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Abstract—In network intrusion detection research, one pop-
ular strategy for finding attacks is monitoring a network’s
activity for anomalies: deviations from profiles of normality
previously learned from benign traffic, typically identified
using tools borrowed from the machine learning community.
However, despite extensive academic research one finds a
striking gap in terms of actual deployments of such systems:
compared with other intrusion detection approaches, machine
learning is rarely employed in operational “real world” settings.
We examine the differences between the network intrusion
detection problem and other areas where machine learning
regularly finds much more success. Our main claim is that
the task of finding attacks is fundamentally different from
these other applications, making it significantly harder for the
intrusion detection community to employ machine learning
effectively. We support this claim by identifying challenges
particular to network intrusion detection, and provide a set

of guidelines meant to strengthen future research on anomaly
detection.
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I. INTRODUCTION

Traditionally, network intrusion detection systems (NIDS)

are broadly classified based on the style of detection they are

using: systems relying on misuse-detection monitor activity

with precise descriptions of known malicious behavior, while

anomaly-detection systems have a notion of normal activity

and flag deviations from that profile.1 Both approaches have

been extensively studied by the research community for

many years. However, in terms of actual deployments, we

observe a striking imbalance: in operational settings, of

these two main classes we find almost exclusively only

misuse detectors in use—most commonly in the form of

signature systems that scan network traffic for characteristic

byte sequences.

This situation is somewhat striking when considering

the success that machine-learning—which frequently forms

the basis for anomaly-detection—sees in many other areas

of computer science, where it often results in large-scale

1Other styles include specification-based [1] and behavioral detec-
tion [2]. These approaches focus respectively on defining allowed types
of activity in order to flag any other activity as forbidden, and analyzing
patterns of activity and surrounding context to find secondary evidence of
attacks.

deployments in the commercial world. Examples from other

domains include product recommendations systems such

as used by Amazon [3] and Netflix [4]; optical character

recognition systems (e.g., [5], [6]); natural language trans-

lation [7]; and also spam detection, as an example closer to

home [8].

In this paper we set out to examine the differences

between the intrusion detection domain and other areas

where machine learning is used with more success. Our main

claim is that the task of finding attacks is fundamentally

different from other applications, making it significantly

harder for the intrusion detection community to employ

machine learning effectively. We believe that a significant

part of the problem already originates in the premise, found

in virtually any relevant textbook, that anomaly detection is

suitable for finding novel attacks; we argue that this premise

does not hold with the generality commonly implied. Rather,

the strength of machine-learning tools is finding activity

that is similar to something previously seen, without the

need however to precisely describe that activity up front (as

misuse detection must).

In addition, we identify further characteristics that our do-

main exhibits that are not well aligned with the requirements

of machine-learning. These include: (i) a very high cost of

errors; (ii) lack of training data; (iii) a semantic gap between

results and their operational interpretation; (iv) enormous

variability in input data; and (v) fundamental difficulties

for conducting sound evaluation. While these challenges

may not be surprising for those who have been working

in the domain for some time, they can be easily lost on

newcomers. To address them, we deem it crucial for any

effective deployment to acquire deep, semantic insight into

a system’s capabilities and limitations, rather than treating

the system as a black box as unfortunately often seen.

We stress that we do not consider machine-learning an

inappropriate tool for intrusion detection. Its use requires

care, however: the more crisply one can define the context

in which it operates, the better promise the results may hold.

Likewise, the better we understand the semantics of the

detection process, the more operationally relevant the system

will be. Consequently, we also present a set of guidelines

meant to strengthen future intrusion detection research.



Throughout the discussion, we frame our mindset around

on the goal of using an anomaly detection system effec-

tively in the “real world”, i.e., in large-scale, operational

environments. We focus on network intrusion detection as

that is our main area of expertise, though we believe that

similar arguments hold for host-based systems. For ease of

exposition we will use the term anomaly detection somewhat

narrowly to refer to detection approaches that rely primarily

on machine-learning. By “machine-learning” we mean algo-

rithms that are first trained with reference input to “learn”

its specifics (either supervised or unsupervised), to then be

deployed on previously unseen input for the actual detection

process. While our terminology is deliberately a bit vague,

we believe it captures what many in the field intuitively

associate with the term “anomaly detection”.

We structure the remainder of the paper as follows. In Sec-

tion II, we begin with a brief discussion of machine learning

as it has been applied to intrusion detection in the past. We

then in Section III identify the specific challenges machine

learning faces in our domain. In Section IV we present

recommendations that we hope will help to strengthen future

research, and we briefly summarize in Section V.

II. MACHINE LEARNING IN INTRUSION DETECTION

Anomaly detection systems find deviations from expected

behavior. Based on a notion of normal activity, they report

deviations from that profile as alerts. The basic assumption

underlying any anomaly detection system—malicious activ-

ity exhibits characteristics not observed for normal usage—

was first introduced by Denning in her seminal work on

the host-based IDES system [9] in 1987. To capture normal

activity, IDES (and its successor NIDES [10]) used a com-

bination of statistical metrics and profiles. Since then, many

more approaches have been pursued. Often, they borrow

schemes from the machine learning community, such as

information theory [11], neural networks [12], support vector

machines [13], genetic algorithms [14], artificial immune-

systems [15], and many more. In our discussion, we focus on

anomaly detection systems that utilize such machine learning

approaches.

