. The
trace encompasses 3.2 TB of data in 6.3 billion packets
and contains 137 million distinct connections. 76% of all
packets are TCP. The DAG card did not report any packet
losses.

3 Analysis of the Problem Space

Users have a variety of reasons for providing servicing
on non-standard ports. For example, a site’s policy might
require private services (such as a Web server) to run on
an unprivileged, often non-standard, port. Such private
servers frequently do not run continuously but pop up
from time to time, in contrast to business-critical servers.
From our operational experience, in open environments
such servers are common and not viewed as any par-
ticular problem. However, compromised computers of-
ten also run servers on non-standard ports, for example
to transfer sometimes large volumes of pirated content.
Thus, some servers on non-standard port are benign, oth-
ers are malicious; the question of how to treat these, and
how to distinguish among them, must in part be answered
by the site’s security policy.

In addition, users also use standard ports for running
applications other than those expected on the ports, for
example to circumvent security or policy enforcement
measures such as firewalls, with the most prevalent ex-
ample being the use of port 80/tcp to run P2P nodes. A
NIDS should therefore not assume that every connection
on HTTP’s well-known port is indeed a communication
using the HTTP protocol; or, even if itis well-formed
HTTP, that it reflects any sort of “Web” access. The same
problem, although often unintentional and not malicious,
exists for protocols such as IRC. These are not assigned
a well-known privileged port but commonly use a set of
well-known unprivileged ports. Since these ports are un-
privileged, other applications, e.g., an FTP data-transfer
connection, may happen to pick one of these ports. A
NIDS therefore may encounter traffic from a different
application than the one the port number indicates. Ac-
cordingly the NIDS has to have a way to detect the appli-
cation layer protocol actually present in order to perform
application-specific protocol analysis.

3.1 Approaches to Application Detection

Besides using port numbers, two other basic approaches
for identifying application protocols have been exam-
ined in the literature: (i) statistical analysis of the traffic
within a connection, and (ii) locating protocol-specific
byte patterns in the connection’s payload.

Previous work has used an analysis of interpacket de-
lays and packet size distribution to distinguish interac-

tive applications like chat and remote-login from bulk-
transfer applications such as file transfers [41]. In some
particular contexts these techniques can yield good accu-
racy, for example to separate Web-chat from regular Web
surfing [8]. In general, these techniques [29, 35, 23, 40],
based on statistical analysis and/or or machine learn-
ing components, have proven useful for classifying traf-
fic into broad classes such as interactive, bulk transfer,
streaming, or transactional. Other approaches model
characteristics of individual protocols by means of de-
cision trees [39] or neural networks [12].

The second approach—using protocol-specific, byte-
level payload patterns, or “signatures”—takes advan-
tage of a popular misuse detection technique. Almost
all virus-scanner and NIDSs incorporate signatures into
their analysis of benign vs. malicious files or network
streams. For protocol recognition, we can use such sig-
natures to detect application-specific patterns, such as
components of an HTTP request or an IRC login se-
quence. However, there is no guarantee that such a sig-
nature is comprehensive. If it fails to detect all instances
of a given application, it exhibitsfalse negatives. In ad-
dition, if it incorrectly attributes a connection to a given
application, it exhibitsfalse positives.

We can also combine these types of approaches, first
using statistical methods (or manual inspection) to clus-
ter connections, and then extracting signatures, perhaps
via machine learning techniques [17]; or using statistical
methods to identify some applications, and signatures to
identify others [41] or to refine the classification, or to
combine ports, content-signatures, and application-layer
information [6].

In the context of NIDSs, signature-based approaches
are particularly attractive because many NIDSs already
provide an infrastructure for signature-matching (§3.3),
and often signatures yield tighter protocol identification
capabilities.

3.2 Potential of a Signature Set

To evaluate how often common protocols use non-
standard ports, and whether signatures appear capable of
detecting such uses, we examine a 24-hour full trace of
MWN’s border router,mwn-full-packets . To do so
we use the large, open source collection of application
signatures included with thel7-filter system [24]. To ap-
ply these signatures to our trace, we utilize the signature
matching engine of the open source NIDS Bro [31, 38].
Rather than running the l7-filter system itself, which is
part of the Linux netfilter framework [30], we convert
the signatures into Bro’s syntax, which gives us the ad-
vantages of drawing upon Bro’s built-in trace processing,
connection-oriented analysis, and powerful signature-
matching engine. We note however that while Bro and



l7-filter perform the matching in a similar way, varying
internal semantics can lead to slightly different results,
as with any two matching engines [38].

We begin by examining the breakdown of connections
by the destination port seen in initial SYN packets. Ta-
ble 1 shows all ports accounting for more than one per-
cent of the connections. Note that for some ports the
number of raw connections can be misleading due to the
huge number of scanners and active worms, e.g., ports
445, 1042, and 1433. We consider a connection un-
successful if it either does not complete an initial TCP
handshake, or it does but does not transfer any payload.
Clearly, we cannot identify the application used by such
connections given no actual contents.

We make two observations. First, port-based proto-
col identification offers little assistance for most of the
connections using unprivileged ports (totaling roughly
5.6 million connections). Second, the dominance of port
80 makes it highly attractive as a place for hiding con-
nections using other applications. While an HTTP pro-
tocol analyzer might notice that such connections do not
adhere to the HTTP protocol, we cannot expect that the
analyzer will then go on to detect the protocol actually in
use.

To judge if signatures can help improve application
identification, for each of a number of popular apparent
services (HTTP, IRC, FTP, and SMTP) we examined the
proportion identified by the l7-filter signatures as indeed
running that protocol. Table 2 shows that most of the suc-
cessful connections trigger the expected signature match
(thus, the signature quality is reasonable). Only for FTP
we observe a higher percentage of false negatives. This
can be improved using a better FTP signature. However,
we also see that for each protocol we find matches for
connections on unexpected ports, highlighting the need
for closer inspection of their payload.

The differences in Table 2 do not necessarily all arise
due to false negatives. Some may stem from connec-
tions without enough payload to accurately determine
their protocol, or those that use a different protocol. Re-
garding this latter, Table 3 shows how often a different
protocol appears on the standard ports of HTTP, IRC,
FTP and SMTP.

While inspecting the results we noticed that a connec-
tion sometimes triggers more than one signature. More
detailed analysis reveals that l7-filter contains some sig-
natures that are too general. For example, the signature
for the Finger protocol matches simply if the first two
characters at the beginning of the connection are print-
able characters. Such a signature will be triggered by
a huge number of connections not using Finger. An-
other example comes from the “whois” signature. Ac-
cordingly, the data in Table 3 ignores matches by these
two signatures.

Port HTTP IRC FTP SMTP Other No sig.
80 92.2M 59 0 0 41.1K 1.2M

6665-6669 1.2K 71.7K 0 0 4.2 524
21 0 0 98.0K 2 2.3K 52.5K
25 459 2 749 1.4M 195 31.9K

Table 3: Signature-based detection vs. port-based detec-
tion for well-known ports (# connections).

Overall, the results show that the problem we pose
does indeed already manifest operationally. Further-
more, because security analysis entails an adversary,
what matters most is not the proportion of benign con-
nections using ports other than those we might expect,
but the prevalence of malicious connections doing so.
We later discuss a number of such instances found op-
erationally.

