
Robin Sommer
International Computer Science Institute &

Lawrence Berkeley National Laboratory

RWTH Aachen - Dezember 2007

robin@icsi.berkeley.edu
http://www.icir.org

The Bro Network Intrusion Detection System

mailto:robin@icsi.berkeley.edu
mailto:robin@icsi.berkeley.edu
http://www.icir.org/robin
http://www.icir.org/robin

RWTH Aachen - Dezember 2007

The Bro NIDS - Outline

• Overview
• System Philosophy
• Basic Architecture
• Examples and Deployment
• Tomorrow: A more practical demonstration how to work with the system

• Current Research with the Bro NIDS
• Port-independent protocol analysis
• Parallel Analysis

• The NIDS Cluster
• Strategies for a multi-threaded Bro

2

RWTH Aachen - Dezember 2007

Bro Overview

3

RWTH Aachen - Dezember 2007

System Philosophy

4

• Bro is being developed at ICSI & LBNL since 1996
• LBNL has been using Bro operationally for >10 years
• It is one of the main components of the lab’s network security infrastructure

• Bro provides a real-time network analysis framework
• Primary a network intrusion detection system (NIDS)
• However it is also used for pure traffic analysis

• Focus is on
• Application-level semantic analysis (rather than analyzing individual packets)
• Tracking information over time

• Strong separation of mechanism and policy
• The core of the system is policy-neutral (no notion of “good” or “bad”)
• User provides local site policy

RWTH Aachen - Dezember 2007

System Philosophy (2)
• Operators program their policy

• Not really meaningful to talk about what Bro detects “by default”

• Bro is not restricted to any particular analysis model

• Most typical is the misuse-detection style

• Focus is not signature matching
• Bro is fundamentally different from, e.g., Snort (though it can do signatures as well)

• Focus is not anomaly detection
• Though it does support such approaches (and others) in principle

• System thoroughly logs all activity
• It does not just alert

5

RWTH Aachen - Dezember 2007

Target Environments
• Bro is specifically well-suited for scientific environments

• Extremely useful in networks with liberal (“default allow”) policies
• Supports intrusion prevention schemes
• High-performance on commodity hardware
• Runs on Unix-based systems (e.g., Linux, FreeBSD, MacOS)
• Open-source (BSD license)

• It does however require some effort to use effectively
• Pretty complex, script-based system
• Requires understanding of the network
• No GUI, just ASCII logs
• Only partially documented
• Lacking resources to fully polish the system

• Development is primarily driven by research
• However, our focus is operational use; we invest much time into “practical” issues
• Want to bridge gap between research and operational deployment

6

RWTH Aachen - Dezember 2007

Bro Deployment

• Bro is typically deployed at a site’s upstream link
• Monitors all external packets coming in or going out
• Deployment similar to other NIDS
• By default, purely passive monitoring

7

Tap

Internet
Internal

Network

Bro

RWTH Aachen - Dezember 2007

Architecture

8

Network

Packet Stream

RWTH Aachen - Dezember 2007

Architecture

8

Network

Packet Stream

Event Engine (Core)

Event Stream

RWTH Aachen - Dezember 2007

Architecture

8

Network

Packet Stream

Event Engine (Core)

Event Stream

Policy Script Interpreter

Real-time Notification

RWTH Aachen - Dezember 2007

Event Model - Example

9

Network

Packet Stream

Event Engine (Core)

Event Stream

Policy Script Interpreter

Real-time Notification

RWTH Aachen - Dezember 2007

Event Model - Example

9

Network

Packet Stream

Event Engine (Core)

Event Stream

Policy Script Interpreter

Real-time NotificationRequest for /index.html

Status OK plus data 5.6.7.8/80

Web
Server

Web
Client

1.2.3.4/4321

RWTH Aachen - Dezember 2007

Event Model - Example

9

Network

Packet Stream

Event Engine (Core)

Event Stream

Policy Script Interpreter

Real-time NotificationRequest for /index.html

Status OK plus data 5.6.7.8/80

Web
Server

Web
Client

1.2.3.4/4321

......SYN SYN ACK ACK ACK ACK FIN FIN

Stream of TCP packets

RWTH Aachen - Dezember 2007

Event Model - Example

9

Network

Packet Stream

Event Engine (Core)

Event Stream

Policy Script Interpreter

Real-time NotificationRequest for /index.html

Status OK plus data 5.6.7.8/80

Web
Server

Web
Client

1.2.3.4/4321

connection_established(1.2.3.4/4321→5.6.7.8/80)Event

......SYN SYN ACK ACK ACK ACK FIN FIN

Stream of TCP packets

RWTH Aachen - Dezember 2007

Event Model - Example

9

Network

Packet Stream

Event Engine (Core)

Event Stream

Policy Script Interpreter

Real-time NotificationRequest for /index.html

Status OK plus data 5.6.7.8/80

Web
Server

Web
Client

1.2.3.4/4321

connection_established(1.2.3.4/4321→5.6.7.8/80)Event

TCP stream reassembly for originator

http_request(1.2.3.4/4321→5.6.7.8/80, “GET”, “/index.html”)
Event

......SYN SYN ACK ACK ACK ACK FIN FIN

Stream of TCP packets

RWTH Aachen - Dezember 2007

Event Model - Example

9

Network

Packet Stream

Event Engine (Core)

Event Stream

Policy Script Interpreter

Real-time NotificationRequest for /index.html

Status OK plus data 5.6.7.8/80

Web
Server

Web
Client

1.2.3.4/4321

connection_established(1.2.3.4/4321→5.6.7.8/80)Event

TCP stream reassembly for originator

http_request(1.2.3.4/4321→5.6.7.8/80, “GET”, “/index.html”)
Event

TCP stream reassembly for responder

http_reply(1.2.3.4/4321→5.6.7.8/80, 200, “OK”, data)Event

......SYN SYN ACK ACK ACK ACK FIN FIN

Stream of TCP packets

RWTH Aachen - Dezember 2007

Event Model - Example

9

Network

Packet Stream

Event Engine (Core)

