Measuring the Evolution of Transport Protocols in the
Internet -

Alberto Medina
BBN Technologies
amedina@bbn.com

Mark Allman, Sally Floyd
ICSI Center for Internet Research
{mallman,floyd}@icir.org

December 14, 2004, under submission

ABSTRACT

In this paper we explore the evolution of both the Internetisst
heavily used transport protocol, TCP, and the current nedtemovi-
ronment with respect to how the network’s evolution ultigtgim-
pacts end-to-end protocols. The traditional end-to-esdraptions
about the Internet are increasingly challenged by the doiction
of intermediary network elements (middleboxes) that iticerally
or unintentionally prevent or alter the behavior of endetw com-
munications. This paper provides measurement resultsisjadie
impact of the current network environment on a number ofitrad
tional and proposed protocol mechanisms (e.g., Path MTU Dis
covery, Explicit Congestion Notification, etc.). In additi we
investigate the prevalence and correctness of impleniensatis-
ing proposed TCP algorithmic and protocol changes (e.gctes
acknowledgment-based loss recovery, congestion windowtr
based on byte counting, etc.). We present results of measmts
taken using an active measurement framework to study webrser
and a passive measurement survey of clients accessingation
from our web server. We analyze our results to gain furtheletn
standing of the differences between the behavior of theretan
theory versus the behavior we observed through measursmniant
addition, these measurements can be used to guide the idefifit
more realistic Internet modeling scenarios. Finally, wespnt sev-
eral lessons that will benefit others taking Internet mezmments.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.3 Computer-Communication Networks]: Network Op-
erations; C.2.5Computer-Communication Networks]: Local and
Wide-Area Networks; C.2.68Jomputer-Communication Networks):
Internetworking

General Terms
Measurement, Design, Reliability, Standardization, fieation

Keywords

TCP, middleboxes, Internet, evolution

*This material is based in part upon work supported by theddati
Science Foundation under Grant Nos. 0205519 and 02309234. An
opinions, findings, and conclusions or recommendationsesspd

in this material are those of the author(s) and do not nedbssa
reflect the views of the National Science Foundation.

1. INTRODUCTION

While the Internet’s architecture, protocols and appiaat are
constantly evolving, there is oftecompeting evolutiorbetween
various network entities. This competing evolution canactper-
formance and robustness, and even halt communicationsre so
cases. For instance, [39] shows that when setting up a TCP con
nection to a web server, attempting to negotiate the use plidix
Congestion Notification (ECN) [44] interfered with conriectes-
tablishment for over 8% of the web servers tested in 2000. For
such web servers, the client can only establish a TCP cadonect
by re-attempting the connection without negotiating ECldges
The connection failures in the presence of ECN negotiatierew
caused by firewalls configured to interpret the attempt totiate
ECN as the signature of a port-scanning tool [22]. On the amelh
these firewalls can be seen as incorrectly associating reotidun-
ality with one of the first appearances of that new functiypah
an undesirable application. On the other hand, the firewalisalso
be seen as doing their job of blocking unwanted traffic. Thane
ple shows the fundamental problem of different evolutiotnpshat
can cross to the detriment of smooth traffic flow on the Interne

In this paper, we investigate the evolution of TCP [43], the |
ternet's most heavily used transport protocol, in the cdraéon-
going changes to the Internet’s basic architecture. Iriqudatr, we
study the ways in which so-called “middleboxes” (firewaN#\T's,
proxies, etc.) — which change the Internet’s basid-to-end prin-
ciple [45] — impact TCP. We seek to elucidate unexpected interac-
tions between layers and ways in which the Internet diffemsnfits
textbook description, including the difficulties variowsat-world
“gotchas” impose on the evolution of TCP (and end-to-endgsro
cols in general). The measurements presented in this pégmer a
serve as lessons for efforts that wish to further evolve tereird
protocols and the Internet architecture.

Internet research is driven by simulations, experimemtslyais,
and deployment studies designed to address particulalgpnsbn
the Internet. However, the design of effective and accunate
work models is challenging due to the intrinsic complexifytree
Internet and the dynamic nature of the elements composirieit
searchers need better models of networks and protocoletmdr
their investigations, such that they can provide practiesiefit on
the evolving network [27]. Therefore, a second componeruof
work assesses the current deployment status of variouogedp
TCP algorithmic and protocol modifications and updatesitaea-
ture with respect to the capabilities of a “modern” TCP staldhis
will aid researchers in accurately conducting future extduns of
the network and proposed changes.

In this paper, we bring both active and passive measurement
techniques to bear to study web traffic in the context of thevab

stated issues. We use extensive active measurements $s #sse
capabilities and algorithms used by web servers (the pyirdata
senders in web transactions). Data senders are ultimatetnitrol

of TCP’s congestion control and reliability algorithms. €F&fore,
our active measurements are focused on studying which senge
tion control algorithms, loss recovery schemes and optoasm-
plemented and how the interaction with today’s evolvingnoek
environment influences the correctness and performancavioeh

of actual web servers. As a second component, we present pas-

sive measurements of the capabilities and limits imposedidty
clients (the primary data receivers). Although data resmsivdo
not directly control the data flow on a TCP connection, cBezgn
optionally provide information to the data sender to effegty in-
crease performance (e.g., selective acknowledgmentagdition,
limits imposed by receivers (e.g., the advertised wind@e)scan
have a dramatic impact on connection performance [9].

The remainder of this paper is organized as follows. Se@ion
describes related work on measurement studies of tranppmrt
tocols. Section 3 describes the tools and methodology wenuse
our study. Section 4 explores interactions between miadcied
and transport protocols. Section 5 presents the resultarahea-

surements of the deployment of various TCP mechanisms in web

servers. Section 6 reports the results of our measuremeows the
deployment of TCP mechanisms in web clients. Section 7 diasi
lessons learned in the study that challenged our assurspaioch
ultimately shaped our measurements and tools. Sections@mie
our conclusions, and discusses open questions and futuke wo

2. RELATED WORK

tests for estimating path properties such as loss ratesalateaor
bottleneck bandwidth and durations of congestion episodéso
prevalent in the literature, yet out of scope for the currffurt,

is the body of work based on passive measurements of traffic on
particular link to determine the breakdown of the trafficémhs of
round-trip times, application layer protocols, transfees, etc.