3.3 Existing NIDS Capabilities

Today’s spectrum of intrusion detection and prevention
systems offer powerful ways for detecting myriad forms
of abuse. The simpler systems rely on searching for byte
patterns within a packet stream, while the more complex
perform extensive, stateful protocol analysis. In addi-
tion, some systems offer anomaly-based detection, com-
paring statistical characteristics of the monitored traffic
against “normal network behavior,” and/or specification-
based detection, testing the characteristics against ex-
plicit specifications of allowed behavior.

For analyzing application-layer protocols, all sys-
tems of which we are aware depend upon port num-
bers.2 While some can use signatures todetectother
application-layer protocols, all only perform detailed
protocol analysis for traffic identified via specific ports.
Commercial systems rarely make details about their im-
plementation available, and thus we must guess to what
depth they analyze traffic. However, we have not seen an
indication yet that any of them initiates stateful protocol
analysis based on other properties than specific ports.

The most widely deployed open source NIDS,
Snort [34], does not per se ship with signatures for de-
tecting protocols. However the Snort user community
constantly contributes new open signatures [4], includ-
ing ones for detecting IRC and FTP connections. Tradi-
tionally, Snort signatures are raw byte patterns. Newer
versions of Snort also support regular expressions. An-
other open source NIDS, Bro [31], ships with aback-
door [41] analyzer which follows two approaches. First,
to detect interactive traffic it examines inter-packet inter-
vals and packet size distributions. Second, for several

2DSniff [11] is a network sniffer that extracts protocol-specific
usernames and passwords independent of ports. Its approachis similar
to ours in that it uses a set of patterns to recognize protocols. It is
however not a NIDS and does not provide any further payload analysis.



Port Connections % Conns. Successful % Success. Payload [GB] % Payload
80 97,106,281 70.82% 93,428,872 68.13 2,548.55 72.59

445 4,833,919 3.53% 8,398 0.01 0.01 0.00
443 3,206,369 2.34% 2,855,457 2.08 45.22 1.29
22 2,900,876 2.12% 2,395,394 1.75 59.91 1.71
25 2,533,617 1.85% 1,447,433 1.05 60.00 1.71

1042 2,281,780 1.66% 35 0.00 0.01 0.00
1433 1,451,734 1.06% 57 0.00 0.06 0.00
135 1,431,155 1.04% 62 0.00 0.00 0.00

< 1024 114,747,251 83.68% 101,097,769 73.73 2,775.15 79.05
≥ 1024 22,371,805 16.32% 5,604,377 4.08 735.62 20.95

Table 1: Ports accounting for more than 1% of themwn-full-packets connections.

Method HTTP % IRC % FTP % SMTP %
Port (successful) 93,429K 68.14 75,876 0.06 151,700 0.11 1,447K 1.06
Signature 94,326K 68.79 73,962 0.05 125,296 0.09 1,416K 1.03

on expected port 92,228K 67.3 71,467 0.05 98,017 0.07 1,415K 1.03
on other port 2,126K 1.6 2,495 0.00 27,279 0.02 265 0.00

Table 2: Comparison of signature-based detection vs. port-based detection (# connections).

well-known protocols like HTTP, FTP and IRC, it scans
the analyzed payload for hard-coded byte patterns. In
addition, Bro features a signature matching engine [38]
capable of matching the reassembled data stream of a
connection against regular expression byte-patterns and
leveraging the rich state of Bro’s protocol decoders in the
process. The engine allows for bidirectional signatures,
where one byte pattern has to match on a stream in one
direction and another in the opposite direction. The com-
mercial IntruShield system by Network Associates is pri-
marily signature-based and ships with signatures for ap-
plication detection, including SSH and popular P2P pro-
tocols. The technical details and the signatures do not ap-
pear accessible to the user. Therefore, it is unclear which
property of a packet/stream triggers which signature or
protocol violation. We also have some experience with
Enterasys’ Dragon system. It ships with a few signatures
to match protocols such as IRC, but these do not appear
to then enable full protocol analysis.

3.4 NIDS Limitations

It is useful to distinguish between the capability of de-
tecting that a given application protocol is in use, versus
then being able to continue to analyze that instance of
use. Merely detecting the use of a given protocol can
already provide actionable information; it might consti-
tute a policy violation at a site for which a NIDS could
institute blocking without needing to further analyze the
connection. However, such a coarse-grained “go/no-go”
capability has several drawbacks:

1. In some environments, such a policy may prove too
restrictive or impractical due to the sheer size and
diversity of the site. As user populations grow, the
likelihood of users wishing to run legitimate servers
on alternate ports rises.

2. Neither approach to application detection (byte pat-
terns or statistical tests) is completely accurate (see
§3.2). Blocking false-positives hinders legitimate
operations, while failing to block false-negatives
hinders protection.

3. Protocols that use non-fixed ports (e.g., Gnutella)
can only be denied or allowed. Some of these, how-
ever, have legitimate applications as well as appli-
cations in violation of policy. For example, BitTor-
rent [5] might be used for distributing open-source
software. Or, while a site might allow the use of
IRC, including on non-standard ports, it highly de-
sires to analyze all such uses in order to detect bot-
nets.

In addition, some protocols are fundamentally difficult
to detect with signatures, for example unstructured proto-
cols such as Telnet. For Telnet, virtually any byte pattern
at the beginning is potentially legitimate. Telnet can only
be detected heuristically, by looking for plausible login
dialogs [31]. Another example is DNS, a binary proto-
col with no protocol identifier in the packet. The DNS
header consists of 16-bit integers and bit fields which
can take nearly arbitrary values. Thus, reliably detect-
ing DNS requires checking the consistency across many
fields. Similar problem exist for other binary protocols.



Another difficulty is that if an attacker knows the sig-
natures, they may try to avoid the byte patterns that trig-
ger the signature match. This means one needs “tight”
signatures which comprehensively capture any use of a
protocol for which an attacked end-system might engage.
Finding such “tight” signatures can be particularly dif-
ficult due to the variety of end-system implementations
and their idiosyncrasies.

4 Architecture

In this section we develop a framework for performing
dynamic application-layer protocol analysis. Instead of
a static determination of what analysis to perform based
on port numbers, we introduce a processing path that dy-
namically adds and removes analysis components. The
scheme uses a protocol detection mechanism as a trigger
to activate analyzers (which are then given the entire traf-
fic stream to date, including the portion already scanned
by the detector), but these analyzers can subsequently
decline to process the connection if they determine the
trigger was in error. Currently, our implementation relies
primarily on signatures for protocol detection, but our
design allows for arbitrary other heuristics.

We present the design of the architecture in§4.1 and a
realization of the architecture for the open-source NIDS
Bro in §4.2. We finish with a discussion of the tradeoffs
that arise in§4.3.

4.1 Design

Our design aims to achieve flexibility and power-of-
expression, yet to remain sufficiently efficient for oper-
ational use. We pose the following requirements as nec-
essary for these goals:

Detection scheme independence:The architecture
must accommodate different approaches to proto-
col detection (§3.1). In addition, we should retain
the possibility of using multiple techniques in
parallel (e.g., complementing port-based detection
with signature-based detection).