Event Stream

Policy Script Interpreter

Real-time NotificationRequest for /index.html

Status OK plus data 5.6.7.8/80

Web
Server

Web
Client

1.2.3.4/4321

connection_established(1.2.3.4/4321→5.6.7.8/80)Event

TCP stream reassembly for originator

http_request(1.2.3.4/4321→5.6.7.8/80, “GET”, “/index.html”)
Event

TCP stream reassembly for responder

http_reply(1.2.3.4/4321→5.6.7.8/80, 200, “OK”, data)Event

connection_finished(1.2.3.4/4321, 5.6.7.8/80)
Event

......SYN SYN ACK ACK ACK ACK FIN FIN

Stream of TCP packets

RWTH Aachen - Dezember 2007

Event-Engine

10

• Performs policy-neutral analysis
• Turns low-level activity into high-level events
• Examples: connection_established, http_request
• Events are annotated with context (e.g., IP addresses, URL)

• Event-engine is written in C++ for performance
• Performs work per packet

• Contains analyzers for >30 protocols, including
• ARP, IP, ICMP, TCP, UDP
• DCE-RPC, DNS, FTP, Finger, Gnutella, HTTP, IRC, Ident,

NCP, NFS, NTP, NetBIOS, POP3, Portmapper, RPC,
Rsh, Rlogin, SMB, SMTP, SSH, SSL, SunRPC, Telnet

• Analyzers generate ~300 types of events

RWTH Aachen - Dezember 2007

Expressing Policy with Scripts

11

• Scripts are written in custom, domain-specific language
• Bro ships with 20K+ lines of script code
• Default scripts detect attacks & log activity extensively

• Scripts process event stream, incorporating ...
• ... context from past events
• ... site’s local security policy

• Scripts take actions
• Generating alerts via syslog or mail
• Executing program as a form of response
• Recording activity to disk

RWTH Aachen - Dezember 2007

Bro’s Scripting Language

• Bro’s scripting language is
• Procedural
• Event-based
• Strongly typed
• Rich in types

• Usual script-language types, such as tables and sets
• Domain-specific types, such as addresses, ports, subnets

• Supporting state management (persistance, expiration, timers, etc.)
• Supporting communication with other Bro instances

12

RWTH Aachen - Dezember 2007

Script Example: Matching URLs

13

event http_request(c: connection, method: string, path: string)
{

if (method == “GET” && path == “/etc/passwd”)
NOTICE(SensitiveURL, c, path);

}

http_request(1.2.3.4/4321→5.6.7.8/80, “GET”, “/index.html”)

Code simplified. See policy/http-request.bro.

RWTH Aachen - Dezember 2007

Script Example: Tracking SSH Hosts

14

global ssh_hosts: set[addr];

event connection_established(c: connection)
 {
 local responder = cidresp_h; # Responder’s address
 local service = cidresp_p; # Responder’s port

 if (service != 22/tcp)
 return; # Not SSH.

 if (responder in ssh_hosts)
 return; # We already know this one.

 add ssh_hosts[responder]; # Found a new host.
print "New SSH host found", responder;

 }

RWTH Aachen - Dezember 2007

Policy-neutral Logging

15

• Bro’s default scripts perform two main tasks
• Detecting malicious activity (mostly misuse-detection)
• Logging activity comprehensively without any actual assessment

• In practice, the policy-neutral logs are often most useful
• Typically we do not know in advance how the next attacks looks like
• But when an incident occurred, we need to understand what exactly happened

• Typical questions asked
• “How did the attacker get in? What damage did he do? Did the guy access other hosts

as well? How can we detect similar activity in the future?”

RWTH Aachen - Dezember 2007

Time Duration Source Destination
1144876596.658302 1.206521 192.150.186.169 62.26.220.2 \
 http 53052 80 tcp 874 1841 SF X
 Serv SrcPort DstPort Proto SrcBytes DstBytes State Local

Example Log: Connection Summaries

16

• One-line summaries for all TCP connections

• Most basic, yet also one of the most useful analyzers

LBNL has connection logs for every connection attempt since June 94!

RWTH Aachen - Dezember 2007

Example Log: HTTP Session

17

1144876588.30 start 192.150.186.169:53041 > 195.71.11.67:80
1144876588.30 GET /index.html (200 "OK" [57634] www.spiegel.de)
1144876588.30 > HOST: www.spiegel.de
1144876588.30 > USER-AGENT: Mozilla/5.0 (Macintosh; PPC Mac OS ...
1144876588.30 > ACCEPT: text/xml,application/xml,application/xhtml ...
1144876588.30 > ACCEPT-LANGUAGE: en-us,en;q=0.7,de;q=0.3
[...]
1144876588.77 < SERVER: Apache/1.3.26 (Unix) mod_fastcgi/2.2.12
1144876588.77 < CACHE-CONTROL: max-age=120
1144876588.77 < EXPIRES: Wed, 12 Apr 2006 21:18:28 GMT
[...]
1144876588.77 <= 1500 bytes: "<!-- Vignette StoryServer 5.0 Wed Apr..."
1144876588.78 <= 1500 bytes: "r "http://spiegel.ivwbox.de" r..."
1144876588.78 <= 1500 bytes: "icon.ico" type="image/ico">^M^J ..."
1144876588.94 <= 1500 bytes: "erver 5.0 Mon Mar 27 15:56:55 ..."
[...]

http://www.spiegel.de
http://www.spiegel.de
http://spiegel.ivwbox.de
http://spiegel.ivwbox.de

RWTH Aachen - Dezember 2007

Deployment Example:
Lawrence Berkeley National Lab

18

RWTH Aachen - Dezember 2007

Lawrence Berkeley National Lab

• Main site located on a 200-acre area in the Berkeley hills

• Close proximity to UC Berkeley

19

RWTH Aachen - Dezember 2007

• Managed by UC for the U.S. Department of Energy

• Open, unclassified research
• Research is freely shared
• Collaborations around the world

• Diversity of research
• Nanotechnology, Energy, Physics, Biology, Chemistry, Environmental, Computing

• Diverse user community
• 3,800 employees
• Scientific facilities used by researchers around the world
• Many staff people have dual appointments with UC Berkeley
• Many users are transient and not employees

• Very liberal, default-allow security policy
• Characteristic for many research environments
• Requires comprehensive approach to monitoring

Lawrence Berkeley National Lab

RWTH Aachen - Dezember 2007

Bro at the Lawrence Berkeley Lab

21

• Primary security threats
• System compromises
• Loss of personally identifying information (PII)
• Credential theft (e.g., SSH keys)
• Bad publicity
• Auditors(!)