3. MEASUREMENTS: TOOLS AND DATA

As discussed above, we employ both active and passive mea-
surements in our study into the characteristics of web tdiand
servers. Web servers act as data senders and web clients.ae-da
ceivers in web transactions. Therefore, we use active memsunts

to probe web servers for congestion control and loss regmagra-
bilities, while using passive measurements to assess tlime@nd
resource limits enforced by web clients. Our motivatiorprapch

and methodology is presented in the following two subsastio

3.1 Active Tests

We use TBIT [39] to conduct active measurements that probe
web servers for their characteristics. A few of the activdTT@sts
we present, such as the test that determines the size ofitia in
window, could just as easily be performed by passive pachkeet
analysis. However, many of the TBIT tests are not amenable to
straightforward post-facto analysis of packet traces. éxample,
consider a test to determine if a TCP data sender is resppodin
rectly to SACK information. To evaluate the data sender,rtage
pattern of loss events is required (e.g., multiple packess per
window of data). An active tool like TBIT can easily inducechua
specific loss pattern and evaluate the behavior of the datiesén

This paper uses and extends the methodology from [39] which comparison to the expected behavior. Meanwhile, passialysia

introduces the TCP Behavior Inference Tool (TBIT) which-per
forms active measurements to characterize TCP on remots. hos
For the measurements presented in this paper, TBIT's fomati

would require a tool that possessed a very general unddistpof
a range of loss patterns and the expected responses — whith wo
be quite tricky to get right. Inducing a specific loss pattdoes

ity was extended in two ways. New tests were implemented to run the risk of tripping pathological behavior that is nadicative

assess different types of web server behavior, and the gjether
sign of the tool was extended to enable the implementatiaesté
that elicit path behavior by, for example, allowing the usdP

options and the generation of ICMP messages. Independdnt an

parallel work on TBIT extensions detailed at [32] includests for
Limited Transmit, Early Retransmit, and support for the Wiw
Scaling option in TCP. In addition, this paper is an extemsb
[37]. TBIT, the measurement tool used in our work, followsean
lier history of active probing of TCP. For instance, [19]ate TCP
implementations as black boxes, observing how they reaottt-
nal stimuli, and studying specific TCP implementations iteorto
assess the adherence to the specification.

There is also a considerable body of work on passive tests of

TCP based on the analysis of packet traces. [41] outticnaly
atool for analyzing a TCP implementation’s behavior by eting
sender and receiver packet traces of TCP connections rureéet
pairs of hosts, while [42] outlines observed packet dynarhased
on tcpanalys analysis. Finally, [9] assesses the properties of web
clients using packet traces of TCP connections to a paaticuéb
server.

In addition, there is some research in the literature on fleete
of middleboxes on transport protocol performance (e.@])[WWe
do not discuss the body of research on general architecuad
uations of middleboxes, or on the effect of middleboxes orSDN
BGP, and the like. Rather, the study presented in this pajgesés
on interactions between middleboxes and transport pristoco

Finally, there is a large body of literature on active andspeas
approaches for estimating end-to-end network path priggarsing
TCP (e.g., [41, 11, 24]). In this paper we do not discuss T&sed

of the overall behavior of the TCP implementation under wtifde
believe the risk for biasing our overall results in this wayimall
given our large sample of web servers (discussed below).

Another class of tests that involve actively attemptingraila-
tive schemes in connection initiation cannot be performeg@ds-
sive trace analysis alone. For instance, consider a testiftale-
boxes that block TCP SYN segments when the SYNs carry adver-
tisements for ECN. Packet traces can indicate whether ctions
attempting to use ECN succeed or fail. However, determittieg
reason a connection attempting to negotiate ECN failed éstdu
a middlebox blocking ECN-capable SYNs takes active ingeif
SYNs with and without ECN advertisements.

TBIT provides a set of tests, each of which is designed to exam
ine a specific aspect of the behavior of the remote web servers
of the path to and from the web server. Most of these tests ieam
the characteristics of the TCP implementations on the welese
However, the tests are not restricted to TCP (e.g., the Pat M
Discovery [38] tests). TBIT establishes a TCP connectiath e
remote host at the user level. TBIT composes TCP segments (or
segments from another protocol), and uses raw IP socketntb s
them to the remote host. TBIT also sets up a host firewall tegmte
incoming packets from reaching the kernel of the local maeha
BSD packet filter is used to deliver incoming packets to théTTB
process. TBIT’s user-level connection is used to cont®kénding
of carefully constructed packets (control, data, ackndgfeent,
etc.) as desired from the local host. Note that all the TBIg@are
susceptible to network conditions to some degree. Fornuostaf
an ACK sent by TBIT is lost in transit to the web server the hesiu
the test could be inconclusive or even wrongly reported. &leeh

[Server name | Location | Cache size|
pb.us.ircache.net Pittsburgh, PA 12867
uc.us.ircache.nef Urbana-Champain, IL 18711
bo.us.ircache.net Boulder, CO 42120
sv.us.ircache.ne Silicon Valley, CA 28800
sd.us.ircache.net San Diego, CA 19429
pa.us.ircache.net Palo Alto, CA 5511
sj.us.ircache.neff MAE-West, San Jose, CA 14447
rtp.us.ircache.nef Research Triangle, NC 33009
ny.us.ircache.ne New York, NY 22846

Table 1: IRCache servers and locations

taken test-specific measures to make each of our tests ast asbu
possible. In addition, our large set of web servers (desdritpe-
low) helps to minimize any biases that bogus tests introdinice
our results.

% of

Type of Server Number | Total
Total Number of Servers 84394 | 100%
I. Not SACK-Capable 24361 | 28.8%
Il. SACK Blocks OK 54650 | 64.7%
I1l. Shifted SACK Blocks 346 | 0.5%
IV. Errors 5037 | 6.0%
IV.A. No Connection 4493 | 5.3%
IV.B. Early Reset 376 | 0.4%
IV.C. Other 160 | 0.2%

Table 2: Generating SACK Information at Web Servers

sender in packet headers and options (e.g., SACK informgadid-
vertised window limits, etc.). Therefore, by tracing paskeear a
web server, client TCP implementations can be well charizeisg
with respect to client impact on web traffic. Section 6 o@irour

The original TBIT paper [39] repeated each test five times for observations of web clients.

each server, accepting a result as valid only if at leasetbfehe
five attempts returned results, and all of the results weresgime.
We did not follow that methodology in this paper; instead, rave
each test once for each server. This allowed us to procesgex la
set of tests.

The list of target web servers used in our study was gathered
from IRcaches, the NLANR Web Caching project [2]. We used

web cache logs gathered from nine different locations atdhe

United States. Table 1 shows the cache logs used from Fgbruar

2004, along with the log sizes, expressed as the number gieni

IP server addresses from each cache. Since the cachesatetlloc

within the continental US, most of the cached URLSs corredpon
domain names within the US. However, the cache logs als@tont
a sizable set of web servers located in the other contin€@ftthe
84,394 unique IP addresse®und in the cache logs: 82.6% are

from North America, 10.2% are from Europe, 4.9% are from Asia
1.1% are from Oceania, 1.0% are from South America and 0.2%
are from Africa. A subset of the tests were also done on afist o

809 IP addresses corresponding to a list of 500 popular vieb si
[1].

All the TBIT tests outlined in this paper were conducted lestw

February and May 2004. The TBIT client was always run from a

machine on the local network at the International Computgyr S
ence Institute in Berkeley, CA, USA. There is no local firevise-
tween the machine running TBIT and the Internet.