Dynamic analysis: We need the capability of dynami-
cally enabling or disabling protocol-specific analy-
sis at any time during the lifetime of a connection.
This goal arises because some protocol detection
schemes cannot make a decision upon just the first
packet of a connection. Once they make a decision,
we must trigger the appropriate protocol analysis.
Also, if the protocol analysis detects a false posi-
tive, we must have the ability to stop the analysis.

Modularity: Reusable components allow for code reuse
and ease extensions. This becomes particularly im-

(a) IMAP

TCPIP

POP3

Interact.

SMTP

(b) TCPIP PIA

(c) TCPIP PIA HTTP 

(d) TCPIP PIA SSL HTTP 

Figure 1: Example analyzer trees.

portant for dealing with multiple network substacks
(e.g., IP-within-IP tunnels) and performing in paral-
lel multiple forms of protocol analysis (e.g., decod-
ing in parallel with computing packet-size distribu-
tions).

Efficiency: The additional processing required by the
extended NIDS capabilities must remain commen-
surate with maintaining performance levels neces-
sary for processing high-volume traffic streams.

Customizability: The combination of analysis to per-
form needs to be easily adapted to the needs of
the local security policy. In addition, the trade-offs
within the analysis components require configura-
tion according to the environment.

To address these requirements we switch from the tra-
ditional static data analysis path to a dynamic one inside
the NIDS’s core. Traditional port-based NIDSs decide at
the time when they receive the first packet of each con-
nection which analyses to perform. For example, given
a TCP SYN packet with destination port 80, the NIDS
will usually perform IP, TCP, and HTTP analysis for all
subsequent packets of this flow. Our approach, on the
other hand, relies on a per-connection data structure for
representing thedata path, which tracks what the system
learns regarding what analysis to perform for the flow.
If, for example, the payload of a packet on port 80/tcp—
initially analyzed as HTTP—looks like an IRC session
instead, we replace the HTTP analysis with IRC analy-
sis.

We provide this flexibility by associating a tree struc-
ture with each connection. This tree represents the data
path through various analysis components for all infor-
mation transmitted on that connection (e.g., Figure 1(a)).
Each node in this tree represents a self-contained unit of
analysis, ananalyzer. Each analyzer performs some kind



of analysis on data received via aninput channel, subse-
quently providing data via anoutput channel. The input
channel of each node connects to an output channel of
its data supplier (its predecessor in the data path tree).
The input channel of the tree’s root receives packets be-
longing to the connection/flow. Each intermediate node
receives data via its input channel and computes analysis
results, passing the possibly-transformed data to the next
analyzer via its output channel.

Figure 1(a) shows an example of a possible analyzer
tree for decoding email protocols. In this example, all
analyzers (exceptINTERACTIVE) are responsible for
the decoding of their respective network protocols. The
packets of the connection first pass through the IP ana-
lyzer, then through the TCP analyzer. The output chan-
nel of the latter passes in replica to three analyzers for
popular email protocols: SMTP, IMAP, and POP3. (Our
architecture might instantiate such a tree for example if
a signature match indicates that the payload looks like
email but does not distinguish the application-layer pro-
tocol.) Note, though, that the analyzers need not corre-
spond to a protocol, e.g.,INTERACTIVE here, which
examines inter-packet time intervals to detect surrepti-
tious interactive traffic [41], performing its analysis in
parallel to, and independent from, the TCP and email
protocol analyzers.

To enabledynamicanalysis, including analysis based
on application-layer protocol identification, the analyzer
tree changes over time. Initially, the analyzer tree of a
new connection only contains those analyzers definitely
needed. For example, if a flow’s first packet uses TCP for
transport, the tree will consist of an IP analyzer followed
by a TCP analyzer.

We delegate application-layer protocol identification
to aprotocol identification analyzer(PIA ), which works
by applying a set of protocol detection heuristics to the
data it receives. We insert this analyzer into the tree
as a leaf-node after the TCP or UDP analyzer (see Fig-
ure 1(b)). Once thePIA detects a match for a protocol, it
instantiates a child analyzer to which it then forwards the
data it receives (see Figure 1(c)). However, thePIA also
continues applying its heuristics, and if it finds another
match it instantiates additional, or alternative, analyzers.

The analyzer tree can be dynamically adjusted
throughout the entire lifetime of a connection by insert-
ing or removing analyzers. Each analyzer has the ability
to insert or remove other analyzers on its input and/or
output channel. Accordingly, the tree changes over time.
Initially the PIA inserts analyzers as it finds matching
protocols. Subsequently one of the analyzers may de-
cide that it requires support provided by a missing an-
alyzer and instantiates it; for instance, an IRC analyzer
that learns that the connection has a compressed payload
can insert a decompression analyzer as its predecessor.

If an analyzer provides data via its output channel, se-
lecting successors becomes more complicated, as not all
analyzers (including the TCP analyzer) have the capabil-
ity to determine the protocol to which their output data
conforms. In this case the analyzer can choose to instan-
tiate anotherPIA and delegate to it the task of further
inspecting the data. Otherwise it can simply instantiate
the appropriate analyzer; see Figure 1(d) for the example
of a connection using HTTP over SSL.

Finally, if an analyzer determines that it cannot cope
with the data it receives over its input channel (e.g., be-
cause the data does not conform to its protocol), it re-
moves its subtree from the tree.

This analyzer-tree design poses a number of technical
challenges, ranging from the semantics of “input chan-
nels”, to specifics of protocol analyzers, to performance
issues. We now address each in turn.

First, the semantics of “input channels” differ across
the network stack layers: some analyzers examine pack-
ets (e.g., IP, TCP, and protocols using UDP for trans-
port), while others require byte-streams (e.g., protocols
using TCP for transport). As thePIA can be inserted
into arbitrary locations in the tree, it must cope with both
types. To do so, we provide two separate input channels
for each analyzer, one for packet input and one for stream
input. Each analyzer implements the channel(s) suitable
for its semantics. For example, the TCP analyzer accepts
packet input and reassembles it into a payload stream,
which serves as input to subsequent stream-based ana-
lyzers. An RPC analyzer accepts both packet and stream
input, since RPC traffic can arrive over both UDP packets
and TCP byte streams.

Another problem is the difficulty—or impossibility—
of starting a protocol analyzer in the middle of a con-
nection. For example, an HTTP analyzer cannot deter-
mine the correct HTTP state for such a partial connec-
tion. However, most non-port-based protocol detection
schemes can rarely identify the appropriate analyzer(s)
upon inspecting just the first packet of a connection.
Therefore it is important that thePIA buffers the begin-
ning of each input stream, up to a configurable thresh-
old (default 4KB in our implementation). If thePIA
decides to insert a child analyzer, it first forwards the
data in the buffer to it before forwarding new data. This
gives the child analyzer a chance to receive the total pay-
load if detection occurred within the time provided by
the buffer. If instantiation occurs only after the buffer
has overflowed, thePIA only instantiates analyzers ca-
pable of resynchronizing to the data stream, i.e., those
with support for partial connections.