• LBNL has been using Bro for >10 years
• Monitors the lab’s 10 Gbps Internet uplink
• Credited with numerous attack detections

• Bro is one of the main components of lab’s security
• Several Bro boxes for different tasks
• Bro automatically blocks attackers

RWTH Aachen - Dezember 2007

LBNL’s Bro Setup

22

External
(ESNet)

Internal
(LBLNet)

10G 10G

Bro

Tap

RWTH Aachen - Dezember 2007

LBNL’s Bro Setup

22

External
(ESNet)

Internal
(LBLNet)

10G 10G

Bro

Tap

Firewall

RWTH Aachen - Dezember 2007

LBNL’s Bro Setup

22

External
(ESNet)

Internal
(LBLNet)

10G 10G

Bro

Tap

Bro

Tap

Firewall

RWTH Aachen - Dezember 2007

LBNL’s Bro Setup

22

External
(ESNet)

Internal
(LBLNet)

10G 10G

Bro

Tap

Bro

Tap

Firewall

BroBro BroBro

RWTH Aachen - Dezember 2007

LBNL’s Bro Setup

22

External
(ESNet)

Internal
(LBLNet)

10G 10G

Bro

Tap

Bro

Tap

Dynamic
Blockingacld

Bro blocks more than 4000 addresses per day!

Firewall

BroBro BroBro

RWTH Aachen - Dezember 2007

Port-independent Protocol Analysis
with

Dynamic Protocol Detection (DPD)

23

RWTH Aachen - Dezember 2007

Port-based Protocol Analysis

24

• Bro has lots of application-layer analyzers

• But which protocol does a connection use?

• Traditionally NIDS rely on ports
• Port 80? Oh, that’s HTTP.

• Obviously deficient in two ways
• There’s non-HTTP traffic on port 80 (firewalls tend to open this port...)
• There’s HTTP on ports other than port 80

• Particularly problematic for security monitoring
• Want to know if somebody avoids the well-known port

RWTH Aachen - Dezember 2007

Port-independent Analysis

• Look at the payload to see what is, e.g., HTTP

• Analyzers already know how a protocol looks like
• Leverage existing protocol analyzers
• Let each analyzer try to parse the payload

• If it succeeds, great!
• If not, then it’s actually another protocol

• Ideal setting: for every connection, try all analyzers

• However, performance is prohibitive
• Can’t parse 10000s of connections in parallel with all analyzers

25

RWTH Aachen - Dezember 2007

Making it realistic ...

• Bro uses byte patterns to prefilter connections
• An HTTP signature looks for potential uses of HTTP
• Then the HTTP analyzer verifies by trying to parse the payload
• Signatures can be loose because false positives are inexpensive (no alerts!)

• Other NIDS often ship with protocol signatures
• These directly generate alerts (imagine reporting all non-80 HTTP conns!)
• These do not trigger protocol-layer semantic analysis (e.g., extracting URLs)

• In Bro, a match triggers further analysis

• Main internal concept: analyzer trees
• Each connection is associated with an analyzer tree

26

RWTH Aachen - Dezember 2007

Example: Analyzer Tree

27

IMAP

TCPIP

POP3

Interact.

SMTP

A connection looks like mail, but what is it?

IMAP

TCPIP

POP3

Interact.

SMTP

RWTH Aachen - Dezember 2007

Application Example: FTP Data

28

• FTP data sessions can’t be analyzed by port-based NIDSs

• Bro’s DPD has a notion of “expected connections”
• Can be told in advance which analyzer to use for an upcoming connection

• Bro also has a File Analyzer
• Determines file-type (via libmagic)
• Checks for malware (via libclamav)

• FTP analysis combines these
• Parses control connection to learn about upcoming FTP data
• Calls expect_connection(conn_id, FileAnalyzer)

• File Analyzer is inserted into analyzer tree when connection is seen

RWTH Aachen - Dezember 2007

xxx.xxx.xxx.xxx/2373 > xxx.xxx.xxx.xxx/5560 start
response (220 Rooted Moron Version 1.00 4 WinSock ready...)
USER ops (logged in)
SYST (215 UNIX Type: L8)
[...]
LIST -al (complete)
TYPE I (ok)
SIZE stargate.atl.s02e18.hdtv.xvid-tvd.avi (unavail)
PORT xxx,xxx,xxx,xxx,xxx,xxx (ok)
STOR stargate.atl.s02e18.hdtv.xvid-tvd.avi, NOOP (ok)
ftp-data video/x-msvideo `RIFF (little-endian) data, AVI'
[...]
response (226 Transfer complete.)
[...]
QUIT (closed)

Application Example: FTP Data (2)

29

RWTH Aachen - Dezember 2007

Application Example: Finding Bots

30

• IRC-based bots are a prevalent problem
• Infected client machines accept commands from their “master”
• Often IRC-based but not on port 6667

• Just detecting IRC connections not sufficient
• Often there is legitimate IRC on ports other than 6667

• DPD allows to analyze all IRC sessions semantically
• Looks for typical patterns in NICK and TOPIC
• Reports if it finds IRC sessions showing both such NICKs and TOPICs

• Very reliable detection of bots
• Munich universities use it to actively block internal bots automatically

RWTH Aachen - Dezember 2007

Application Example: Finding Bots (2)

31

Detected bot-servers:
IP1 - ports 9009,6556,5552 password(s) <none> last 18:01:56
 channel #vec:
 topic ".asc pnp 30 5 999 -b -s|.wksescan 10 5 999 -b -s|[...]"
 channel #hv:
 topic ".update http://XXX/image1.pif f"
[...]
Detected bots:
IP2 - server IP1 usr 2K-8006 nick [P00|DEU|59228]
IP4 - server IP1 usr XP-3883 nick [P00|DEU|88820]
[...]