Chandola et al. provide a survey of anomaly detection

in [16], including other areas where similar approaches

are used, such as monitoring credit card spending patterns

for fraudulent activity. While in such applications one is

also looking for outliers, the data tends to be much more

structured. For example, the space for representing credit

card transactions is of relatively low dimensionality and se-

mantically much more well-defined than network traffic [17].

Anomaly detection approaches must grapple with a set of

well-recognized problems [18]: the detectors tend to gener-

ate numerous false positives; attack-free data for training is

hard to find; and attackers can evade detection by gradually

teaching a system to accept malicious activity as benign. Our

discussion in this paper aims to develop a different general

point: that much of the difficulty with anomaly detection

systems stems from using tools borrowed from the machine

learning community in inappropriate ways.

Compared to the extensive body of research, anomaly

detection has not obtained much traction in the “real world”.

Those systems found in operational deployment are most

commonly based on statistical profiles of heavily aggre-

gated traffic, such as Arbor’s Peakflow [19] and Lanscope’s

StealthWatch [20]. While highly helpful, such devices oper-

ate with a much more specific focus than with the generality

that research papers often envision.2 We see this situation

as suggestive that many anomaly detection systems from

the academic world do not live up to the requirements of

operational settings.

III. CHALLENGES OF USING MACHINE LEARNING

It can be surprising at first to realize that despite extensive

academic research efforts on anomaly detection, the success

of such systems in operational environments has been very

limited. In other domains, the very same machine learning

tools that form the basis of anomaly detection systems have

proven to work with great success, and are regularly used

in commercial settings where large quantities of data render

manual inspection infeasible. We believe that this “success

discrepancy” arises because the intrusion detection domain

exhibits particular characteristics that make the effective

deployment of machine learning approaches fundamentally

harder than in many other contexts.

In the following we identify these differences, with an aim

of raising the community’s awareness of the unique chal-

lenges anomaly detection faces when operating on network

traffic. We note that our examples from other domains are

primarily for illustration, as there is of course a continuous

spectrum for many of the properties discussed (e.g., spam

detection faces a similarly adversarial environment as in-

trusion detection does). We also note that we are network

security researchers, not experts on machine-learning, and

thus we argue mostly at an intuitive level rather than attempt-

ing to frame our statements in the formalisms employed

for machine learning. However, based on discussions with

colleagues who work with machine learning on a daily basis,

we believe these intuitive arguments match well with what

a more formal analysis would yield.

A. Outlier Detection

Fundamentally, machine-learning algorithms excel much

better at finding similarities than at identifying activity that

does not belong there: the classic machine learning appli-

cation is a classification problem, rather than discovering

meaningful outliers as required by an anomaly detection

system [21]. Consider product recommendation systems

such as that used by Amazon [3]: it employs collaborative

2We note that for commercial solutions it is always hard to say what
they do exactly, as specifics of their internals are rarely publicly available.



filtering, matching each of a user’s purchased (or positively

rated) items with other similar products, where similarity is

determined by products that tend be bought together. If the

system instead operated like an anomaly detection system, it

would look for items that are typically not bought together—

a different kind of question with a much less clear answer,

as according to [3], many product pairs have no common

customers.

In some sense, outlier detection is also a classification

problem: there are two classes, “normal” and “not normal”,

and the objective is determining which of the two more

likely matches an observation. However, a basic rule of

machine-learning is that one needs to train a system with

specimens of all classes, and, crucially, the number of

representatives found in the training set for each class should

be large [22]. Yet for anomaly detection aiming to find novel

attacks, by definition one cannot train on the attacks of

interest, but only on normal traffic, and thus having only

one category to compare new activity against.

In other words, one often winds up training an anomaly

detection system with the opposite of what it is supposed

to find—a setting certainly not ideal, as it requires having

a perfect model of normality for any reliable decision. If,

on the other hand, one had a classification problem with

multiple alternatives to choose from, then it would suffice

to have a model just crisp enough to separate the classes. To

quote from Witten et al. [21]: The idea of specifying only

positive examples and adopting a standing assumption that

the rest are negative is called the closed world assumption.

. . . [The assumption] is not of much practical use in real-

life problems because they rarely involve “closed” worlds

in which you can be certain that all cases are covered.

Spam detection is an example from the security domain

of successfully applying machine learning to a classification

problem. Originally proposed by Graham [8], Bayesian

frameworks trained with large corpora of both spam and

ham have evolved into a standard tool for reliably identifying

unsolicited mail.

The observation that machine learning works much better

for such true classification problems then leads to the

conclusion that anomaly detection is likely in fact better

suited for finding variations of known attacks, rather than

previously unknown malicious activity. In such settings, one

can train the system with specimens of the attacks as they

are known and with normal background traffic, and thus

achieve a much more reliable decision process.

B. High Cost of Errors

In intrusion detection, the relative cost of any misclassi-

fication is extremely high compared to many other machine

learning applications. A false positive requires spending

expensive analyst time examining the reported incident only

to eventually determine that it reflects benign underlying

activity. As argued by Axelsson, even a very small rate of

false positives can quickly render an NIDS unusable [23].

False negatives, on the other hand, have the potential to

cause serious damage to an organization: even a single

compromised system can seriously undermine the integrity

of the IT infrastructure. It is illuminating to compare such

high costs with the impact of misclassifications in other

domains:

• Product recommendation systems can readily tolerate

errors as these do not have a direct negative impact.