Given that data senders (web servers in our study) implement Mation-

most of TCP’s “smarts” (congestion control, loss recovety,),
most of the remainder of this paper outlines active TBITsdst
determine various characteristics of TCP implementatarsnet-
works and where the evolutionary paths collide.

3.2 Passive Tests

When characterizing web clients, passive packet tracgsisas
more appropriate than active probing for two main reasomst,F
initiating a connection to a web client to probe its capdibiiis dif-
ficult because often web clients are user machines that daunot
publicly available servers. In addition, data receiversifwlients)
do not implement subtle algorithms whose impact is not g adi-
servable in packet headers (as is the case with data sendathgr,
data receivers expose their state, limits and capabititi¢lse data

1We note that the list of servers could be biased by a singléimac
having multiple unique IP addresses — which would tend tevske
the results. However, due to the size of the server list, ieus
that such artifacts, while surely present, do not highlyskie
overall results.

4. MIDDLEBOX INTERACTIONS

The increased prevalence of middleboxes puts into questmsn
general applicability of the end-to-end principle. Midaees in-
troduce dependencies and hidden points of failure, and ffect a
the performance of transport protocols and applicatiorthénin-
ternet in unexpected ways. Middleboxes that divert an IFkegtac
from its intended destination, or modify its contents, agaayally
considered fundamentally different from those that calye¢ermi-
nate a transport connection and carry out their manipuiatid the
application layer. Such diversions or modifications vieldie basic
architectural assumption that packets flow from source stirok-
tion essentially unchanged (except for TTL and QoS-relfi¢tds).
The effects of such changes on transport and applicaticoogolts
are unpredictable in the general case. In this section wWeexthe
ways that middleboxes might interfere in unexpected ways wi
transport protocol performance.

4.1 Web Server SACK Generation

In Section 5 we evaluate the behavior of web servers in respon
to incoming SACK information from a web client. The use of
SACK information by a web server is the primary performance e
hancement SACK provides to web traffic. In this section, heate
we focus on whether web servers generate accurate SACk infor
In the normal course of web transactions this netter
tle because little data flows from the web client to the welveser
However, while not highly applicable to web performancés thst
serves to illustrate potential problems in passing SACkKrimia-
tion over some networks. This test calls for the client tatspl
HTTP GET request into several segments. Some of these se&gmen
are not actually sent, to appear to the server as having losén |
These data losses seen by the server should trigger SACKsbloc
(with known sequence numbers) to be appended to the ACKs sent
by the server.

Table 2 shows the results of the server SACK generation test.
The row “Not SACK-Capable” shows the number of servers that
did not agree to the SACK Permitted option during connection
setup. The row listed “SACK OK” shows the number of web sesver
that generated SACK blocks correctly. As Table 2 shows, robst
the servers show proper SACK behavior.

A relatively small number of servers, however, return ing@o
SACK blocks. The row listed as “Shifted SACK Blocks” indieat
cases where the SACK blocks received contained sequence num
bers that did not correspond to the sequence space usedtgoson
tion. Instead, the sequence space in the SACK blockssiiited

This shifting could have been caused by a buggy TCP implesment
tion, or by incorrect behavior from middleboxes on the patmf
the server to the client. We note that none of the web sites fhe
list of 500 popular web sites had shifted SACK blocks.

Two plausible scenarios whereby middleboxes may cause-inco
rect SACK blocks to be returned to the web client are:

e Shifting of TCP sequence numbers can be done by a NAT
box that modifies the URL in a request, and as a consequence

has to shift the TCP sequence numbers in the subsequent data

packets. In addition, the cumulative acknowledgment num-
ber and SACK blocks should be altered accordingly in the
ACKs transmitted to the clients. However, due to ignorance
or a bug, the SACK blocks may not be properly translated,
which could explain the results of our tests.

The shifting of TCP sequence numbers also occurs with fin-
gerprint scrubbers [47] designed to modify sequence num-
bers in order to make it hard for attackers to predict TCP
sequence numbers during an attack. One way that TCP/IP
fingerprint scrubbers modify sequence numbers is by choos-
ing a random number for each connectiot;,. Then, the
sequence number in each TCP segment for the connection
traveling from theuntrustednetwork is incremented byx;.
Likewise, each segment traveling in the opposite direction
has its acknowledgment number decrementedby How-
ever, if the sequence numbers in the SACK blocks are not
modified as well, then the SACK blocks could be useless to
the data sender.

In some cases these bogus SACK blocks will simply be thrown
away as useless by the data sender. In cases when the SAMS bloc
are merely offset a little from the natural segment bouregarbut
otherwise are within the connection’s sequence spaces theer-
rect SACK blocks can cause performance problems by inducing
TCP to retransmit data that does not need to be retransnaitte:d
by forcing reliance on the (often lengthy) retransmissiorebut to
repair actual loss.

While the topic of web server SACK generation is not impartan
in terms of the performance of web transactions, the intienas
illustrated are germane to all TCP connections, and arélpesx-
planations for some of the results in Section 5.2 when weleser
negotiate SACK but do not use “Proper SACK” recovery.

4.2 ECN-capable Connections

Explicit Congestion Notification (ECN) [44] is a mechanigmat
allows routers to mark packets to indicate congestion gatstof
dropping them. After the initial deployment of ECN-capalbleP
implementations, there were reports of middleboxes (itiq4ar,
firewalls and load-balancers) that blocked TCP SYN packets a
tempting to negotiate ECN-capability, either by droppihg TCP
SYN packet, or by responding with a TCP Reset [22]. [39] in-
cludes test results showing the fraction of web servers wheme
ECN-capable and the fraction of paths to web servers thatded
middleboxes blocking TCP SYN segments attempting to natgoti
ECN-capability. The TBIT test for ECN is described in [39].