RWTH Aachen - Dezember 2007

DPD: Summary & Outlook

• Port-independent protocol analysis
• Idea is straight-forward, but Bro is the only system which does it

• Bro now has a very generic analyzer framework
• Allows arbitrary changes to analyzer setup during lifetime of connection
• Is not restricted to any particular approach for protocol detection

• Main performance impact: need to examine all packets
• Well, that’s pretty hard to avoid

• Potential extensions
• More protocol-detection heuristics (e.g., statistical approaches)
• Analyze tunnels by pipelining analyzers (e.g., to look inside SSL)
• Hardware support for pre-filtering (e.g., on-NIC filtering)

32

RWTH Aachen - Dezember 2007

Parallel Network Intrusion Detection

33

RWTH Aachen - Dezember 2007

Motivation

• NIDSs have reached their limits on commodity hardware
• Keep needing to do more analysis on more data at higher speeds
• However, CPU performance is not growing anymore the way it used to
• Single NIDS instance (e.g., Snort, Bro) cannot cope with Gbps links

• To overcome, we must either
• Restrict the amount of analysis, or
• Turn to expensive,custom hardware, or
• Employ some form of parallelization of the processing across

(a) machines, or
(b) CPUs

34

RWTH Aachen - Dezember 2007

Orthogonal Approaches

• The NIDS Cluster
• Many PCs instead of one
• Communication and central user interface creates the impression of one system
• First installations up and running

• Parallel operation within a single NIDS instance
• In software: multi-threaded analysis on multi-CPU/multi-core systems
• In hardware: compile analysis into a parallel execution model (e.g., on FPGAs)
• Work in progress

35

RWTH Aachen - Dezember 2007

The NIDS Cluster

36

RWTH Aachen - Dezember 2007

Overview

• We do load-balancing with the “NIDS Cluster”
• Use many boxes instead of one
• Every box works on a slice of traffic
• Correlate analysis to create the impression of a single system

• Most NIDS provide support for multi-system setups

• However, instances tend to work independent

• Central manager collects alerts of independent NIDS instances

• Aggregates results instead of correlating analysis

• NIDS cluster works transparently like a single NIDS

• Gives same results as single NIDS would if it could analyze all traffic

• Does not sacrifice detection accuracy

37

RWTH Aachen - Dezember 2007

NIDS Cluster

Architecture

38

Internet Local
Gbps

Gbps

Tap

Tap

RWTH Aachen - Dezember 2007

NIDS Cluster

Architecture

38

Frontend Frontend

Internet Local
Gbps

Gbps

Tap

Tap

RWTH Aachen - Dezember 2007

NIDS Cluster

Architecture

38

Frontend Frontend

Backend BackendBackend
Backend BackendBackend

Backend BackendBackend
Backend BackendBackend

Internet Local
Gbps

Gbps

Tap

Tap

RWTH Aachen - Dezember 2007

NIDS Cluster

Architecture

38

Frontend Frontend

Proxy
Proxy

Backend BackendBackend
Backend BackendBackend

Backend BackendBackend
Backend BackendBackend

Internet Local
Gbps

Gbps

Tap

Tap

RWTH Aachen - Dezember 2007

NIDS Cluster

Architecture

38

Frontend Frontend

Proxy
Proxy

Backend BackendBackend
Backend BackendBackend

Backend BackendBackend
Backend BackendBackend

Internet Local
Gbps

Gbps

Manager

Tap

Tap

RWTH Aachen - Dezember 2007

Environments

• Initial target environment:
Lawrence Berkeley National Laboratory
• LBNL monitors 10 Gbps upstream link with the Bro NIDS
• Setup evolved into many boxes running Bro independently for sub-tasks
• Cluster prototype now running at LBNL with 1 frontend & 10 backends

• Further prototypes
• University of California, Berkeley

2 x 1 Gbps uplink, 2 frontends / 6 backends for 50% of the traffic
• Ohio State University

450 Mbps uplink, 1 frontend / 12 backends
• IEEE Supercomputing Conference 2007

Conference’s 1 Gbps backbone / 10 Gbps “High Speed Bandwidth Challenge” network

• Goal: Replace operational security monitoring

39

RWTH Aachen - Dezember 2007

Challenges

Main challenges when building the NIDS Cluster

1. Distributing the traffic evenly while minimizing need for communication

2. Adapting the NIDS operation on the backend to correlate analysis with peers

3. Validating that the cluster produces sound results

40

RWTH Aachen - Dezember 2007

Distributing Load

41

RWTH Aachen - Dezember 2007

Distribution Schemes

• Frontends need to pick a backend as destination

• Option 1: Route packets individually
• Simple example: round-robin
• Too expensive due to communication overhead (NIDS keep per-flow state)

• Option 2: Flow-based schemes
• Send all packets belonging to the same flow to the same backend
• Needs communication only for inter-flow analysis

• Simple approach: hashing flow identifiers
• E.g., md5(src-addr + src-port + dst-addr + dst-port) mod n
• Even simpler: md5(src-addr + dst-addr) mod n
• Hashing is state-less, which reduces complexity and increases robustness

• But how well does hashing distribute the load?