While for the seller a good recommendation has the

potential to increase sales, a bad choice rarely hurts

beyond a lost opportunity to have made a more enticing

recommendation. (In fact, one might imagine such

systems deliberately making more unlikely guesses

on occasion, with the hope of pointing customers to

products they would not have otherwise considered.) If

recommendations do not align well with the customers’

interest, they will most likely just continue shopping,

rather than take a damaging step such as switching

to different seller. As Greg Linden said (author of the

recommendation engine behind Amazon): “Recommen-

dations involve a lot of guesswork. Our error rate will

always be high.” [24]

• OCR technology can likewise tolerate errors much more

readily than an anomaly detection system. Spelling and

grammar checkers are commonly employed to clean up

results, weeding out the obvious mistakes. More gener-

ally, statistical language models associate probabilities

with results, allowing for postprocessing of a system’s

initial output [25]. In addition, users have been trained

not to expected perfect documents but to proofread

where accuracy is important. While this corresponds to

verifying NIDS alerts manually, it is much quicker for a

human eye to check spelling of a word than to validate

a report of, say, a web server compromise. Similar

to OCR, contemporary automated language translation

operates at relatively large errors rates [7], and while

recent progress has been impressive, nobody would

expect more than a rough translation.

• Spam detection faces a highly unbalanced cost model:

false positives (i.e., ham declared as spam) can prove

very expensive, but false negatives (spam not identi-

fied as such) do not have a significant impact. This

discrepancy can allow for “lopsided” tuning, leading

to systems that emphasize finding obvious spam fairly

reliably, yet exhibiting less reliability for new variations

hitherto unseen. For an anomaly detection system that

primarily aims to find novel attacks, such performance

on new variations rarely constitutes an appropriate

trade-off.

Overall, an anomaly detection system faces a much more

stringent limit on the number of errors that it can tolerate.



However, the intrusion detection-specific challenges that we

discuss here all tend to increase error rates—even above

the levels for other domains. We deem this unfortunate

combination as the primary reason for the lack of success

in operational settings.

C. Semantic Gap

Anomaly detection systems face a key challenge of trans-

ferring their results into actionable reports for the network

operator. In many studies, we observe a lack of this crucial

final step, which we term the semantic gap. Unfortunately,

in the intrusion detection community we find a tendency

to limit the evaluation of anomaly detection systems to

an assessment of a system’s capability to reliably identify

deviations from the normal profile. While doing so indeed

comprises an important ingredient for a sound study, the next

step then needs to interpret the results from an operator’s

point of view—“What does it mean?”

Answering this question goes to the heart of the difference

between finding “abnormal activity” and “attacks”. Those

familiar with anomaly detection are usually the first to

acknowledge that such systems are not targeting to identify

malicious behavior but just report what has not been seen

before, whether benign or not. We argue however that

one cannot stop at that point. After all, the objective of

deploying an intrusion detection system is to find attacks,

and thus a detector that does not allow for bridging this gap

is unlikely to meet operational expectations. The common

experience with anomaly detection systems producing too

many false positives supports this view: by definition, a

machine learning algorithm does not make any mistakes

within its model of normality; yet for the operator it is the

results’ interpretation that matters.

When addressing the semantic gap, one consideration is

the incorporation of local security policies. While often

neglected in academic research, a fundamental observation

about operational networks is the degree to which they

differ: many security constraints are a site-specific property.

Activity that is fine in an academic setting can be banned in

an enterprise network; and even inside a single organization,

department policies can differ widely. Thus, it is crucial for

a NIDS to accommodate such differences.

For an anomaly detection system, the natural strategy

to address site-specifics is having the system “learn” them

during training with normal traffic. However, one cannot

simply assert this as the solution to the question of adapting

to different sites; one needs to explicitly demonstrate it, since

the core issue concerns that such variations can prove diverse

and easy to overlook.

Unfortunately, more often than not security policies are

not defined crisply on a technical level. For example, an

environment might tolerate peer-to-peer traffic as long as

it is not used for distributing inappropriate content, and

that it remains “below the radar” in terms of volume. To

report a violation of such a policy, the anomaly detection

system would need to have a notion of what is deemed

“appropriate” or “egregiously large” in that particular envi-

ronment; a decision out of reach for any of today’s systems.

Reporting just the usage of P2P applications is likely not

particularly useful, unless the environment flat-out bans such

usage. In our experience, such vague guidelines are actually

common in many environments, and sometimes originate in

the imprecise legal language found in the “terms of service”

to which users must agree [26].

The basic challenge with regard to the semantic gap

is understanding how the features the anomaly detection

system operates on relate to the semantics of the network

environment. In particular, for any given choice of features

there will be a fundamental limit to the kind of determina-

tions a NIDS can develop from them. Returning to the P2P

example, when examining only NetFlow records, it is hard

to imagine how one might spot inappropriate content.3 As

another example, consider exfiltration of personally identi-

fying information (PII). In many threat models, loss of PII

ranks quite high, as it has the potential for causing major

damage (either directly, in financial terms, or due to publicity

or political fallout). On a technical level, some forms of PII

are not that hard to describe; e.g., social security numbers as

well bank account numbers follow specific schemes that one

can verify automatically.4 But an anomaly detection system

developed in the absence of such descriptions has little hope

of finding PII, and even given examples of PII and non-

PII will likely have difficulty distilling rules for accurately

distinguishing one from the other.