Finally, for efficiency the PIA requires very
lightweight execution, as we instantiate at least one for
every flow/connection. To avoid unnecessary resource
consumption, our design factors out the user configura-



tion, tree manipulation interface, and functions requir-
ing permanent state (especially state independent of a
connection’s lifetime) into a single central management
component which also instantiates the initial analyzer
trees.

In summary, the approach of generalizing the process-
ing path to an analyzer tree provides numerous new pos-
sibilities while addressing the requirements. We can:
(i) readily plug in new protocol detection schemes via the
PIA ; (ii) dynamically enable and disable analyzers at any
time (protocol semantics permitting);(iii) enable the user
to customize and control the processing via an interface
to the central manager;(iv) keep minimal the overhead
of passing data along the tree branches;(v) support pure
port-based analysis using a static analyzer tree installed
at connection initialization; and(vi) support modularity
by incorporating self-contained analyzers using a stan-
dardized API, which allows any protocol analyzer to also
serve as a protocolverifier.

4.2 Implementation

We implemented our design within the open-sourceBro
NIDS, leveraging both its already existing set of proto-
col decoders and its signature-matching engine. Like
other systems, Bro performs comprehensive protocol-
level analysis using a static data path, relying on port
numbers to identify application-layer protocols. How-
ever, its modular design encourages application-layer de-
coders to be mainly self-contained, making it feasible to
introduce a dynamic analyzer structure as discussed in
§4.1.

We implemented thePIA , the analyzer trees, and the
central manager, terming this modification of Bro as
PIA-Bro ; for details see [26]. We use signatures as our
primary protocol-detection heuristic (though see below),
equipping thePIA with an interface to Bro’s signature-
matching engine such that analyzers can add signatures
corresponding to their particular protocols. For effi-
ciency, we restricted the signature matching to the data
buffered by thePIA s; previous work[36, 28] indicates
that for protocol detection it suffices to examine at most
a few KB at the beginning of a connection. By skipping
the tails, we can avoid performing pattern matching on
the bulk of the total volume, exploiting the heavy-tailed
nature of network traffic [32].

In addition to matching signatures, our implementa-
tion can incorporate other schemes for determining the
right analyzers to activate. First, thePIA can still ac-
tivate analyzers based on a user-configured list of well-
known ports.3 In addition, each protocol analyzer can

3This differs from the traditional Bro, where the set of well-known
ports is hard-coded.

register a specific detection function. ThePIA then calls
this function for any new data chunk, allowing the use
of arbitrary heuristics to recognize the protocol. Finally,
leveraging the fact that the central manager can store
state, we also implemented aprediction tablefor storing
anticipated future connections along with a correspond-
ing analyzer. When the system eventually encounters
one of these connections, it inserts the designated ana-
lyzer into the tree. (See§5.2 below for using this mecha-
nism to inspect FTP data-transfer connections.) Together
these mechanisms provide the necessary flexibility for
the connections requiring dynamic detection, as well as
good performance for the bulk of statically predictable
connections.

As Bro is a large and internally quite complex system,
we incrementally migrate its protocol analyzers to use
the new framework. Our design supports this by allowing
old-style and new-style data paths to coexist: for those
applications we have adapted, we gain the full power of
the new architecture, while the other applications remain
usable in the traditional (static ports) way.

For our initial transition of the analyzers we have con-
centrated on protocols running on top of TCP. The Bro
system already encapsulates its protocol decoders into
separate units; we redesigned the API of these units to
accommodate the dynamic analyzer structure. We have
converted four of the system’s existing application-layer
protocol decoders to the new API: FTP, HTTP, IRC, and
SMTP.4 The focus on TCP causes the initial analyzer
tree to always contain the IP and TCP analyzers. There-
fore we can leverage the existing static code and did not
yet have to adapt the IP and TCP logic to the new ana-
lyzer API. We have, however, already moved the TCP
stream reassembly code into a separate “Stream” ana-
lyzer. When we integrate UDP into the framework, we
will also adapt the IP and TCP components.

The Stream analyzer is one instance of asupport ana-
lyzer which does not directly correspond to any specific
protocol. Other support analyzers provide functionality
such as splitting the payload-stream of text-based proto-
cols into lines, or expanding compressed data.5 We have
not yet experimented with pipelining protocol analyzers
such as those required for tunnel decapsulation, but in-
tend to adapt Bro’s SSL decoder next to enable us to ana-
lyze HTTPS and IMAPS in a pipelined fashion when we
provide the system with the corresponding secret key.

4Note that it does not require much effort to convert an existing
application-layer analyzer to the new API. For example, theSMTP an-
alyzer took us about an hour to adapt.

5Internally, these support analyzers are implemented via a slightly
different interface, see [26] for details.



4.3 Trade-Offs

Using thePIA architecture raises some important trade-
offs to consider since protocol recognition/verification
is now a multi-step process. First, the user must de-
cide what kinds of signatures to apply to detectpoten-
tial application-layer protocols. Second, if a signature
matches it activates the appropriate protocol-specific an-
alyzer, at which point the system must cope with possi-
ble false positives; when and how does the analyzer fail
in this case? Finally, we must consider how an attacker
can exploit these trade-offs to subvert the analysis.

The first trade-off involves choosing appropriate sig-
natures for the protocol detection. On the one hand, the
multi-step approach allows us toloosenthe signatures
that initially detect protocol candidates. Signatures are
typically prone to false alerts, and thus when used to gen-
erate alerts need to be specified as tight as possible—
which in turn very often leads to false negatives, i.e.,
undetected protocols in this context. However, by rely-
ing on analyzersverifyingprotocol conformance after a
signature match, false positives become more affordable.
On the other hand, signatures should not betoo lose: hav-
ing an analyzer inspect a connection is more expensive
than performing pure pattern matching. In addition, we
want to avoid enabling an attacker to trigger expensive
protocol processing by deliberately crafting bogus con-
nection payloads.

Towards these ends, our implementation uses bidirec-
tional signatures [38], which only match ifboth end-
points of a connection appear to participate in the proto-
col. If an attacker only controls one side (if they control
both, we are sunk in many different ways), they thus can-
not force activation of protocol analyzers by themselves.
In practice, we in fact go a step further: before assuming
that a connection uses a certain protocol, the correspond-
ing analyzer must alsoparsesomething meaningful for
both directions. This significantly reduces the impact of
false positives. Figure 2 shows an example of the signa-
ture we currently use for activating the HTTP analyzer.
(We note that the point here is not about signature qual-
ity; for our system, signatures are just one part of the
NIDS’s configuration to be adapted to the user’s require-
ments.)

Another trade-off to address iswhento decide that a
connection uses a certain protocol. This is important
if the use of a certain application violates a site’s secu-
rity policy and should cause the NIDS to raise an alert.
A signature-match triggers the activation of an analyzer
that analyzes and verifies the protocol usage. Therefore,
before alerting, the system waits until it sees that the an-
alyzer is capable of handling the connection’s payload.
In principle, it can only confirm this with certainty once
the connection completes. In practice, doing so will de-

lay alerts significantly for long-term connections. There-
fore our implementation assumes that if the analyzer can
parse the connection’sbeginning, the rest of the payload
will also adhere to the same protocol. That is, our system
reports use of a protocol if the corresponding analyzer is
(still) active after the exchange of a given volume of pay-
load, or a given amount of time passes (both thresholds
are configurable).