Table 3 shows the results of the ECN test for 84,394 web server
Only a small fraction of servers are ECN-Capable — this peege
has increased frorh. 1% of the web servers tested in 200Qta@%
in 2004. After a web server has successfully negotiated EEN w
send a data segment marked “Congestion Experienced (CH)” an
record whether the mark is reflected back to the TBIT clieat vi
the ECN-Echo in the ACK packet. The results are given on lines
I.B.1and |.B.2 of the table. In roughly three-quarters cfesawhen

[Year: | 2000] | 2004] |
[ECN Status | Hosts| % | Hosts] % |
Number of Servers 24030 | 100% | 84394 | 100%
I. Classified Servers 21879 91% | 80498 | 95.4%
I.A. Not ECN-capable | 21602 | 90% | 78733 | 93%
1.B. ECN-Capable 277 | 1.1% | 1765| 2.1%
1.B.1. no ECN-Echo 255 | 1.1% | 1302| 1.5%
1.B.2. ECN-Echo 22| 0.1% 463 | 0.5%
I.C. Bad SYN/ACK 0 183 | 0.2%
II. Errors 2151 9% | 3896 | 4.6%
II.LA. No Connection 2151 9% | 3194| 3.8%
IILA.1. only with ECN | 2151 9% 814 1%
1I.LA.2. without ECN 0 2380 | 2.8%
1I.B. HTTP Error - 336 | 0.4%
11.C. No Data Received - 54 0%
11.D. Others - 312 | 0.4%
Table 3: ECN Test Results

% of
ECN fields in data packets Number | total
ECN-capable servers 1765 | 100%
Received packets w/ ECT 00 (Not-ECT] 758 | 42%
Received packets w/ ECT 01 (ECT(1)) 0 0%
Received packets w/ ECT 10 (ECT(0)) 1167 | 66%
Received packets w/ ECT 11 (CE) 0 0%
Received packets w/ ECT 00 and ECT 10 174 | 10%

Table 4: Data-packet codepoints for ECN-Capable Servers

ECN is negotiated, a congestion indication is not returmmethé
client. This could be caused by a bug in the web server's TCP
implementation or by a middlebox that is clearing the cotigas
mark as the data packet traverses the network; furthertigegion

is needed to explore this behavior. Finally, we also obsarsmall
number of web servers send a malformed SYN/ACK packet, with
both the ECN-Echo and Congestion Window Reduced (CWR) bits
set in the SYN/ACK packet (line I.C of the table).

For3194 of the web servers, no TCP connection was established.
For our TBIT test, if the initial SYN packet is dropped, TBI&-r
sends the same SYN packet — TBIT does not follow the advice in
RFC 3168 of sending a new SYN packet that does not attempt to
negotiate ECN. Similarly, if TBIT receives a TCP Reset irp@sse
to a SYN packet, TBIT drops the connection, instead of sendin
subsequent SYN packet that does not attempt to negotiate ECN
capability.

In order to assess how many of these connection failures are
caused by the attempt of ECN negotiation, we run two back-to-
back TBIT tests to each server. The first test does not atteanpt
negotiate ECN. After a two-second idle period, another eonn
tion is attempted using ECN. We observe that 814 connecfitys
of the web servers, d5% of the connection failures) are appar-
ently refused because of trying to negotiate ECN, sincedhaec-
tion was established successfully when no ECN negotiatiag w
attempted. A test limited to 500 popular web servers givema s
ilar result. Table 3 indicates that the fraction of web sesweith
ECN-blocking middleboxes on their path has decreased aubst
tially since September 2000 — from 9% in 2000 to 1% in 2004.

We further explored the behavior of ECN-capable servers by
recording the ECT codepoints in the data packets receivadby.
Table 4 shows the number of servers from which the differedee
points were observed. TBIT received data packets with the @&C
codepoint from about 42% of the ECN-capable servers. The ECN

specification defines two ECT code points that may be used by a
sender to indicate its ECN capabilities in IP packets. Thexisp
fication further indicates that protocols that require omfe such

a codepointshoulduse ECT(1) = 10. We observe that ECN-
capable servers do use ECT(1) and found no server made uee of t
ECT(0) = 01 codepoint. We further observe that no router be-
tween our TBIT client and the ECN-capable servers reportd C
gestion Experienced (CE) in any segment. Finally, TBIT nesz
both data segments withiC'T' = 00 and ECT = 10 in the same
connection from about 10% of the ECN-capable servers. Téus b
havior may indicate that the ECT code point is being erased by
network element (e.g. router or middlebox) along the pattveen

the ECN-capable server and the client.

4.3 Path MTU Discovery

TCP performance is generally proportional to the segmezat si
employed [31]. In addition, [31] argues that packet fragtagan

can cause poor performance. As a compromise, TCP can use Path

MTU Discovery (PMTUD) [38, 36] to determine the largest seg-
ment that can be transmitted across a given network pattoutith
being fragmented. Initially, the data sender transmits gameat
with the IP “Don’t Fragment” (DF) bit set and whose size isdzhs
on the MTU of the local network and the peer’s MSS advertise-
ment. Routers along the path that cannot forward the segmitmnt

out first fragmenting it (which is not allowed because DF t3 all
return an ICMP message to the sender noting that the segia@nt ¢
not be forwarded because it is too large. The sender theresdu
its segment size and retransmits. Problems with PMTUD ate do
umented in [33], which notes that many routers fail to senkliRC
messages and many firewalls and other middleboxes are @ften c
figured to suppress all ICMP messages, resulting in PMTUD fai
ure. If the data sender continues to retransmit large packith

the DF bit set, and fails to receive the ICMP messages indigat
that the large packets are being dropped along the pathathiets
are said to be disappearing into a PMTWBIack hole We imple-
mented a PMTUD test in TBIT to assess the prevalence of web
servers using PMTUD, and the success or failure of PMTUD for
these web servers. The test is as follows:

1. TBIT is configured with avirtual link MTU, MTU,. In our

tests, we seM T'U, to 256 bytes.

. TBIT opens a connection to the web server using a SYN seg-
ment that contains an MSS Option of 1460 bytes (which is
based on the actual MTU of the network to which the TBIT
client is attached).

. The TCP implementation at the server accepts the connec-
tion and sends MSS-sized segments, resulting in transhitte
packets of MSS + 40 bytes. If the data packets from the
server do not have the DF bit set, then TBIT classifies the
server as not attempting to use PMTUD. If TBIT receives a
packet with the DF bit set that is larger th&fT'U, TBIT re-

% of

PMTUD Status Number | total
Total Number of Servers 81776 | 100%
I. Classified Servers 71737 | 88%
I.A. PMTUD not-enabled 24196 | 30%
I.B. Proper PMTUD 33384 | 41%
I.C. PMTUD Failed 14157 17%
Il. Errors 9956 | 12%
II.A. Early Reset 545 | 0.6%
11.B. No Connection 2101 | 2.5%
II.C. HTTP Errors 2843 | 3.4%
I1.D. Others 4467 | 5.5%

Table 5: PMTUD Test Results

the communication will eventually time out and terminate
and TBIT classifies the server/path as failing to properly em
ploy PMTUD.

Checking for the robustness of this test involves verifyihgt
TBIT is sending properly assembled ICMP messages back to the
server upon receiving packets that are larger than thelatgul
MTU size. We do such a check for this and other tests using a
public domain network protocol analyzer calletthereal[4] which
behaves in a tcpdump-like fashion but allows the user torgbse
easily the structure and composition of the captured packéding
ethereal we analyze the communications between TBIT afe-dif
ent servers and observe the exchange of ICMP packets frofm TBI
to the servers, check if they are properly assembled (e.gpepr
checksums), and observe the associated server resportseséo t
packets.