42

RWTH Aachen - Dezember 2007

Simulation of Hashing Schemes

43

 1 day of UC Berkeley campus TCP traffic (231M connections), n = 10

!
"
#
$
%&
'(
("
)"
$
*
"
+
%,
+
-%
"
,
"
$
%&
'+
.)
'/
0
.'
1
$
%2
3
4

5
6

7
5

7
6

8
5

!1$%75955 !1$%7:955 !1$%88955 ;0"%<955

=&6!<

/>(!<

/>(!<%277%$1&"+4

=&6!8
md5-conn

RWTH Aachen - Dezember 2007

Simulation of Hashing Schemes

43

 1 day of UC Berkeley campus TCP traffic (231M connections), n = 10

!
"
#
$
%&
'(
("
)"
$
*
"
+
%,
+
-%
"
,
"
$
%&
'+
.)
'/
0
.'
1
$
%2
3
4

5
6

7
5

7
6

8
5

!1$%75955 !1$%7:955 !1$%88955 ;0"%<955

=&6!<

/>(!<

/>(!<%277%$1&"+4

=&6!8
md5-conn md5-addr

RWTH Aachen - Dezember 2007

Cluster Frontends

44

• We chose the address-based hash

• Ports not always available (e.g., ICMP, fragments) & more complex to extract

• Even with a perfect distribution, load is hard to predict

• Frontends rewrite MAC addresses according to hash

• Two alternative frontend implementations

• In software with Click (SHA1)

• In hardware with a prototype of Force-10’s P10 appliance (XOR)

• Working on cheaper hardware solutions

RWTH Aachen - Dezember 2007

Adapting the NIDS

45

RWTH Aachen - Dezember 2007

Cluster Backends

• On the backends, we run the Bro NIDS
• Bro is the NIDS used in our primary target environment LBNL
• Bro already provides extensive, low-level communication facilities

• Bro consists of two layers
• Core: Low-level, high-performance protocol analysis
• Event-engine: Executes scripts which implement the detection analysis

• Observation: Core keeps only per-flow state
• No need for correlation across backends

• Event-engine does all inter-flow analysis
• The scripts needs to be adapted to the cluster setting

46

RWTH Aachen - Dezember 2007

Detour: Bro’s Communication

47

Network

Event Engine

Packet Stream

Event Stream

Policy Script

Real-time Notification

Bro A

RWTH Aachen - Dezember 2007

Detour: Bro’s Communication

47

Bro B

Network

Event Engine

Packet Stream

Event Stream

Policy Script

Real-time Notification

Network

Event Engine

Packet Stream

Event Stream

Policy Script

Real-time Notification

Bro A

RWTH Aachen - Dezember 2007

Detour: Bro’s Communication

47

Event Stream

Bro B

Network

Event Engine

Packet Stream

Event Stream

Policy Script

Real-time Notification

Network

Event Engine

Packet Stream

Event Stream

Policy Script

Real-time Notification

Bro A

RWTH Aachen - Dezember 2007

Detour: Bro’s Communication

47

 State Operations

Event Stream

Bro B

Network

Event Engine

Packet Stream

Event Stream

Policy Script

Real-time Notification

Network

Event Engine

Packet Stream

Event Stream

Policy Script

Real-time Notification

Bro A

RWTH Aachen - Dezember 2007

Adapting the Scripts ...

• Script language provides primitives to share state
• Almost all state is kept in tables, which can easily be synchronized across peers

• Main task was identifying state related to inter-flow analysis
• A bit cumbersome with 20K+ lines of script code ...

• Actually it was a bit more tricky ...
• Some programming idioms do not work well in the cluster setting and needed to be

fixed
• Some trade-offs between gain & overhead exists are hard to assess
• Bro’s “loose synchronisation” introduces inconsistencies (which can be mitigated)

• Many changes to scripts and few to the core

48

RWTH Aachen - Dezember 2007

Validating the Cluster

49

RWTH Aachen - Dezember 2007

Accuracy

50

• Goal: Cluster produces same result as a single system

• Compared the results of cluster vs. stand-alone setup
• Captured a 2 hour trace at LBNL’s uplink (~97GB, 134M pkts, 1.5 M host pairs)
• Splitted the trace into slices and copied them to the cluster nodes
• Setup the cluster to examine the slices just as if it would process live traffic
• Compared output of the manager with the output of a single Bro instance on

the trace

• Found excellent match for the alarms & logs
• Cluster reported all alarms of the single instance as well
• Slight differences in timing & context due to latency and synchronization

semantics
• Some artifacts of the off-line measurement setup

RWTH Aachen - Dezember 2007

Scaling of CPU

51

0.0 0.1 0.2 0.3 0.4 0.5

0
5

1
0

1
5

2
0

2
5

CPU utilization

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

10 nodes

5 nodes

3 nodes

 ext. LBNL config, 2hr full trace, (~97GB, 134M pkts)

RWTH Aachen - Dezember 2007

CPU Load per Node

52

0.0 0.1 0.2 0.3 0.4 0.5

0
5

1
0

1
5

CPU utilization

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

node0

node1

node2

node3

node4

node5

node6

node7

node8

node9

10 backends, ext. LBNL config, 2hr full trace, (~97GB, 134M pkts)

RWTH Aachen - Dezember 2007

Load on Berkeley Campus

53

C
P

U
 l
o

a
d

 (
%

)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Tue 12:00 Tue 18:00 Wed 0:00 Wed 6:00 Wed 12:00 Wed 18:00 Thu 0:00 Thu 6:00

Backend 0

Backend 1

Backend 2

Backend 3

Backend 4

Backend 5

Proxy 0

Proxy 1

Manager

With 1 frontend = 50% of the total traffic

RWTH Aachen - Dezember 2007

Cluster Summary

54

• Cluster monitors Gbps networks on commodity hardware
• Provides high-performance, stateful network intrusion detection
• Correlates analysis across its nodes rather than just aggregating results

• When building the cluster we
• Examined different load distribution schemes
• Adapted an open-source NIDS to the cluster setting
• Evaluated correctness & performance in a real-world setting

• Challenge was to build something which works
• Less to lead into fundamentally new research directions

• Now in the process of making it production quality

• We will soon release the Cluster Shell

RWTH Aachen - Dezember 2007

The Cluster Shell

55

RWTH Aachen - Dezember 2007

Parallel Analysis Inside One Box

56

RWTH Aachen - Dezember 2007

Potential

57

• Observation
• Much of the processing of a typical NIDS instance can be done in parallel
• However, existing systems do not exploit the potential