Another trade-off stems from the question of protocol
verification: at what point should an analyzer indicate
that it cannotcope with the payload of a given connec-
tion? Two extreme answers: (i) reject immediately when
something occurs not in accordance with the protocol’s
definition, or (ii) continue parsing come whatever may,
in the hope that eventually the analyzer can resynchro-
nize with the data stream. Neither extreme works well:
real-world network traffic often stretches the bounds of
a protocol’s specification, but trying to parse the entire
stream contradicts the goal of verifying the protocol. The
right balance between these extremes needs to be decided
on a per-protocol basis. So far, we have chosen to reject
connections if they violate basic protocol properties. For
example, the FTP analyzer complains if it does not find
a numeric reply-code in the server’s response. However,
we anticipate needing to refine this decision process for
instances where the distinction between clear noncom-
pliance versus perhaps-just-weird behavior is less crisp.

Finally, an attacker might exploit the specifics of a
particular analyzer, avoiding detection by crafting traffic
in a manner that the analyzer believes reflects a proto-
col violation, while the connection’s other endpoint still
accepts or benignly ignores the data. This problem ap-
pears fundamental to protocol detection, and indeed is
an instance of the more general problem of evasion-by-
ambiguity [33, 18], and, for signatures, the vulnerability
of NIDS signatures to attack variants. To mitigate this
problem, we inserted indirection into the decision pro-
cess: in our implementation, an analyzerneverdisables
itself, even if it fails to parse its inputs. Instead, upon
severe protocol violations it generates Bro events that a
user-level policy script then acts upon. The default script
is fully customizable, capable of extension to implement-
ing arbitrary complex policies such as disabling the an-
alyzer only after repeated violations. This approach fits
with the Kerkhoff-like principle used by the Bro system:
the code is open, yet sites code their specific policies in
user-level scripts which they strive to keep secret.

5 Applications

We now illustrate the increased detection capabilities that
stem from realizing thePIA architecture within Bro, us-
ing three powerful example applications: (i) reliable de-
tection of applications running on non-standard ports,



signature http_server { # Server-side signature
ip-proto == tcp # Examine TCP packets.
payload /ˆHTTP\/[0-9]/ # Look for server response.
tcp-state responder # Match responder-side of connection.
requires-reverse-signature http_client # Require client -side signature as well.
enable "http" # Enable analyzer upon match.

}
signature http_client { # Client-side signature

ip-proto == tcp # Examine TCP packets.
payload /ˆ[[:space:]] * GET[[:space:]] * / # Look for requests [simplified]
tcp-state originator # Match originator-side of connectio n.

}

Figure 2: Bidirectional signature for HTTP.

(ii) payload inspection of FTP data transfers, and (iii) de-
tection of IRC-based bot clients and servers. All three
schemes run in day-to-day operations at UCB, MWN,
and LBNL (see§2), where they have already identified
a large number of compromised hosts which the sites’
traditional security monitoring could not directly detect.

5.1 Detecting Uses of Non-standard Ports

As pointed out earlier, aPIA architecture gives us the
powerful ability to verify protocol usage and extract
higher-level semantics. To take advantage of this capa-
bility, we extended the reporting ofPIA-Bro ’s analyz-
ers. Once the NIDS knows which protocol a connection
uses, it can leverage this to extract more semantic con-
text. For example, HTTP is used by a wide range of other
protocols as a transport protocol. Therefore, an alert
such as “connection uses HTTP on a non-standard port
21012”, while useful, does not tell the whole story; we
would like to knowwhat that connection then does. We
extendedPIA-Bro ’s HTTP analysis to distinguish the
various protocols using HTTP for transport by analyzing
the HTTP dialog. Kazaa, for example, includes custom
headers lines that start withX-Kazaa . Thus, when this
string is present, the NIDS generates a message such as
“connection uses Kazaa on port 21021”. We added pat-
terns for detecting Kazaa, Gnutella, BitTorrent, Squid,
and SOAP applications running over HTTP. In addition,
the HTTP analyzer extracts the “Server” header from the
HTTP responses, giving an additional indication of the
underlying application.

We currently run the dynamic protocol detection for
FTP, HTTP, IRC, and SMTP on the border routers of all
three environments, though here we primarily report on
experiences at UCB and MWN. As we have particular in-
terest in the use of non-standard ports, and to reduce the
load onPIA-Bro , we exclude traffic on the analyzers’
well-known ports6 from our analysis. (This setup pre-
ventsPIA-Bro from finding some forms of port abuse,

6For “well-known” we consider those for which a traditional
Bro triggers application-layer analysis. These are port 21for FTP,
ports 6667/6668 for IRC, 80/81/631/1080/3128/8000/8080/8888 for
HTTP (631 is IPP), and 25 for SMTP. We furthermore added
6665/6666/6668/6669/7000 for IRC, and 587 for SMTP as we encoun-

e.g., an IRC connection running on the HTTP port. We
postpone this issue to§6.)

At both UCB and MWN, our system quickly identi-
fied many servers7 which had gone unnoticed. At UCB,
it found within a day 6 internal and 17 remote FTP
servers, 568/54830 HTTP servers (!), 2/33 IRC servers,
and 8/8 SMTP servers running on non-standard ports.
At MWN, during a similar period, we found 3/40 FTP,
108/18844 HTTP, 3/58 IRC, and 3/5 SMTP servers.

For FTP, IRC, and SMTP we manually checked
whether the internal hosts were indeed running the de-
tected protocol; for HTTP, we verified a subset. Among
the checked servers we found only one false positive:
PIA-Bro incorrectly flagged one SMTP server due to
our choice regarding how to cope with false positives: as
discussed in§4.3, we choose to not wait until the end of
the connection before alerting. In this case, the SMTP
analyzer correctly reported a protocol violation for the
connection, but it did so onlyafter our chosen maximal
interval of 30 seconds had already passed; the server’s
response took quite some time. In terms of connections,
HTTP is, not surprisingly, the most prevalent of the four
protocols: at UCB during the one-day period, 99% of the
roughly 970,000 reported off-port connections are HTTP.
Of these, 28% are attributed to Gnutella, 22% to Apache,
and 12% to Freechal [15]. At MWN, 92% of the 250,000
reported connections are HTTP, and 7% FTP (of these
70% were initiated by the same host). Of the HTTP con-
nections, roughly 21% are attributed to BitTorrent, 20%
to Gnutella, and 14% to SOAP.

That protocol analyzers can now extract protocol se-
mantics not just for HTTP but also for the other proto-
cols proves to be quite valuable.PIA-Bro generates
detailed protocol-level log files for all connections. A
short glance at, for example, an FTP log file quickly re-
veals whether an FTP server deserves closer attention.
Figure 3 shows an excerpt of such a log file for an ob-

tered them on a regular basis. To further reduce the load on the monitor
machines, we excluded a few high volume hosts, including thePlan-
etLab servers at UCB and the heavily accessedleo.org domain at
MWN.