D. Diversity of Network Traffic

Network traffic often exhibits much more diversity than

people intuitively expect, which leads to misconceptions

about what anomaly detection technology can realistically

achieve in operational environments. Even within a single

network, the network’s most basic characteristics—such as

bandwidth, duration of connections, and application mix—

can exhibit immense variability, rendering them unpre-

dictable over short time intervals (seconds to hours). The

3We note that in fact the literature holds some fairly amazing demon-
strations of how much more information a dataset can provide than what
we might intuitively expect: Wright et al. [27] infer the language spoken
on encrypted VOIP sessions; Yen et al. [28] identify the particular web
browser a client uses from flow-level data; Narayanan et al. [29] identify
users in the anonymized Netflix datasets via correlation with their public
reviews in a separate database; and Kumar et al. [30] determine from lossy
and remote packet traces the number of disks attached to systems infected
by the “Witty” worm, as well as their uptime to millisecond precision.
However these examples all demonstrate the power of exploiting structural

knowledge informed by very careful examination of the particular domain
of study—results not obtainable by simply expecting an anomaly detection
system to develop inferences about “peculiar” activity.

4With limitations of course. As it turns out, Japanese phone numbers look
a lot like US social security numbers, as the Lawrence Berkeley National
Laboratory noticed when monitoring for them in email [31].



widespread prevalence of strong correlations and “heavy-

tailed” data transfers [32], [33] regularly leads to large bursts

of activity. It is crucial to acknowledge that in networking

such variability occurs regularly; it does not represent any-

thing unusual. For an anomaly detection system, however,

such variability can prove hard to deal with, as it makes it

difficult to find a stable notion of “normality”.

One way to reduce the diversity of Internet traffic is

to employ aggregation. While highly variable over small-

to-medium time intervals, traffic properties tend to greater

stability when observed over longer time periods (hours to

days, sometimes weeks). For example, in most networks

time-of-day and day-of-week effects exhibit reliable pat-

terns: if during today’s lunch break, the traffic volume is

twice as large as during the corresponding time slots last

week, that likely reflects something unusual occurring. Not

coincidentally, one form of anomaly detection system we

do find in operation deployment is those that operate on

highly aggregated information, such as “volume per hour” or

“connections per source”. On the other hand, incidents found

by these systems tend to be rather noisy anyway—and often

straight-forward to find with other approaches (e.g., simple

threshold schemes). This last observation goes to the heart

of what can often undermine anomaly detection research

efforts: a failure to examine whether simpler, non-machine

learning approaches might work equally well.

Finally, we note that traffic diversity is not restricted

to packet-level features, but extends to application-layer

information as well, both in terms of syntactic and semantic

variability. Syntactically, protocol specifications often pur-

posefully leave room for interpretation, and in heterogeneous

traffic streams there is ample opportunity for corner-case

situations to manifest (see the discussion of “crud” in [34]).

Semantically, features derived from application protocols

can be just as fluctuating as network-layer packets (see, e.g.,

[35], [36]).

E. Difficulties with Evaluation

For an anomaly detection system, a thorough evaluation

is particularly crucial to perform, as experience shows that

many promising approaches turn out in practice to fall short

of one’s expectations. That said, devising sound evaluation

schemes is not easy, and in fact turns out to be more difficult

than building the detector itself. Due to the opacity of

the detection process, the results of an anomaly detection

system are harder to predict than for a misuse detector. We

discuss evaluation challenges in terms of the difficulties for

(i) finding the right data, and then (ii) interpreting results.

1) Difficulties of Data: Arguably the most significant

challenge an evaluation faces is the lack of appropriate

public datasets for assessing anomaly detection systems. In

other domains, we often find either standardized test suites

available, or the possibility to collect an appropriate corpus,

or both. For example, for automatic language translation

“a large training set of the input-output behavior that we

seek to automate is available to us in the wild” [37]. For

spam detectors, dedicated “spam feeds” [38] provide large

collections of spam free of privacy concerns. Getting suitable

collections of “ham” is more difficult, however even a small

number of private mail archives can already yield a large

corpus [39]. For OCR, sophisticated methods have been

devised to generate ground-truth automatically [40]. In our

domain, however, we often have neither standardized test

sets, nor any appropriate, readily available data.

The two publicly available datasets that have pro-

vided something of a standardized setting in the past—the

DARPA/Lincoln Labs packet traces [41], [42] and the KDD

Cup dataset derived from them [43]—are now a decade old,

and no longer adequate for any current study. The DARPA

dataset contains multiple weeks of network activity from a

simulated Air Force network, generated in 1998 and refined

in 1999. Not only is this data synthetic, and no longer even

close to reflecting contemporary attacks, but it also has been

so extensively studied over the years that most members of

the intrusion detection community deem it wholly uninter-

esting if a NIDS now reliably detects the attacks it contains.

(Indeed, the DARPA data faced pointed criticisms not long

after its release [44], particularly regarding the degree to

which simulated data can be appropriate for the evaluation

of a NIDS.) The KDD dataset represents a distillation of

the DARPA traces into features for machine learning. Not

only does it inherit the shortcomings of the DARPA data,

but the features have also turned out to exhibit unfortunate

artifacts [45].