• Example: Bro NIDS

1-10 Gbps

St
re

am
 D

em
ux

T
C

P
St

re
am

 R
ea

ss
em

bl
y

~104

Instances

Pr
ot

oc
ol

 A
na

ly
ze

rs

~105

Instances

Pe
r F

lo
w

 A
na

ly
si

s
~104

Instances

A
gg

re
ga

te
 A

na
ly

si
s

~103

Instances

G
lo

ba
l A

na
ly

si
s

~10-100
Instances

Packet
Streams

Assembled
Packet

Streams

Event
Streams

Filtered
Event

Streams

Aggregated
Event

Streams

RWTH Aachen - Dezember 2007

Commodity Hardware

• Multi-thread/multi-core CPU provide necessary power
• Inexpensive commodity hardware
• Aggregated throughput does in fact still follow Moore’s law

• Need to structure applications in highly parallel fashion
• Do not get the performance gain out of the box
• Need to structure processing into separate low-level threads

• Work in progress; we want to address
• Intrusion prevention functionality
• Exchange of state between threads for global analysis
• Yet minimize inter-thread communication
• Factor in memory locality (within one core / across several cores)
• Provide performance debugging tools

58

RWTH Aachen - Dezember 2007

Proposed Architecture

59

Active Network
Interface

CPU Core 1

Thread

Thread
Thread
Thread

L1 D-Cache
Cached
Queues

L2 Cache & Main Memory
Core 1 Pkt-Q
Core 1 Event-Q

Conn Table
Host Table

Core 2 Pkt-Q
Core 2 Event-Q ...

Pending
Pkts

...

Core 2 MSG-Event-Q
Core 1 MSG-Event-Q

...

Packet
Dispatch

CPU Core 2

Thread

Thread
Thread
Thread

L1 D-Cache
Cached
Queues

External MSG-Event-Q

RWTH Aachen - Dezember 2007

Active Network Interface

• Only non-commodity components currently
• Prototype to be based on NetFPGA platform ($2000)
• Commodity hardware might actually be suitable later

(E.g., Sun’s Niagara 2 has 8 CPU cores plus 2 directly attached 10GE controller!)

• Thread-aware Routing
• ANI copies packet directly into thread’s memory (cache)
• ANI keeps per-flow table of routing decisions
• Dispatcher thread takes initial routing decision per flow

• Selective packet forwarding
• ANI holds packets until it gets the clearance (might use caching per e.g. flow/ip)

• Normalization

60

RWTH Aachen - Dezember 2007

Parallelized Network Analysis
• Architecturally-aware Threading

• Need to identify the right granularity for threads
• Protocol analysis consists of fixed blocks of functionality
• Event processing needs to preserve temporal order

→ Multiple independent event queues (e.g., one per core)

• Scalable Inter-thread Communication
• Can use shared memory
• Need to consider nonuniformities in system’s cache hierarchy
• Potentially restructure detection algorithms to minimize communication

(e.g., loosing semantics via probabilistic algorithms)

• Prevention Functionality
• Only forward packet once all events are processed

• Evaluation, profiling & debugging
• Race conditions & memory access patterns

61

RWTH Aachen - Dezember 2007

Going Further: Custom Hardware

• Goal: custom platform for highly parallel, stateful network analysis

• Custom hardware (e.g., FPGAs) is ideal for parallel tasks

• Expose the parallelism and map it to hardware

• We can identify three types of functionality in Bro
• Fixed function blocks →Handcraft (e.g., robust reassembly)

• Protocol analyzers → Use BinPAC with new backend
• Policy scripts → Compile into parallell computation model

• Envision using MIT’s Transactor model
• Many small self-contained units communicating via message queues

• Ambitious but highly promising
• Generic network analysis beyond network intrusion detection

62

RWTH Aachen - Dezember 2007

Summary & Outlook

63

RWTH Aachen - Dezember 2007

The Bro NIDS

64

• Bro is one of the most powerful NIDS available
• Open-source and runs on commodity hardware
• While primarily a research system, it is well suited for operational use
• Deployed at large universities & labs

• Working a various extensions
• Interactive Cluster Shell for easy installation/operation of a Bro Cluster
• New analyzers for

 NetFlow, BitTorrent, SIP, XML w/ XQuery support, SSL (rewritten)
• Time Machine interface (see http://www.net.t-labs.tu-berlin.de/research/tm)

• Current Work
• Turning cluster prototype into production
• Multi-core support
• Inter-site Data sharing

http://www.net.t-labs.tu-berlin.de/research/tm
http://www.net.t-labs.tu-berlin.de/research/tm

Robin Sommer
International Computer Science Institute &

Lawrence Berkeley National Laboratory

robin@icsi.berkeley.edu
http://www.icir.org

Thanks for your attention!

mailto:robin@icsi.berkeley.edu
mailto:robin@icsi.berkeley.edu
http://www.icir.org/robin
http://www.icir.org/robin

RWTH Aachen - Dezember 2007

DPD

66

RWTH Aachen - Dezember 2007

Advanced DPD Applications

67

• Turning off analyzers if it’s not “their” protocol
• Fundamental question: when to decide it’s not “theirs”?
• Analyzers report ProtocolViolation if they can’t parse basic structure

• Policy script can then decide whether to indeed disable analyzer

• Reporting protocols found on non-standard ports
• Reports ProtocolFound and ServerFound

• Further identify applications on top of HTTP (e.g., Gnutella, SOAP, Squid)
• Easy to extend by adding more patterns

RWTH Aachen - Dezember 2007

Analyzing FTP Data Connections

68

• FTP data cannot be analyzed by port-based NIDSs

• Bro has a File Analyzer
• Determines file-type (via libmagic)
• Checks for malware (via libclamav)

• With DPD, FTP can use the File Analyzer
• Parses control connection to learn about upcoming FTP data
• File Analyzer is inserted into analyzer tree when connection is seen