7In this context, aserver is an IP address that accepts connections
and participates in the protocol exchange. Due to NAT address space,
we may underestimate or overestimate the number of actual hosts.



xxx.xxx.xxx.xxx/2373 > xxx.xxx.xxx.xxx/5560 start
response (220 Rooted Moron Version 1.00 4 WinSock ready...)
USER ops (logged in)
SYST (215 UNIX Type: L8)
[...]
LIST -al (complete)
TYPE I (ok)
SIZE stargate.atl.s02e18.hdtv.xvid-tvd.avi (unavail)
PORT xxx,xxx,xxx,xxx,xxx,xxx (ok)

* STOR stargate.atl.s02e18.hdtv.xvid-tvd.avi, NOOP (ok)
ftp-data video/x-msvideo ‘RIFF (little-endian) data, AVI ’
[...]
response (226 Transfer complete.)
[...]
QUIT (closed)

Figure 3: Application-layer log of an FTP-session to a
compromised server (anonymized/edited for clarity).

viously compromised host at MWN. During a two-week
period, we found such hosts in both environments, al-
though UCB as well as MWN already deploy Snort sig-
natures supposed to detect such FTP servers.

With PIA-Bro , any protocol-level analysis automati-
cally extends to non-standard ports. For example, we de-
vised a detector for HTTP proxies which matches HTTP
requests going into a host with those issued by the same
system to external systems. With the traditional setup,
it can only report proxies on well-known ports; with
PIA-Bro in place, it has correctly identified proxies in-
side the UCB and MWN networks running on different
ports;8 two of them were world-open.

It depends on a site’s policy whether offering a service
on a non-standard port constitutes a problem. Both uni-
versity environments favor open policies, generally tol-
erating offering non-standard services. For the internal
servers we identified, we verified that they meet at least
basic security requirements. For all SMTP servers, for
example, we ensured that they do not allow arbitrary re-
laying. One at MWN which did was quickly closed after
we reported it, as were the open HTTP proxies.

5.2 Payload Inspection of FTP Data

According to the experience of network operators, at-
tackers often install FTP servers on non-standard ports
on machines that they have compromised.PIA-Bro
now not only gives us a reliable way to detect such
servers but, in addition, canexaminethe transferred files.
This is an impossible task for traditional NIDSs, as FTP
is a protocol for which for the data-transfer connections
by design use arbitrary port combinations. For security
monitoring, inspecting thetransferreddata for files ex-
changed via non-standard-port services enables alerts on
sensitive files such as system database accesses or down-
load/upload of virus-infected files. We introduced a new
file analyzerto perform such analysis for FTP data con-

8As observing both internal as well as outgoing requests atborder
is rather unusual, this detection methodology generally detects proxies
other than the site’s intended ones.

nections, as well as for other protocols used to trans-
fer files. WhenPIA-Bro learns, e.g., via its analysis
of the control session, of an upcoming data transfer, it
adds the expected connection to the dynamic prediction
table (see§4.2). Once this connection is seen, the system
instantiates a file analyzer, which examines the connec-
tion’s payload.

The file analyzer receives the file’s full content as a
reassembled stream and can utilize any file-based in-
trusion detection scheme. To demonstrate this capabil-
ity, our file-type identification forPIA-Bro leverages
libmagic [25], which ships with a large library of file-
type characteristics. This allowsPIA-Bro to log the
file-type’s textual description as well as its MIME-type
as determined bylibmagic based on the payload at the
beginning of the connection. Our extended FTP analyzer
logs—and potentially alerts on—the file’s content type.
Figure 3 shows the result of the file type identification
in the ftp-data line. The NIDS categorizes the data
transfer as being of MIME typevideo/x-msvideo
and, more specifically, as an AVI movie. As there usu-
ally are only a relatively small number of ftp-data con-
nections, this mechanism imposes quite minimal perfor-
mance overhead.

We envision several extensions to the file analyzer.
One straight-forward improvement, suggested to us by
the operators at LBNL, is to match a file’s name with
its actual content (e.g., a filepicture.gif requested
from a FTP server can turn out to be an executable). An-
other easy extension is the addition of an interface to a
virus checker (e.g., Clam AntiVirus [7]). We also plan
to adapt other protocol analyzers to take advantage of
the file analyzer, such as TFTP (oncePIA-Bro has sup-
port for UDP) and SMTP. TFTP has been used in the
past by worms to download malicious code [3]. Simi-
larly, SMTP can pass attachments to the file analyzer for
inspection. SMTP differs from FTP in that it transfers
files in-band, i.e., inside the SMTP session, rather than
out-of-band over a separate data connection. Therefore,
for SMTP there is no need to use the dynamic predic-
tion table. Yet, we need the capabilities ofPIA-Bro
to pipeline the analyzers: first the SMTP analyzer strips
the attachments’ MIME-encoding, then the file analyzer
inspects the file’s content.

5.3 Detecting IRC-based Botnets

Attackers systematically install trojans together withbots
for remote command execution on vulnerable systems.
Together, these form largebotnetscontrolled by a hu-
manmasterthat communicates with the bots by sending
commands. Such commands can be to flood a victim,
send spam, or sniff confidential information such as pass-
words. Often, thousands of individual bots are controlled



by a single master [1], constituting one of the largest se-
curity threats in today’s Internet.

The IRC protocol [22] is a popular means for commu-
nication within botnets as it has some appealing proper-
ties for remote control: it providespublic channelsfor
one-to-many communication, withchannel topicswell-
suited for holding commands; and it providesprivate
channelsfor one-to-one communication.

It is difficult for a traditional NIDS to reliably detect
members of IRC-based botnets. Often, the bots never
connect to a standard IRC server—if they did they would
be easy to track down—but to a separatebot-serveron
some non-IRC port somewhere in the Internet. However,
users also sometimes connect to IRC servers running on
non-standard ports for legitimate (non-policy-violating)
purposes. Even if a traditional NIDS has the capability
of detecting IRC servers on non-standard ports, it lacks
the ability to then distinguish between these two cases.

We usedPIA-Bro to implement a reliable bot-
detector that has already identified a significant num-
ber of bot-clients at MWN and UCB. The detector op-
erates on top of the IRC analyzer and can thus perform
protocol-aware analysis ofall detected IRC sessions. To
identify a bot connection, it uses three heuristics. First,
it checks if the client’s nickname matches a (customiz-
able) set of regular expression patterns we have found
to be used by some botnets (e.g., a typical botnet “nick”
identifier is [0]CHN|3436036 ). Second, it examines
the channel topics to see if it includes a typical botnet
command (such as.advscan , which is used by vari-
ants of the SdBot family[1]). Third, it flags new clients
that establish an IRC connection to an already identified
bot-server as bots. The last heuristic is very powerful, as
it leverages the state that the detector accumulates over
time and does not depend on any particular payload pat-
tern. Figure 4 shows an excerpt of the list of known
bots and bot-servers that one of our operational detec-
tors maintains. This includes the server(s) contacted as
well as the timestamp of the last alarming IRC command.
(Such timestamps aid in identifying the owner of the sys-
tem in NAT’d or DHCP environments.) For the servers,
the list contains channel information, including topics
and passwords, as well as the clients that have contacted
them.