Given the lack of publicly available data, it is natural to

ask why we find such a striking gap in our community.5 The

primary reason clearly arises from the data’s sensitive nature:

the inspection of network traffic can reveal highly sensitive

information, including confidential or personal communi-

cations, an organization’s business secrets, or its users’

network access patterns. Any breach of such information

can prove catastrophic not only for the organization itself,

but also for affected third parties. It is understandable that in

the face of such high risks, researchers frequently encounter

insurmountable organizational and legal barriers when they

attempt to provide datasets to the community.

Given this difficulty, researchers have pursued two al-

ternative routes in the past: simulation and anonymization.

As demonstrated by the DARPA dataset, network traffic

generated by simulation can have the major benefit of

being free of sensitivity concerns. However, Internet traffic

5We note that the lack of public network data is not limited to the
intrusion detection domain. We see effects similar to the overuse of the
DARPA dataset in empirical network research: the ClarkNet-HTTP [46]
dataset contains two weeks’ worth of HTTP requests to ClarkNet’s web
server, recorded in 1995. While researchers at ClarkNet stopped using these
logs for their own studies in 1997, in total researchers have used the traces
for evaluations in more than 90 papers published between 1995 and 2007—
13 of these in 2007 [47]!



is already exceedingly difficult to simulate realistically by

itself [48]. Evaluating an anomaly detection system that

strives to find novel attacks using only simulated activity

will often lack any plausible degree of realism or relevance.

One can also sanitize captured data by, e.g., removing

or anonymizing potentially sensitive information [49], [50],

[51]. However, despite intensive efforts [52], [53], publishing

such datasets has garnered little traction to date, mostly one

suspects for the fear that information can still leak. (As

[54] demonstrates, this fear is well justified.) Furthermore,

even if a scrubbed dataset is available, its use with an

anomaly detection system can be quite problematic, since

by definition such systems look precisely for the kind of

artifacts that tend to be removed during the anonymization

process [55].

Due to the lack of public data, researchers are forced

to assemble their own datasets. However, in general this

is not an easy task, as most lack access to appropriately

sized networks. It is crucial to realize that activity found in

a small laboratory network differs fundamentally from the

aggregate traffic seen upstream where NIDSs are commonly

deployed [26]. Conclusions drawn from analyzing a small

environment cannot be generalized to settings of larger scale.

There is unfortunately no general answer to countering

the lack of data for evaluation purposes. For any study

it is thus crucial to (i) acknowledge shortcomings that

one’s evaluation dataset might impose, and (ii) consider

alternatives specific to the particular setting. We return to

these points in Section IV-D1.

2) Mind the Gap: The semantic gap requires any study

to perform an explicit final step that tends to be implicit

in other domains: changing perspective to that of a user

of the system. In addition to correctly identifying attacks,

an anomaly detection system also needs to support the

operator in understanding the activity and enabling a quick

assessment of its impact. Suppose a system correctly finds a

previously unknown web server exploit, yet only reports it

as “HTTP traffic of host did not match the normal profile”.

The operator will spend significant additional effort figuring

out what happened, even if already having sufficient trust in

the system to take its alerts seriously. In other applications of

machine learning, we do not see a comparable problem, as

results tend to be intuitive there. Returning to spam detection

again, if the detector reports a mail as spam, there is not

much room for interpretation left.

We argue that when evaluating an anomaly detection

system, understanding the system’s semantic properties—

the operationally relevant activity that it can detect, as well

as the blind spots every system will necessarily have—

is much more valuable than identifying a concrete set of

parameters for which the system happens to work best for

a particular input. The specifics of network environments

differ too widely to allow for predicting performance in

other settings based on just numbers. Yet, with insight

into the conceptual capabilities of a system, a network

operator can judge a detector’s potential to support different

operational concerns as required. That said, we note that

Tan et al. demonstrated the amount of effort it can require

to understand a single parameter’s impact, even with an

conceptually simple anomaly detection system [56] .

3) Adversarial Setting: A final characteristic unique to

the intrusion detection domain concerns the adversarial en-

vironment such systems operate in. In contrast, users of OCR

systems won’t try to conceal characters in the input, nor will

Amazon customers have much incentive (or opportunity) to

mislead the company’s recommendation system. Network

intrusion detection, however, must grapple with a classic

arms-race: attackers and defenders each improve their tools

in response to the other side devising new techniques. One

particular, serious concern in this regard is evasion: attackers

adjusting their activity to avoid detection. While evasion

poses a fundamentally hard problem for any NIDS [57],

anomaly detection faces further risks due to the nature

of underlying machine learning. In [58], Fogla and Lee

present an automated approach to mutate attacks so that they

match a system’s normal profile. More generally, in [59]

Barreno et al. present a taxonomy of attacks on machine-

learning systems.

From a research perspective, addressing evasion is a

stimulating topic to explore; on theoretical grounds it is

what separates intrusion detection most clearly from other

domains. However, we argue that from a practical perspec-

tive, the impact of the adversarial setting is not necessarily

as significant as one might initially believe. Exploiting the

specifics of a machine learning implementation requires

significant effort, time, and expertise on the attacker’s side.