Table 5 shows that PMTUD is used successfully for slightbsle
than half of the servers on our list. For 31% of the serversun o
list, the server did not attempt Path MTU Discovery. For 18% o
the servers on our list, Path MTU Discovery failed, presusab
because of middleboxes that block ICMP packets on the patieto
web server. The results were even worse for the list of 50Qijpop
web servers, with Path MTU Discovery failing for 35% of theesi

Alternate methods for determining the path MTU are being con
sidered in the Path MTU Discovery Working Group in the IETF,
based on the sender starting with small packets and progghss
increasing the segment size. If the sender does not reaeik€K
packet for the larger packet, it changes back to smallergiack

In a similar sender-based strategy calldeck-hole detection
if a packet with the DF bit set is retransmitted a number ogm
without being acknowledged, then the MSS will be set to 538dy
[3]. We performed a variant of the PMTUD test in which TBIT
does not send the ICMP packets, to see if any server reduees th
size of the packets sent simply because it didn’t receive @K A
for the larger packet. We didn’t find any servers performitagk-
hole detection.

Since a non-trivial number of network elements discard well
known ICMP packets, the results of our tests do not offer Hope

jects the packet, and generates an ICMP message to be senfqtocol designers proposing to use new ICMP messagesrtalsig

back to the server.

. If the server understands such ICMP packets, it will reduc
the MSS to the value specified in the MTU field of the ICMP

packet, minus 40 bytes for packet headers, and resume the

TCP connection. In this case, TBIT accepts the proper-sized
packets and the communication completes.

. Ifthe server is not capable of receiving and processingRC
packets it will retransmit the lost data using the same packe
size. Since TBIT rejects packets that are larger th&hU,

various network path properties to end systems (e.g., fplicix
corruption notification [20], handoff or outage notificatjeetc.).

4.4 |P Options

IP packets may contain options to encode additional inftiona
at the end of IP headers. A number of concerns have been raised
regarding the use of IP options. One concern is that the u#e of
options may significantly increase the overhead in roub®sause
in some cases packets with IP options are processed osiaive
path of the forwarding engine. A second concern is that receiv-

ing IP packets with malformed IP options may trigger alignine
problems on many architectures and OS versions. Solutiotisst
problem range from patching the OS, to blocking access tkepaic
using unknown IP options or using IP options in general. Adthi
concern is that of possible denial of service attacks that bea
caused by packets with invalid IP options going to networkecs.
These concerns, together with the fact that the generatidrpeo-
cessing of IP options is honmandatory at both the routerstaad
end hosts, have led routers, hosts, and middleboxes toysinmb
packets with unknown IP options, or even to drop packets stith-
dard and properly formed options. This is of concern to desig
of transport protocols because of proposals for new trahapech-
anisms that would involve using new IP options in transpootg
cols (e.g., [30, 20]).
TBIT’s IP options test considers TCP connections with three

types of IP options in the TCP SYN packet, tfieRecord Route
Option, the IP Timestamp Optianand a new option calledP Op-

tion X, which is an undefined option and represents any new IP

option that might be standardized in the future. We exparntet:
with two variants of Option X, both of size 4. The first variant
uses a copy bit of zero, class bits set to zero and 25 as thenopti
number. The second variant of IP Option X sets the classdis t
reserved value, and uses an option number of 31. The results f
experiments with both Option X variants are similar.

Checking for the robustness of this test involves verifyihgt

onds (which we then define as “broken”). We performed two sets
of tests, with and without insertion of option X. Across battts

of tests roughly 3% of the connection attempts failed. Thaste
without IP options show nearly 6% of the connections are -‘bro
ken” for some reason. Meanwhile, when inserting IP optiomdg i
the middle of the transfer, 44% of the connections are broken
dicating a significant issue when attempting to utilize |Fags in
mid-connection.

4.5 TCP Options

Next we turn our attention to potential problems when TCP op-
tions are employed. TCP options are more routinely used than
IP options. For instance, TCP uses the timestamp optiontf29]
(among other things) take round-trip time measurement rfnef
quently than once per round-trip time, for the Protectioraifgt
Wrapped Sequences [29] algorithm and for detecting spsitime-
outs [34].

However, middleboxes along a path can interfere with the use
of TCP options, in an attempt to thwart attackers trying tgdin
print hosts. Network mapping tools such as NMAP (Network Map
per) use information from TCP options to gather informatdbout
hosts; this is callefingerprinting Countermeasures to fingerprint-
ing, sometimes callefingerprint scrubberg47], attempt to block
fingerprinting by inspecting and minimally manipulating thhaffic
stream. One of the strategies used by fingerprint scrubbéosré-

TBIT is sending properly assembled IP options in the message order TCP options in the TCP header; any unknown options may

sent to the servers. We also observe the composition of therse
response to options such as fRecord Rout®ption to verify that
the server is properly understanding the options asserablédent
to it by TBIT.

Hl No Connection 7
[Option Ignored
[Success

T
98%

70%

60 —
45% 43%

% of Connections

0/
401 34% 36% 30% 4
21% 20%
20+ ’_‘ T
0.2% ’_‘
—0%
No IP Options Record Route TimeStamp Option X

IP Option Test type (SYN)

Figure 1: Handling IP Options in TCP SYN packets.

Figure 1 shows the TCP connection behavior with different IP
options in the associated SYN packets. For each attempteco
tion there are three possible outcomes: no connectionlsstad,
connection established with the IP option ignored, or |Roopac-

be included after all other options. The TBIT test for TCPiaps
checks to see if sites reject connections negotiating Speciun-
known TCP options, or drop packets encountered in the miofdle
the stream that contain those options.

The TCP options test first assesses the behavior of the wedr ser
when the TCP Timestamp option is included in the SYN packet. T
test for performance with unknown TCP options, we alsoatsti
connections using an unallocated option numB&P OptionY’,
in the SYN packet.

Checking for the robustness of this test involves verifyihgt
TBIT is sending properly assembled TCP options in the messag
sent to the servers.

Our tests indicate a connection failure rate of about 0.2%lin
scenarios. Option Y is ignored in the remainder of the cotioes.
The timestamp option is ignored by roughly 15% of the ser{taus
the connection is otherwise fine). The reason the servemégn
the timestamp option is not visible to TBIT, but could be eitlh
middlebox stripping or mangling the option or the web semnatr
supporting timestamps. Next we assess the use of TCP ojtions
the middle of a TCP connection, by establishing a conneetitim-
out TCP options and then using the Timestamp option or Opfion

cepted. As Figure 1 shows, in many cases no connection was es©n & data packet in the middle of the connection. The corurecti

tablished when the Record Route Option or the Timestamp@pti
was included in the SYN packet. When IP Option X is included in
the SYN segment, the connection was not established to &%r 7
of the web servers tested. The results were slightly worsenwh
limited to the list of 500 popular web sites. This does notdaell
for the deployment of new IP options in the Internet.