At MWN the bot-detector quickly flagged a large
number of bots. So far, it has identified more than
100 distinct local addresses. To exclude the danger of
false positives, we manually verified a subset. To date,
we have not encountered any problems with our detec-
tion. Interestingly, at UCB there are either other kinds
of bots, or not as many compromised machines; during a
two-week time period we reported only 15 internal hosts
to the network administrators. We note that the NIDS,
due to only looking for patterns ofknownbots, certainly

Detected bot-servers:
IP1 - ports 9009,6556,5552 password(s) <none> last 18:01:5 6

channel #vec:
topic ".asc pnp 30 5 999 -b -s|.wksescan 10 5 999 -b -s|[...]"
channel #hv:
topic ".update http://XXX/image1.pif f’’, password(s) XX X"

[...]
Detected bots:
IP2 - server IP3 usr 2K-8006 nick [P00|DEU|59228] last 14:21 :59
IP4 - server IP5 usr XP-3883 nick [P00|DEU|88820] last 19:28 :12
[...]

Figure 4: Excerpt of the set of detected IRC bots and
bot-servers (anonymized/edited for clarity).

misses victims; this is the typical drawback of such a
misuse-detection approach, but one we can improve over
time as we learn more signatures through other means.

Of the detected bots at MWN, only five used static IP
addresses, while the rest used IP addresses from a NAT’d
address range, indicating that most of them are private,
student-owned machines. It is very time-consuming for
the MWN operators to track down NAT’d IP addresses
to their actual source. Worse, the experience at MWN is
that even if they do, many of the owners turn out to not
have the skills to remove the bot. Yet, it is important that
such boxes cannot access the Internet.

The MWN operators accomplish this with the help of
our system. They installed a blocking system for MWN’s
NAT subnets to which we interface with our system. The
operators have found the system’s soundness sufficiently
reliable for flagging bots that they enabled it to block all
reported botsautomatically. They run this setup oper-
ationally, and so far without reporting to us any com-
plaints. In the beginning, just after our system went on-
line, the average number of blocked hosts increased by
10-20 addresses. After about two weeks of operation,
the number of blocked hosts has almost settled back to
the previous level, indicating that the system is effective:
the number of bots has been significantly reduced.

Finally, we note that our detection scheme relies on the
fact that a bot uses the IRC protocol in a fashion which
conforms to the standard IRC specification. If the bot
uses a custom protocol dialect, the IRC analyzer might
not be able to parse the payload. This is a fundamental
problem similar to the one we face if a bot uses a propri-
etary protocol. More generally we observe that the set-
ting of seeing malicious clientsand servers violates an
important assumption of many network intrusion detec-
tion systems: an attacker does not control both endpoints
of a connection [31]. If he does, any analysis is at best a
heuristic.

6 Evaluation

We finish with an assessment of the performance impact
of thePIA architecture and a look at the efficacy of the



multi-step protocol recognition/verification process. The
evaluation confirms that our implementation of thePIA
framework does not impose an undue performance over-
head.

6.1 CPU Performance

To understand the performance impact of thePIA exten-
sions to Bro, we conduct CPU measurements for both the
unmodified Bro (developer version 1.1.52), referred to as
Stock-Bro , andPIA-Bro running on the first 66 GB
of the mwn-full-packets trace which corresponds
to 29 minutes of traffic. (This trace again excludes the
domainleo.org .) The trace environment consists of a
dual-Opteron system with 2GB RAM, running FreeBSD
6.0.

In addition to the processing of the (default)
Stock-Bro configuration,PIA-Bro must also per-
form four types of additional work: (i) examiningall
packets; (ii) performingsignature matchesfor many
packets; and (iii) buffering and reassembling the begin-
nings of all streams to enable reliable protocol detection;
(iv) performing application-layer protocol analysis on
additionally identified connections. In total, these con-
stitute the cost we must pay forPIA-Bro ’s additional
detection capabilities.

To measure the cost of each additional analysis ele-
ment, we enable them one by one, as reported in Ta-
ble 4. We begin with basic analysis (Config-A ): Bro’s
generation of one-line connection summaries, as well as
application-layer protocol analysis for FTP, HTTP, IRC,
SMTP connections, as identified via port numbers. The
first line reports CPU times for both versions of Bro per-
forming this regular analysis, and the second line when
we also enable Bro signatures corresponding to those
used byPIA-Bro for protocol detection. We find the
runtimes of the two systems quite similar, indicating that
our implementation of thePIA architecture does not add
overhead to Bro’s existing processing. (The runtime of
PIA-Bro is slightly less thanStock-Bro due to mi-
nor differences in their TCP bytestream reassembly pro-
cess; this also leadsPIA-Bro to make slightly fewer
calls to Bro’s signature engine for the results reported be-
low. The runtimes of both systems exceed the duration
of the trace, indicating that we use a configuration which,
in this environment, requires multiple NIDS instances in
live operation.)

With Config-A , the systems only need to process a
subset of all packets: those using the well-known ports
of the four protocols, plus any with TCP SYN/FIN/RST
control packets (which Bro uses to generate generic TCP
connection summaries). Bro uses a BPF [27] filter to dis-
card any other packets. However,PIA-Bro cannot use
this filtering because by its nature it needs to examineall

packets. This imposes a significant performance penalty,
which we assess in two different ways.

First, we prefilter the trace to a version containing only
those packets matched by Bro’s BPF filter, which in this
case results in a trace just under 60% the size of the orig-
inal. Running on this trace rather than the original ap-
proximates the benefit Bro obtains when executing on
systems that use in-kernel BPF filtering for which cap-
tured packets must be copied to user space but discarded
packets do not require a copy. The Table shows these
timings asConfig-A’ . We see that, for this environ-
ment and configuration, this cost for usingPIA is minor,
about 3.5%.

Second, we manually change the filters of both sys-
tems to include all TCP packets (Config-B ). The user
time increases by a fairly modest 7.5% forStock-Bro
and 7.4% forPIA-Bro compared toConfig-B . Note
that here we are not yet enablingPIA-Bro ’s additional
functionality, but are only assessing the cost to Bro of
processing the entire packet stream using the above con-
figuration; this entails little extra work for Bro since it
does not perform application analysis on the additional
packets.

PIA-Bro ’s use of signature matching also imposes
overhead. While most major NIDSs rely on signature
matching, the Bro system’s default configuration does
not. Accordingly, applying thePIA signatures to the
packet stream adds to the system’s load. To measure its
cost, we added signature matching to the systems’ con-
figuration (second line of the table, as discussed above).
The increase compared toConfig-A is about 15–16%.

When we activate signatures forConfig-B , we ob-
tain Config-C , which now enables essentially the full
PIA functionality. This increases runtime by 24–27%
for Stock-Bro andPIA-Bro , respectively. Note that
by the comparison withStock-Bro running equivalent
signatures, we see that capturing the entire packet stream
and running signatures against it account for virtually all
of the additional overheadPIA-Bro incurs.

As the quality of the signature matches improves when
PIA-Bro has access to the reassembled payload of the
connections, we further consider a configuration based
on Config-C that also reassembles the data which the
central manager buffers. This configuration only ap-
plies toPIA-Bro , for which it imposes a performance
penalty of 1.2%. The penalty is so small because most
packets arrive in order [9], and we only reassemble the
first 4KB (thePIA buffer size).