Considering that most of today’s attacks are however not

deliberately targeting handpicked victims—yet simply ex-

ploit whatever sites they find vulnerable, indiscriminantly

seeking targets— the risk of an anomaly detector falling

victim to a sophisticated evasion attack is small in many

environments. Assuming such a threat model, it appears pru-

dent to focus first on addressing the many other challenges in

using machine learning effectively, as they affect a system’s

operational performance more severely.

IV. RECOMMENDATIONS FOR USING MACHINE

LEARNING

In light of the points developed above, we now formulate

guidelines that we hope will help to strengthen future

research on anomaly detection. We note that we view these

guidelines as touchstones rather than as firm rules; there

is certainly room for further discussion within the wider

intrusion detection community.

If we could give only one recommendation on how to

improve the state of anomaly detection research, it would be:

Understand what the system is doing. The intrusion detection

community does not benefit any further from yet another



study measuring the performance of some previously untried

combination of a machine learning scheme with a particular

feature set, applied to something like the DARPA dataset.

The nature of our domain is such that one can always find

a variation that works slightly better than anything else in

a particular setting. Unfortunately, while obvious for those

working in the domain for some time, this fact can be easily

lost on newcomers. Intuitively, when achieving better results

on the same data than anybody else, one would expect this

to be a definite contribution to the progress of the field. The

point we wish to convey however is that we are working in

an area where insight matters much more than just numerical

results.

A. Understanding the Threat Model

Before starting to develop an anomaly detector, one needs

to consider the anticipated threat model, as that establishes

the framework for choosing trade-offs. Questions to address

include:

• What kind of environment does the system target?

Operation in a small network faces very different chal-

lenges than for a large enterprise or backbone network;

academic environments impose different requirements

than commercial enterprises.

• What do missed attacks cost? Possible answers ranges

from “very little” to “lethal.” A site’s determination will

depend on its security demands as well as on other

deployed attack detectors.

• What skills and resources will attackers have? If a site

deems itself at high risk for explicit targeting by an

attacker, it needs to anticipate much more sophisticated

attacks than those incurred by potential victims of

indiscriminant “background radiation” activity.

• What concern does evasion pose? The degree to which

attackers might analyze defense techniques and seek

to circumvent them determines the robustness require-

ments for any detector.

There are no perfect detectors in intrusion detection—

hence one always must settle for less-than-ideal solutions.

However, operators can make informed decisions only when

a system’s threat model is clearly stated.

B. Keeping The Scope Narrow

It is crucial to have a clear picture of what problem

a system targets: what specifically are the attacks to be

detected? The more narrowly one can define the target

activity, the better one can tailor a detector to its specifics

and reduce the potential for misclassifications.

Of course machine-learning is not a “silver bullet” guar-

anteed to appropriately match a particular detection task.

Thus, after identifying the activity to report, the next step is

a neutral assessment of what constitutes the right sort of tool

for the task; in some cases it will be an anomaly detector, but

in others a rule-based approach might hold more promise. A

common pitfall is starting with the premise to use machine-

learning (or, worse, a particular machine-learning approach)

and then looking for a problem to solve. We argue that such

a starting point is biased and thus rarely leads to the best

solution to a problem.

When settling on a specific machine-learning algorithm

as the appropriate tool, one should have an answer for

why the particular choice promises to perform well in the

intended setting—not only on strictly mathematical grounds,

but considering domain-specific properties. As discussed by

Duda et al. [22], there are “no context-independent [. . . ]

reasons to favor one learning [. . . ] method over another”

(emphasis added); they call this the “no free lunch theorem”.

Note that if existing systems target similar activity, it can be

illuminating to understand their shortcomings to motivate

how the proposed approach avoids similar problems.

A substantive part of answering the Why? question is

identifying the feature set the detector will work with: insight

into the features’ significance (in terms of the domain) and

capabilities (in terms of revealing the targeted activity) goes

a long way towards reliable detection. A common pitfall

here is the temptation to base the feature set on a dataset

that happens to be at hand for evaluation. However, if one

cannot make a solid argument for the relation of the features

to the attacks of interest, the resulting study risks foundering

on serious flaws.

A good example for the kind of mindset we deem vital for

sound anomaly detection studies is the work on web-based

attacks by Kruegel et al. [60]. From the outset, the authors

focus on a very specific class of attacks: exploiting web

servers with malformed query parameters. The discussion

convincingly argues for the need of anomaly detection

(such attacks share conceptual similarities, yet differ in their

specifics sufficiently to make writing signatures impractical);

and the authors clearly motivate the choice of features by

comparing characteristics of benign and malicious requests

(e.g., the typical length of a query’s parameters tends to

be short, while a successful buffer overflow attempt likely

requires long shellcode sequences and padding). Laying out

the land like this sets up the stage for a well-grounded study.

C. Reducing the Costs

Per the discussion in Section III-B, it follows that one

obtains enormous benefit from reducing the costs associated

with using an anomaly detection system. Anecdotally, the

number one complaint about anomaly detection systems

is the excessive number of false positives they commonly

report. As we have seen, an anomaly detection system

does not necessarily make more mistakes than machine

learning systems deployed in other domains—yet the high

cost associated with each error often conflicts with effective



operation. Thus, limiting false positives must be a top

priority for any anomaly detection system.

Likely the most important step towards fewer mistakes is

reducing the system’s scope, as discussed in Section IV-B.