Most IP options are usually expressed in the first packet, (g

TCP SYN packet) in the communication between end hosts. We

performed an additional test to assess the behavior wheptiého
X'is placed in data packets in the middle of an establishedeon
tion. For each established connection TBIT offers two df&ss

tions: “success” or “broken connection”. The former indésathat
the server successfully delivered its data regardlesseofRhop-
tion insertion. The latter classification indicates that thsertion
of the IP option forced the connection to be idle for at le@sséc-

failure rate for both options is roughly 3% — indicating teahding
unknown TCP options midstream is not problematic for modt we
servers.

5. DEPLOYMENT OF TRANSPORT MECH-
ANISMS

This section describes TBIT tests to assess the deployrtaoss
of various TCP mechanisms in web servers. Such tests aral usef
from a number of angles. First, it is useful for protocol desi
ers to understand the deployment cycle for proposed chariges
addition, as discussed previously, it is useful to test tttaa be-
havior of proposed mechanisms in the Internet, keeping aroay
for unexpected behaviors and interactions. Another goahiaf
section is to guide researchers in constructing modelshide-

Date: May 2001 Feb. 2004
% of % of
TCP Stack Num. | total || Num. | total
Total Number of Servers 4550 84394
I. Classified Servers 3728 | 72% || 27914 | 33%
I.A. NewReno 1571 | 35% || 21266 | 25%
I.B. Reno 667 | 15% || 3925| 5%
I.C. Reno, Aggressive-FR| 279 6% 190 | 0.2%
I.D. Tahoe 201 | 4% 983 | 1.2%
I.E. Tahoe, No FR 1010| 22% || 1181 | 1.4%
I.F. Aggr. Tahoe-NoFR 0 0% 7 0%
I.G. Uncategorized 362 | 0.4%
II. Classified but ignored 11529 | 14%
(due to unwanted drops)
IIl. Errors 822 | 18% || 44950 | 53%
IIILA. No Connection 2183 | 2.6%
111.B. Not Enough Packets 22767 | 27%
111.C. No Data Received 3352 4%
Il.D. HTTP Error 13903 | 16%
IIl.E. Request Failed 839 1%
IIl.F. MSS Error 266 | 0.3%
IIl.G. Other 2035 | 2.4%

Table 6: Reno/NewReno Deployment in Web Servers.

sign and evaluation of transport protocols. For exampl&,dP
deployments are dominated by NewReno and SACK TCP, then it
is counter-productive for researchers to evaluate coiugesontrol
performance with simulations, experiments, or analysisetieon
Reno TCP.

5.1 Reno/NewReno Test

RenoPlus in [39], is also shown in [39]; Reno with Aggresstast
Retransmit has some response to a partial acknowledgmengdu
Fast Recovery, but does not take the NewReno step of retitansm
ting a packet in response to such a partial acknowledgment. F
each TCP variant, the table shows the number and percentage o
web servers using that variant. We note that the results Way
2001 and February 2004 are not directly comparable; theyifise
ferent lists of web servers, and the February 2004 list isicbn
erably larger than the May 2001 list. However, Table 6 inglie
that the deployment of NewReno TCP has increased signifjcant
in the last few years; NewReno is now deployed in 77% of the web
servers on our list for which we could classify the loss recgv
strategy. In addition, the deployment of TCP without Fagt&tes-

mit has decreased significantly; this poorly-behavingarrivas
discovered in [39], where it was reported to be due to a véndor
failed attempt to optimize TCP performance for web pagesatea
small enough to fit in the socket buffer of the sender.

5.2 Web Server SACK Usage

The SACK Behavior test reports the fraction of servers that a
SACK-capable, and categorizes the variant of SACK congesti
control behavior for a TCP connection with a SACK-capabiernt!
TCP’s Selective Acknowledgment (SACK) option [35] enahites
transmission of extended acknowledgment information tpraant
TCP’s standard cumulative acknowledgment. SACK blocks are
sent by the data receiver to inform the data transmitter @f no
contiguous blocks of data that have been received and qu&ted
SACK information can be used by the sender to retransmit only
the data needed by the receiver. SACK TCP gives better perfor
mance than either Reno or NewReno TCP when multiple packets
are dropped from a window of data [21].

The SACK Behavior test builds on the original TBIT test, with

The Reno/NewReno test, adapted from the original TBIT [39], added robustness against packet reordering. TBIT firstretes
determines whether a web server uses Tahoe, Reno, or NewRendf the server is SACK-capable by attempting the negotiatibthe

loss recovery and congestion control mechanisms for a T@P co
nection that is not SACK-capable. It is well-known that Reno
congestion control mechanisms perform poorly when mafialck-
ets are dropped from a window of data [21]. Tracking the deplo
ment of NewReno can guide researchers in their choices of mod
els for simulations, experiments, or analysis of congastiontrol
in the Internet; researchers that use Reno instead of NewBen
SACK TCP in their simulations or experiments could end ughwit
significantly-skewed results that have little relevanaslie current
or future Internet. Another reason for these tests is to foolknan-
ticipated behaviors; for example, the Reno/NewReno tesf39]
discovered a variant of TCP without Fast Retransmit thatlred
from a vendor’s buggy implementation.

The Reno/NewReno test determines the sender’s congestion ¢
trol mechanism by artificially creating packet drops thatiethe
congestion control algorithm of the server. In order to émahe

SACK Permitted option during the connection establishrpbase.

For a SACK-capable server, the test determines if the serses

the information in the SACK blocks sent by the receiver. TBIT
achieves this by dropping incoming data packkis 17 and 19,

and sending appropriate SACK blocks indicating the blodkeo
ceived data. Once the SACK blocks are sent, TBIT observes the
retransmission behavior of the server.

Table 7 shows the results for the SACK test. The servers re-
ported as “Not SACK-Capable” are those that did not agrebéo t
SACK Permitted option negotiated by TBIT. The servers tisis
“Proper SACK” are those that responded properly by re-sendi
only the data not acknowledged in the received SACK blocke T
servers listed as “Semi-SACK” make some use of the inforonati
in the SACK block&. In contrast, the servers listed as “NewReno”
and “Tahoe-NO-FR” make no use of the information in the SACK
blocks, even though they claim to be SACK-capable. The four

server to have enough packets to send, TBIT negotiates d smal tyPes of SACK behaviors are shown in Figure 4 in [39].

MSS (256 bytes in our tests). However, using a small MSS in-
creases the chances of observing reordering packets (séerSe
7), and this reordering can change the behavior elicitech ftioe
server. Therefore, the current test has evolved from thginaii
TBIT test to make it more robust to packet reordering, andseen
quently to be able to classify behavior the original TBIT e
able to understand. The framework of the Reno/NewReno gest i
as described in [39], with the receiver dropping ft3h and16th
data packets.