As we can detect most protocols within the first KBs
(see§4.2), we also evaluated a version ofPIA-Bro that
restricts signature matching to only the first 4KB. This
optimization, which we annotate asPIA-Bro-M4K ,
yields a performance gain of 16.2%. Finally, adding re-
assembly has again only a small penalty (2.1%).



Stock-Bro PIA-Bro PIA-Bro-M4K
Config-A Standard 3335 3254 —

Standard + sigs 3843 3778 —
Config-A’ Standard 3213 3142 —
Config-B All TCP pkts 3584 3496 —
Config-C All TCP pkts + sigs 4446 4436 3716

All TCP pkts + sigs + reass. — 4488 3795

Table 4: CPU user times on subset of the trace (secs; averagedover 3 runs each; standard deviation always< 13s).

In summary, for this configuration we can obtain
nearly the full power of thePIA architecture (examin-
ing all packets, reassembling and matching on the first
4KB) at a performance cost of about 13.8% compared to
Stock-Bro . While this is noticeable, we argue that the
additional detection power provided merits the expendi-
ture. We also note that the largest performance impact
stems from applying signature matching to a large num-
ber of packets, for which we could envision leveraging
specialized hardware to speed up. Finally, because we
perform dynamic protocol analysis on a per-connection
basis, the approach lends itself well to front-end load-
balancing.

6.2 Detection Performance

We finish with a look at the efficacy of thePIA archi-
tecture’s multi-step analysis process. To do so, we ran
PIA-Bro with all adapted analyzers (HTTP, FTP, IRC,
SMTP) on the 24-hourmwn-full-packets trace, re-
lying only our bidirectionalPIA -signatures for protocol
detection, i.e., no port based identification. (Note that as
these signatures differ from the L7-signatures used in§3,
the results are not directly comparable.)PIA-Bro veri-
fies the detection as discussed in§4.3, i.e., when the con-
nection has either run for 30 seconds or transferred 4 KB
of data (or terminated).

Our goal is to understand the quality of its detection
in terms of false positives and false negatives. In trad-
ing off these two, we particularly wish to minimize false
positives, as our experience related in§5 indicates that
network operators strongly desire actionable informa-
tion when reporting suspected bot hosts or surreptitious
servers.

Table 5 breaks downPIA-Bro ’s detections as fol-
lows. The first column shows how often (i) a protocol
detection signature flagged the given protocol as running
on a non-standard port, for which (ii) the corresponding
analyzer verified the detection. With strong likelihood,
these detections reflect actionable information.

The second and third columns list how often the an-
alyzer didnot agree with the detection, but instead re-
jected the connection as exhibiting the given protocol, for

Detected and Rejected Rejected
verified by analyzer by analyzer

non-std. port non std. port std. port
HTTP 1,283,132 21,153 146,202
FTP 14,488 180 1,792
IRC 1,421 91 3
SMTP 69 0 1,368

Table 5: # of connections with detection and verification.

non-standard and standard ports, respectively. Thus, the
second column highlights the role the analyzer plays in
reducing false positives; had we simply employed signa-
tures without subsequent verification, then in these cases
we would have derived erroneous information.

The third column, on the other hand, raises questions
regarding to what degree our protocol detection might
be missing instances of given protocols. While we have
not yet systematically assessed these rejections, those we
have manually inspected have generally revealed either
a significant protocol failure, or indeed an application
other than that associated with the standard port. Ex-
amples of the former include errors in HTTP headers,
non-numeric status codes in FTP responses, mismatches
in SMTP dialogs between requests and responses, use of
SMTP reply codes beyond the assigned range, and ex-
tremely short or mismatched IRC replies.

While we detect a large number of verified con-
nections on non-standard ports—with the huge num-
ber of HTTP connections primarily due to various P2P
applications—for this trace the only instance we found of
a different protocol running on a privileged standard port
was a (benign) IRC connection running on 80/tcp. On
the unprivileged ports used for IRC, however, we found
a private Apache HTTP server, a number of video-on-
demand servers, and three FTP servers used for (likely
illicit) music-sharing. (Note that, different than in§3.2,
when looking for protocols running on standard ports,
we can only detect instances of FTP, HTTP, IRC, and
SMTP; also, protocols runningon topof HTTP on port
80 are not reported.)

Finally, Figure 5 shows the diversity of the non-
standard ports used by different types of servers. The
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Figure 5: Connections using the HTTP (left) and the IRC, FTP,SMTP (right) protocol.

x-axis gives the port number used and the y-axis the num-
ber of connections whose servers resided on that port
(log-scaled). The 22,647 HTTP servers we detected used
4,024 different non-standard ports, some involving more
than 100,000 connections. We checked the top ten HTTP
ports (which account for 88% of the connections) and
found that most are due to a number of PlanetLab hosts
(ports 312X, 212X), but also quite a large number are
due to P2P applications, with Gnutella (port 6346) con-
tributing the largest number of distinct servers. Similar
observations, but in smaller numbers, hold for IRC, FTP,
and SMTP, for which we observed 60, 81, and 11 differ-
ent non-standard server ports, respectively. These varia-
tions, together with the security violations we discussed
in §5, highlight the need for dynamic protocol detection.

7 Conclusion

In this paper we have developed a general NIDS frame-
work which overcomes the limitations of traditional,
port-based protocol analysis. The need for this capability
arises because in today’s networks an increasing share of
the traffic resists correct classification using TCP/UDP
port numbers. For a NIDS, such traffic is particularly in-
teresting, as a common reason to avoid well-known ports
is to evade security monitoring and policy enforcement.
Still, today’s NIDSs rely exclusively on ports to decide
which higher-level protocol analysis to perform.

Our framework introduces a dynamic processing path
that adds and removes analysis components as required.
The scheme uses protocol detection mechanisms as trig-
gers to activate analyzers, which can subsequently de-
cline to process the connection if they determine the trig-
ger was in error. The design of the framework is inde-
pendent of any particular detection scheme and allows
for the addition/removal of analyzers at arbitrary times.
The design provides a high degree of modularity, which

allows analyzers to work in parallel (e.g., to perform in-
dependent analyses of the same data), or in series (e.g.,
to decapsulate tunnels).

We implemented our design within the open-source
Bro NIDS. We adapted several of the system’s key com-
ponents to leverage the new framework, including the
protocol analyzers for HTTP, IRC, FTP, and SMTP, as
well as leveraging Bro’s signature engine as an efficient
means for performing the initial protocol detection that
is then verified by Bro’s analyzers.

Prototypes of our extended Bro system currently run
at the borders of three large-scale operational networks.
Our example applications—reliable recognition of uses
of non-standard ports, payload inspection of FTP data
transfers, and detection of IRC-based botnet clients and
servers—have already exposed a significant number of
security incidents at these sites. Due to its success, the
MWN site has integrated our bot-detection into dynamic
blocking of production traffic.

In the near future, we will migrate the remainder of
Bro’s analyzers to the new framework. From our experi-
ences to date, it appears clear that using dynamic proto-
col analysis operationally will significantly increase the
number of security breaches we can detect.
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