Arguably, without a clear objective no anomaly detection

system can achieve a tolerable amount of false positives

without unacceptably compromising on its detection rate.

The setup of the underlying machine-learning problem also

has a direct impact on the number of false positives. Per

Section III-A, machine-learning works best when trained

using activity similar to that targeted for detection.

An anomaly detection system also requires a strategy

to deal with the natural diversity of network traffic (Sec-

tion III-D). Often, aggregating or averaging features over

suitable time intervals proves helpful, assuming the threat

model allows for coarser granularity. Another approach is to

carefully examine the features for their particular properties;

some will be more invariant than others. As a simple

flow-level example, the set of destination ports a particular

internal host contacts will likely fluctuate quite a bit for

typical client systems; but we might often find the set of

ports on which it accepts incoming connections to be stable

over extended periods of time.

Finally, we can reduce false positives by post-processing

them with the support of additional information. For ex-

ample, Gu et al.’s “BotHunter” system uses a “statistical

payload anomaly detection engine” as one tool among others

(Snort signatures, and a typical scan detector), and a final

stage correlates the output of all of them [61]. Likewise,

Anagnostakis et al.’s “Shadow Honeypots” validate the

results of anomaly detectors with an instrumented copy

of the protected system [62]. If we find automated post-

processing infeasible, we might still be able to reduce

costs by providing the analyst with additional information

designed to accelerate the manual inspection process.

D. Evaluation

When evaluating an anomaly detection system, the pri-

mary objective should be to develop insight into the system’s

capabilities: What can it detect, and why? What can it

not detect, and why not? How reliably does it operate?

Where does it break? In our experience, the #1 reason

that conference submissions on anomaly detection fail arises

from a failure to adequately explore these issues. We discuss

evaluation separately in terms of working with data, and

interpreting results.

1) Working with data: The single most important step

for sound evaluation concerns obtaining appropriate data to

work with. The “gold standard” here is obtaining access

to a dataset containing real network traffic from as large

an environment as possible6; and ideally multiple of these

from different networks. Work with actual traffic greatly

strengthens a study, as the evaluation can then demonstrate

how well the system should work in practice. In our experi-

ence, the best way to obtain such data is to provide a clear

benefit in return to the network’s operators; either, ideally,

by research that aims to directly help to improve operations,

or by exchanging the access for work on an unrelated area

of importance to the operators.

Note that the options for obtaining data differ with the

setting, and it often pays to consider potential data sources

early on when designing the detector. For example, hon-

eypots [63] can provide data (usually) free of sensitivity

concerns, though they cannot provide insight into how mali-

cious traffic manifests differently from benign “background”

traffic; or when working with companies that control large

quantities of the data of interest, one might need to plan

strategically by sending a student or staff member for an

extended stay. Alternatively, mediated trace access can be

a viable strategy [64]: rather than bringing the data to

the experimenter, bring the experiment to the data, i.e.,

researchers send their analysis programs to data providers

who then run them on their behalf and return the output.

Once acquired, the datasets require a careful assessment

of their characteristics. To interpret results correctly, one

must not only understand what the data contains, but also

how it is flawed. No dataset is perfect: often measurements

include artifacts that can impact the results (such as filtering

or unintended loss), or unrelated noise that one can safely

filter out if readily identified (e.g., an internal vulnerability

scan run by the security department). See [65] for further

discussion of issues relating to working with network data.

When evaluating an anomaly detection system, one al-

ways needs multiple datasets. First, one must train the

system with different data than used for ultimate evaluation.

(This is a basic requirement for sound science, yet over-

looked surprisingly often; see however [21] for a set of stan-

dard techniques one can apply when having only limited data

available). Perhaps less obviously, to demonstrate that the

system can adapt to different environments through learning

requires evaluation using data from multiple sources. We

stress that, as noted in Section III-E1, the DARPA and KDD

Cup traces cannot serve as viable datasets. Their only role

in contemporary research is for basic functionality tests and

cross-checking results (i.e., to test whether an approach is

hopelessly broken).

Subdividing is a standard approach for performing training

and detection on different traffic even when one has only a

single dataset from the examined environment. It works by

selecting subsets of the available data via random sampling.

6Results from large environments usually transfer directly to smaller net-
works, with the benefit that one can choose trade-offs more conservatively
in the latter. However, results collected in small environments rarely apply
directly to large ones.



Subdividing can work well if it is performed in advance of

the actual study. Note however that the splitting must be

unbiased with regards to the features the anomaly detection

system examines. For example, when operating on a per-

flow basis, one should flow-sample the dataset rather than

packet-sample.

2) Understanding results: The most important aspect of

interpreting results is to understand their origins. A sound

evaluation frequently requires relating input and output on

a very low-level. Researchers need to manually examine

false positives. If when doing so one cannot determine

why the system incorrectly reported a particular instance,

this indicates a lack of insight into the anomaly detection

system’s operation. Note, one needs to relate such false

positives to the semantics of the traffic; it is hardly helpful to

frame them in the mathematical terms of the detection logic

(“activity exceeded the distance metric’s threshold”). If faced

with too many false positives to manually examine, then one

can employ random sampling to select an appropriately sized

subset for direct inspection.

False negatives often prove harder to investigate than

false positives because they require reliable ground-truth,

which can be notoriously hard to obtain for an anomaly

detection system that aims to spot previously unseen activity.