Table 6 shows the results of the Reno/NewReno test. The Tahoe
Tahoe without Fast Retransmit (FR), Reno, and NewRenoniaria
are shown in [39]. Reno with Aggressive Fast Retransmitedal

While the 2001 and 2004 results are not directly comparable,
the results in Table 7 indicate that the fraction of web-sethat
report themselves as SACK-capable has increased since 2001
that most (90%) of the successfully-classified SACK-capateb
servers now make use of the information in SACK blocks.

As suggested by the results in Section 4.1, some of the sdsult

2There is a chance that the Semi-SACK servers actually parfor
Proper SACK, but have fallen prey to ACK loss. However, since
SACKs are sent a number of times, the ACK loss would have to
be quite bad before the server missed a block entirely. Ttrere

while possible, we do not believe that ACK loss biases ouregg

gate conclusions in a large way.

Date: May 2001 Feb. 2004

% of % of

SACK Type Num. | total || Num. total
Total Number of Servers|| 4550 | 100% || 84394 | 100%
I. Not SACK-Capable 2696 | 59% || 24607 | 29%
Il. SACK-Capable 1854 | 41% || 57216| 68%
II.A. Uses SACK Info: 550 | 12% || 23124| 27%
IILA.1. Proper SACK - 15172 18%
IILA.2. Semi-Sack - 7952 9%
I1.B. Doesn’'t use SACK 759 | 17% 2722 3%

Info:

11.B.1. NewReno - 1920 2%
11.B.2. TahoeNoFR - 802 1%
I.C. Inconsistent Result§ 545 | 12% 173 | 0.2%
11.D. Not enough Packets 20740 | 24.5%
Il.LE. No Data Received 549 | 0.5%
II.LF. HTTP Errors 9853 12%
I1.G. Request Failed 2 0%
II.H. MSS Error 55 0%
Ill. Errors 2569 3%
I1I.A. No Connection 1770 2%
111.B. Other 799 1%

Table 7: SACK Deployment in Web Servers

Table 7 that are not “Proper SACK” could be influenced by mid-
dieboxes that translate the TCP sequence space, but doopetiyr
translate SACK block3.

An additional D-SACK test measures the deployment of D-SACK
(duplicate-SACK), an extension to the TCP SACK option for ac
knowledging duplicate packets [23]. When deployed at TGP re
ceivers, D-SACK can help TCP servers detect packet reitat
by the network, false retransmits due to reordering, retrattime-
outs due to ACK loss, and early retransmit timeouts [16, Bf, 4
Our tests show that roughly half of the SACK-capable webessrv
implement D-SACK. The more relevant question is whether D-
SACK is also deployed in web clients; we comment on this aspec
further in Section 6.

5.3 Initial Congestion Window

The Initial Congestion Window (ICW) test from [39] deterram
the initial congestion windows used by web servers. Traultily,
TCP started data transmission with a single segment ang skeiw
start to increase the congestion window [14]. However, H@jws
an initial window of two segments, and [8] allows an initiainw
dow of three or four segments, depending on the segmentlsize.
particular, an initial window of two or more segments canucl
the number of round-trip times needed for the transfer of allsm
object, and can shorten the recovery time when a packet jgpdtb
from the initial window of data (by stimulating duplicate K&
that potentially can trigger fast retransmit rather thariting on
the retransmission timeout).

The test starts with TBIT establishing a TCP connection to a
given web server using 266 byte MSS. The small MSS increases
the chances that the server will have enough packets toisaéis
ICW. TBIT then requests the corresponding web page, and/esce
all packets initially sent by the server, without ACKing aofythe
incoming segments. The lack of ACKs forces the server tanstr
mit the first segment in the ICW. TBIT then counts the number of
segments received, reports the ICW value computed andrtatesi

3We note that the results in Section 4.1 are from a different ru
from those in Table 7, and have slightly different numberstfie
prevalence of not-SACK-capable servers.

the test.

Despite the small MSS, there still may be some servers withou
enough data to fill their ICW. TBIT detects such cases by watch
for the FIN bit set in one of the data segments. Such testaaoei
clusive; the corresponding servers have an ICW equal torgeila
than the number of packets received. We report only thoseser
that had enough data to send their entire ICW without settieg
FIN bit.

—
(429

100kF ¢ (42%) B
30K =— (54%)

1%

10K+ —

121
100

Number of Servers

111111 11

Ll donannnin

0
0 1 2 3 4 5 6 7 9 11 12 13 15 16 25 31 53 59 64 65 129
ICW Value

Figure 2: Initial Window Test, for an MSS of 256 bytes.

Figure 2 shows the distribution of ICWs used by the measured
web servers. The figure shows that most web servers use @ init
window of one or two segments, and a smaller number of servers
use an initial window of three or four segments. In additibwere
are a few servers using ICW values of more than four segments —
including some servers using ICWs larger than 10 segmeheséer
results are similar to those from 2001 [39], which show 2%hef t
web servers had an initial window of three or four segmemsd, a
3% had initial windows larger than four segments. Thus, TiGP i
tial windows of three or four segments are seeing very slgviaye
ment in web servers.

We note that the ICWs shown in Figure 2 could change with dif-
ferent values for the MSS. For example, www.spaceimagimg.c
has an ICW of 64 segments when the MSS is restricted to 256 byte
but an ICW ofonly 14 segments with an MSS of 1460 bytes.

30

Il Drops 4

25+
[Reordering

223% 232% 23.6%

20 18.8% ,

15 B
12.4%
11.1%

101 —
7.1% 7.3%
6.3% 5.8%

I I 3.9% i
o J J !

0
| ‘
1 2 3 4 5

L
6
Initial Congestion Window Value

% of connections

5k

Figure 3: Percent of connections with dropped/reordered pek-
etsvs. ICW

Figure 3 shows the fraction of connections with dropped er re
ordered packets, as a function of the ICW value used by thveser
hosting the associated connections. The web servers wikrla
initial windows of three or four packets do not have a higherp
centage of connections with packet drops. Even the occasSi@P
connections with ICWs greater than four segments are noe mor
likely to see packet drops. In addition, reordering ratessami-
lar for ICWs of 1-3 segments and then the percentage of server

Date: May 2001 April 2004

% of % of
Window Halving Num. | total || Num. | total
Total Number of Servers 4550 | 100% || 84394 | 100%
I. Classified Servers 3461 | 76% || 30690 | 36%
I.A. Window Halved 3330 | 73% || 29063 | 34%
1.B. Window Not Halved 131 | 2.8% 1627 2%
Il. Errors 1089 | 24% || 53704 | 64%
II.LA. No Connection 5097 6%
11.B. Not Enough Packets 22362 | 26%
I1.C. No Data Received 4966 6%
11.D. HTTP Error 13478 | 16%
II.E. Request Failed 976 | 1.7%
11.G. Unwanted Reordering 4622 | 5.5%
II.H. Unwanted drops 732 | 0.9%
11.1. Other 1117 | 1.3%

Table 8: Window Halving Test Results
experiencing reordering drops off.