RWTH Aachen - Dezember 2007

xxx.xxx.xxx.xxx/2373 > xxx.xxx.xxx.xxx/5560 start
response (220 Rooted Moron Version 1.00 4 WinSock ready...)
USER ops (logged in)
SYST (215 UNIX Type: L8)
[...]
LIST -al (complete)
TYPE I (ok)
SIZE stargate.atl.s02e18.hdtv.xvid-tvd.avi (unavail)
PORT xxx,xxx,xxx,xxx,xxx,xxx (ok)
STOR stargate.atl.s02e18.hdtv.xvid-tvd.avi, NOOP (ok)
ftp-data video/x-msvideo `RIFF (little-endian) data, AVI'
[...]
response (226 Transfer complete.)
[...]
QUIT (closed)

Example: FTP Data Analysis

69

RWTH Aachen - Dezember 2007

Example: Bots

70

Detected bot-servers:
IP1 - ports 9009,6556,5552 password(s) <none> last 18:01:56
 channel #vec:
 topic ".asc pnp 30 5 999 -b -s|.wksescan 10 5 999 -b -s|
[...]"
 channel #hv:
 topic ".update http://XXX/image1.pif f'', password(s) XXX"
[...]
Detected bots:
IP2 - server IP1 usr 2K-8006 nick [P00|DEU|59228]
IP4 - server IP1 usr XP-3883 nick [P00|DEU|88820]
[...]

http://XXX/image1.pif
http://XXX/image1.pif

RWTH Aachen - Dezember 2007

Example: Protocol Signature

71

signature dpd_http_client {
 ip-proto == tcp
 payload /^[[:space:]]*(GET|HEAD|POST)[[:space:]]*/
 tcp-state originator
}

signature dpd_http_server {
 ip-proto == tcp
 payload /^HTTP\/[0-9]/
 tcp-state responder
 requires-reverse-signature dpd_http_client
 enable "http"
}

RWTH Aachen - Dezember 2007

Recent Developments (3)
binpac: A “yacc” for Writing

Application Protocol Parsers

72

RWTH Aachen - Dezember 2007

Writing Analyzers Manually

73

• Protocol analyzers are central to any NIDS

• Writing such an analyzer appears straight-forward
• Take the protocol-specification and code a parser in your favorite language

• However, in practice this is really tedious
• Protocols are complex (e.g., HTTP has pipelining, chunking, MIME, etc.)
• Protocol specifications are incomplete
• Analyzer must robust (abundant “crud”; attacker can craft traffic)
• Analyzer must be efficient (handling 10000s of connections in real-time)
• Analyzer cannot reused (tends to be tightly coupled to app environment)

• Proof: severe vulnerabilities in existing analyzers
• Witty propagated through 12,000 deployments of ISS security software

RWTH Aachen - Dezember 2007

The yacc Approach

• Problems caused by significant lack of abstraction
• In the programming language community, nobody write parsers manually
• Parser generators turn grammar-plus-semantics into low-level code

• binpac: a yacc for network protocols
• Declarative language and its compiler
• Translates protocol specification into C++ code for parsing

• Primary goals
• Relieve user from low-level details
• Generate parsers which are as efficient as manually coded ones
• Support reuse of analyzers across applications

74

RWTH Aachen - Dezember 2007

Why not just use yacc?

75

• Network protocols are not programming languages

• Syntax
• Variable-length arrays (e.g., Content-length: 42)

• Selection among grammar rules (e.g., DNS types for differerent RRs)
• Byte encoding (e.g., byte-order)

• Input model
• Analyzers require incremental, in-parallel processing

• Robustness
• Analyzers must detect and recover from parsing errors

RWTH Aachen - Dezember 2007

Small Example - HTTP Excerpt

76

type HTTP_Request = record {
 request:HTTP_RequestLine;
 msg: HTTP_Message(BODY_MAYBE);
};

type HTTP_RequestLine = record {
 method: HTTP_TOKEN;
 : HTTP_WS;
 uri: HTTP_URI;
 : HTTP_WS;
 version: HTTP_Version;
} &oneline;

type HTTP_Message(b: ExpectBody)= record {
 headers: HTTP_Headers;
 body_or_not: case b of {
 BODY_NOT_EXPECTED -> none: empty;
 default -> body: HTTP_Body(b);
 };
};

type HTTP_Headers = HTTP_Header[]
 &until($input.length() == 0);

type HTTP_HEADER_NAME = RE/|([^: \t]+:)/;
type HTTP_Header = record {
 name: HTTP_HEADER_NAME;
 : HTTP_WS;
 value: bytestring &restofdata;
} &oneline;

RWTH Aachen - Dezember 2007

(Almost) Full HTTP Analyzer

77

analyzer HTTP withcontext { # members of $context
 connection: HTTP_Conn;
 flow: HTTP_Flow;
};
enum DeliveryMode {
 UNKNOWN_DELIVERY_MODE,
 CONTENT_LENGTH,
 CHUNKED,
};
Regular expression patterns
type HTTP_TOKEN = RE/[^()<>@,;:\\"\/\[\]?={} \t]+/;
type HTTP_WS = RE/[\t]*/;
extern type BroConn;
extern type HTTP_HeaderInfo;
%header{
 // Between %.*{ and %} is embedded C++ header/
code
 class HTTP_HeaderInfo {
 public:
 HTTP_HeaderInfo(HTTP_Headers *headers) {
 delivery_mode = UNKNOWN_DELIVERY_MODE;
 for (int i = 0; i < headers->length(); +
+i) {
 HTTP_Header *h = (*headers)[i];
 if (h->name() == "CONTENT-LENGTH") {
 delivery_mode = CONTENT_LENGTH;
 content_length = to_int(h->value());
 } else if (h->name() == "TRANSFER-
ENCODING"
 && has_prefix(h->value(),
"CHUNKED")) {
 delivery_mode = CHUNKED;
 }
 }
 }
 DeliveryMode delivery_mode;
 int content_length;
 };
%}

Connection and flow
connection HTTP_Conn(bro_conn: BroConn) {
 upflow = HTTP_Flow(true); downflow = HTTP_Flow
(false);
};

flow HTTP_Flow(is_orig: bool) {
 flowunit = HTTP_PDU(is_orig)
 withcontext(connection, this);
};