Nevertheless, such an assessment forms a crucial part of

the story and merits careful attention. It can be highly

beneficial to consider the question of ground-truth already

at the beginning of a study. If one cannot find a sound way

to obtain ground-truth for the evaluation, then it becomes

questionable to pursue the work at all, even if it otherwise

appears on a solid foundation. One must collect ground-truth

via a mechanism orthogonal (unrelated) to how the detector

works. One approach is to use a different mechanism to label

the input, with the obvious disadvantage that such input will

only be as good as this other technique. (Sometimes a subset

of the data can arguably be labeled in this fashion with high

accuracy. If so, then provided that the subset is formed in a

fashion independent from how the detector under develop-

ment functions, one can extrapolate from performance on the

subset to broader performance.) Another solution is manual

labeling—often however infeasible given the large amount

of data a NIDS operates on. A final compromise is to inject a

set of attacks deemed representative of the kind the anomaly

detection system should detect.

An important but often overlooked additional consider-

ation is to include in an evaluation inspection of the true

positives and negatives as well. This need arises from the

opacity of the decision process: with machine learning, it

is often not apparent what the system learned even when

it produces correct results. A classic illustration of this

problem comes from a Pentagon project from 1980s [66]:

a neural network was trained to detect tanks in photos,

and in the initial evaluation it was indeed able to correctly

separate photos depicting tanks from those which did not. It

turned out, however, that the datasets used for training and

evaluation shared a subtle property: photos of tanks were

taken on a cloudy day, while all others had a blue sky. As

later cross-checking revealed, the neural network had simply

learned to detect the color of the sky.

We can in fact turn around the notion of understanding the

origins of anomaly detection results, changing the emphasis

from gaining insight into how an anomaly detection system

achieves its results to instead illuminating the problem

space. That is, machine learning is often underappreciated

as potentially providing a means to an end, rather than an

end itself: one employs it not to ultimately detect malicious

activity, but rather to understand the significance of the

different features of benign and malicious activity, which

then eventually serve as the basis for a non-machine-learning

detector.

For example, consider spam classification. By examining

which phrases a Bayesian classifier employs most effectively

one might discover that certain parts of messages (e.g.,

subject lines, Received headers, MIME tags) provide

disproportionate detection power. In this contrived example,

one might then realize that a detector that directly exam-

ines those components—perhaps not employing any sort of

Bayesian-based analysis, but instead building on separate

domain knowledge—can provide more effective classifica-

tion by leveraging the structural properties of the domain.

Thus, machine learning can sometimes serve very effectively

to “point the way” to how to develop detectors that are

themselves based on different principles. (The idea here is

similar to that employed in Principle Component Analysis,

which aims to find which among a wide set of features

contribute the most to particular clusters of activity [22].)

We note that such an approach can also help overcome

potential performance bottlenecks. Many machine learning

algorithms are best suited for offline batch operation, and

less so for settings requiring low-latency real-time detection.

Non-machine-learning detectors often prove significantly

easier to implement in a streaming fashion even at high data

rates.

A separate consideration concerns how an evaluation

compares results with other systems found in the literature.

Doing so requires care to ensure fair treatment. The suc-

cessful operation of an anomaly detection system typically

requires significant experience with the particular system,

as it needs to be tuned to the local setting—experience that

can prove cumbersome to collect if the underlying objective

is instead to understand the new system. Nevertheless, as a

first step a comparative study needs to reproduce the results

reported in the literature for the “foreign” system.

Finally, the most convincing real-world test of any

anomaly detection system is to solicit feedback from opera-

tors who run the system in their network. If they genuinely

deem the system helpful in their daily routine, that provides

compelling support for the study.



V. CONCLUSION

Our work examines the surprising imbalance between the

extensive amount of research on machine learning-based

anomaly detection pursued in the academic intrusion detec-

tion community, versus the lack of operational deployments

of such systems. We argue that this discrepancy stems in

large part from specifics of the problem domain that make

it significantly harder to apply machine learning effectively

than in many other areas of computer science where such

schemes are used with greater success. The domain-specific

challenges include: (i) the need for outlier detection, while

machine learning instead performs better at finding similari-

ties; (ii) very high costs of classification errors, which render

error rates as encountered in other domains unrealistic;

(iii) a semantic gap between detection results and their

operational interpretation; (iv) the enormous variability of

benign traffic, making it difficult to find stable notions of

normality; (v) significant challenges with performing sound

evaluation; and (vi) the need to operate in an adversarial

setting. While none of these render machine learning an

inappropriate tool for intrusion detection, we deem their

unfortunate combination in this domain as a primary reason

for its lack of success.

To overcome these challenges, we provide a set of guide-

lines for applying machine learning to network intrusion

detection. In particular, we argue for the importance of

obtaining insight into the operation of an anomaly detection

system in terms of its capabilities and limitations from

an operational point of view. It is crucial to acknowledge

that the nature of the domain is such that one can always

find schemes that yield marginally better ROC curves than

anything else has for a specific given setting. Such results

however do not contribute to the progress of the field without

any semantic understanding of the gain.

We hope for this discussion to contribute to strengthening

future research on anomaly detection by pinpointing the

fundamental challenges it faces. We stress that we do not

consider our discussion as final, and we look forward to

the intrusion detection community engaging in an ongoing

dialog on this topic.
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