Types
type HTTP_PDU(is_orig: bool) = case is_orig of {
 true -> request: HTTP_Request;
 false -> reply: HTTP_Reply;
};
type HTTP_Request = record {
 request: HTTP_RequestLine;
 msg: HTTP_Message;
};
type HTTP_Reply = record {
 reply: HTTP_ReplyLine;
 msg: HTTP_Message;
};

type HTTP_RequestLine = record {
 method: HTTP_TOKEN;
 : HTTP_WS; # an anonymous field has
no name
 uri: RE/[[:alnum:][:punct:]]+/;
 : HTTP_WS;
 version: HTTP_Version;
} &oneline, &let {
 bro_gen_req: bool = bro_event_http_request(
 $context.connection.bro_conn,
 method, uri, version.vers_str);
};
type HTTP_ReplyLine = record {
 version: HTTP_Version;
 : HTTP_WS;
 status: RE/[0-9]{3}/;
 : HTTP_WS;
 reason: bytestring &restofdata;
} &oneline, &let {
 bro_gen_resp: bool = bro_event_http_reply(
 $context.connection.bro_conn,
 version.vers_str, to_int(status), reason);
};

type HTTP_Version = record {
 : "HTTP/";
 vers_str: \RE/[0-9]+\.[0-9]+/;
};

type HTTP_Message = record {
 headers: HTTP_Headers;
 body: HTTP_Body(HTTP_HeaderInfo(headers));
};
type HTTP_Headers = HTTP_Header[] &until
($input.length() == 0);
type HTTP_Header = record {
 name: HTTP_TOKEN;
 : ":";
 : HTTP_WS;
 value: bytestring &restofdata;
} &oneline, &let {
 bro_gen_hdr: bool = bro_event_http_header(
 $context.connection.bro_conn,
 $context.flow.is_orig, name, value);
};
type HTTP_Body(hdrinfo: HTTP_HeaderInfo) =
 case hdrinfo.delivery_mode of {
 CONTENT_LENGTH -> body: bytestring &chunked,
 &length =
hdrinfo.content_length;
 CHUNKED -> chunks: HTTP_Chunks;
 default -> other: HTTP_UnknownBody;
};
type HTTP_Chunks = record {
 chunks: HTTP_Chunk[] &until
($element.chunk_length == 0);
 headers: HTTP_Headers;
};
type HTTP_Chunk = record {
 len_line: bytestring &oneline;
 data: bytestring &chunked, &length =
chunk_length;
 opt_crlf: case chunk_length of {
 0 -> none: empty;
 default -> crlf: bytestring &oneline;
 };
} &let {
 chunk_length: int = to_int(len_line, 16); # in
hexadecimal
};

(Excludes MIME formatting and escape sequences.)

RWTH Aachen - Dezember 2007

binpac in Bro 1.2

78

• binpac ships as part of the Bro distribution

• Includes binpac analyzers for several protocols
• HTTP, DNS, SUN/RPC, RPC Portmapper, CIFS, DCE/RPC, NCP
• bro --use-binpac enables binpac version for existing analyzers

• binpac will be default choice for new analyzers

• Analyzers already begin to be reused

RWTH Aachen - Dezember 2007

Cluster

79

RWTH Aachen - Dezember 2007

Simulation of Hashing Schemes

80

 1 day of UC Berkeley campus TCP traffic (231M connections), n = 10

!
"
#
$
%&
'(
("
)"
$
*
"
+
%,
+
-%
"
,
"
$
%&
'+
.)
'/
0
.'
1
$
%2
3
4

5
6

7
5

7
6

8
5

!1$%75955 !1$%7:955 !1$%88955 ;0"%<955

=&6!<

/>(!<

/>(!<%277%$1&"+4

=&6!8
md5

RWTH Aachen - Dezember 2007

Simulation of Hashing Schemes

80

 1 day of UC Berkeley campus TCP traffic (231M connections), n = 10

!
"
#
$
%&
'(
("
)"
$
*
"
+
%,
+
-%
"
,
"
$
%&
'+
.)
'/
0
.'
1
$
%2
3
4

5
6

7
5

7
6

8
5

!1$%75955 !1$%7:955 !1$%88955 ;0"%<955

=&6!<

/>(!<

/>(!<%277%$1&"+4

=&6!8
md5 md5-addr

RWTH Aachen - Dezember 2007

Simulation of Hashing Schemes

81

!
"
#
$
%&
'(
("
)"
$
*
"
+
%*
,
-
.
#
)"
&
%/
'0
1
%"
2
"
$
%&
'+
0)
'3
4
0'
,
$
%5
6
7

8
9

:
8

:
9

;
8

!,$%:8<88 !,$%:=<88 !,$%:><88 !,$%;;<88 ?4"%;<88 ?4"%@<88

-&9!= -&9!; 3.(!= 3.(!=%5::%$,&"+7

RWTH Aachen - Dezember 2007

CPU Load per Node

82

0.0 0.1 0.2 0.3 0.4 0.5

0
5

1
0

1
5

CPU utilization

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

node0

node1

node2

node3

node4

node5

node6

node7

node8

node9

10 backends, ext. LBNL config, 2hr full trace, (~97GB, 134M pkts)

RWTH Aachen - Dezember 2007

Scaling of CPU

83

0.0 0.1 0.2 0.3 0.4 0.5

0
5

1
0

1
5

2
0

2
5

CPU utilization

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

10 nodes

5 nodes

3 nodes

 ext. LBNL config, 2hr full trace, (~97GB, 134M pkts)

RWTH Aachen - Dezember 2007

Load on Berkeley Campus

84

C
P

U
 l
o

a
d

 (
%

)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Tue 12:00 Tue 18:00 Wed 0:00 Wed 6:00 Wed 12:00 Wed 18:00 Thu 0:00 Thu 6:00

Backend 0

Backend 1

Backend 2

Backend 3

Backend 4

Backend 5

Proxy 0

Proxy 1

Manager

With 1 frontend = 50% of the total traffic

RWTH Aachen - Dezember 2007

LBNL Infrastructure

85

RWTH Aachen - Dezember 2007

10Gbps Tap Setup

86

Apcon Physical Layer Switches