5.4 Congestion Window Halving

A conformant TCP implementation is expected to halve its con
gestion window after a packet loss [13]. This congestiontrobn
behavior is critical for avoiding congestion collapse ig tretwork
[26]. The Congestion Window Halving test in May 2001, frone th
original TBIT, verified that servers effectively halve thebnges-
tion window upon a loss event; in this section we run the tgatra
on a much larger set of web servers, and show that the early re-
sult still holds. Because much of the traffic in the Interratsists
of TCP traffic from web servers to clients, this result impltaat
much of the traffic in the Internet is using conformant endkibal
congestion control. This is consistent with the view thatlike
clients, busy web servers have a stake in the deploymentdefcen
end congestion control in the Internet [26].

The Congestion Window Halving test works by initiating aisa
fer from the web server, waiting until the server has builtom
congestion window of eight segments, and then dropping kepac
After the loss, the server should reduce the congestion awind
to four segments. We classify the result as “Window Halvedd” i
the congestion window is reduced to at most five packets tfeer
loss, and we classify the result as “Window Not Halved” ottise.
TBIT is only able to determine a result for those servers llaate
enough data to send to build up a congestion window of eigft se
ments. A detailed description of the test is available if.[3BIT
maintains a receive window &fsegments, to limit the congestion
window used by the sender.

Table 8 shows the results for the Congestion Window Halving
test. Table 8 shows that, as in 2001, most of the serversiedhib
correct window halving behavior. For the servers that dichadve
the congestion window, a look at the packet traces sugglests t
these are servers limited by the receive window, whose tioge
windows at the time of loss would otherwise have been grélader
eight segments. One possibility is that these servers ainittie
congestion window independently from the receive windomd a
do not properly halve the effective window when the congesti
window is greater than the receive window. We note that RR&125
specifies that after a loss, the sender should determinentbard
of outstanding data in the network, and set the congestiodaw
to half that value in response to a loss.

5.5 Byte Counting

As described in RFC 2581 [13], TCP increases the congestion
window (cwnd by one MSS for each ACK that arrives during slow

start (so-called “packet counting”, or “PC"). Delayed ACKte-
scribed in [14, 13], allow a TCP receiver to ACK up to two seg-
ments in a single ACK. This reduction in the number of ACKs
transmitted effectively leads to a reduction in the ratehwihich
the congestion window opens, when compared to a receiver tha
ACKs each incoming segment. In order to compensate for éiis r
tarded growth, [5, 6] propose increasiogndbased on the number
of bytes acknowledged by each incoming ACK, instead of lgasin
the increase on the number of ACKs received. [6] argues thddt s
anAppropriate Byte Counting (AB@)gorithm should only be used
in the initial slow start period, not during slow start-bddess re-
covery. In addition to improving slow-start behavior, ABges

a security hole by which receivers may induce senders tease
the sending rate inappropriately by sending ACK packetseheh
ACK a fraction of the sequence space in a data packet [46].

The Byte Counting test is sensitive to the specific slow ftart
havior exhibited by the server. We have observed a large auofb
possible slow start congestion window growth patterns imess
which do not correspond to standard behavior. For this rease
were forced to implement an elaborate test for an algorithsira-
ple as Byte Counting. The test works as follows, for an ihit@n-
gestion window of one segment:

1. Receive and acknowledge the first data packet. After this
ACK is received by the server, the congestion window should

be incremented to two packets (using either PC or ABC).

. ACK the second and third data packets with separate ACK
packets. After these two ACKs are received, the server shoul
increment its congestion window by two packets (using ei-
ther PC or ABC).

. ACK the next four packets with a single cumulative ACK
(e.g., with an acknowledgment of the seventh data packet).

. Continue receiving packets without ACKing any of them un-
til the server times out and retransmits a packet.

. Count the number of new packety, that arrived at least
three quarters of a round-trip time after sending the las{ AC

. Count the number of earlier ACK®, (out of the three ear-
lier ACKs) which were sent within an RTT of the first of the
N packets above. These are ACKs that were sent shortly
before the last ACK. For servers with the standard expected
behavior,R should be 0.

. Compute the increasé,, in the server congestion window
triggered by the last ACK as follows:

L=N-4-2xR (1)

e If L =1, then PC was used.

e If L > 1, then the server increased its congestion win-
dow by L segments in response to this ACK. We clas-
sify this as the server performing Byte Counting with a
limit of at leastL.

The observation behind the design of this test is tNais the
number of packets that the server sent after receiving thi AC
packets in the preceding RTT. The3é packets are assumed to
include two packets for each ACK received that ACKed only one
packet. TheséV packets are also assumed to include four packets
due to the advance in the cumulative acknowledgment fielchwhe
the last ACK was received. Any extra packets sent should ke du
to the increase in the congestion window due to the receifhief

% of
Slow-Start Behavior Number total
Total Number of Servers: 44579 | 100%
I. Classified Servers 23170 52%
I.A. Packet Counting 15331 | 51.9%
I.B. Appropriate Byte Counting 65| 0.1%
Il. Unknown Behvaior 288 | 0.6%
1. Errors 21121 47.4%
III.A. No Connection 528 | 1.2%
I11.B. Not enough packets 13112 29.4%
I1I.C. No data received 386 | 0.9%
11.D. HTTP Error 215| 0.5%
lIl.LE. Request Failed 181 | 0.4%
lll.F. Packet Size Changed 5762 | 13%
IIl.G. Unwanted Reordering 827 2%
I1I.H. Other 7 0%

Table 9: Byte Counting Test Results

last ACK. We note that the complexity of this test is an exampl
in which the difference between theory and practice in grotbe-
havior significantly complicates the scenarios that neduktoon-
sidered. Table 9 shows the results of the Byte Countingsbsty-
ing that Byte Counting had minimal deployment when theststes
were performed.

We note that the Byte Counting test is not sufficient to distin
guish between Packet Counting, and ABC with= 1. The Byte
Counting test also uses the estimated RTT in inferring whita
packets were sent by the server after the server receiveiihdie
ACK packet, and this use of the estimated RTT is a possibleceou
of error. From looking at packet traces, we observed one or tw
tests that were labeled by TBIT as Byte Counting, where the ac
tual RTTs in the connection were unclear, and the packes thas
consistent with either Byte Counting or Packet Countingweleer,
from the traces that we looked at, we don't think that thissiiade
source of error is a significant factor in our overall results

5.6 Limited Transmit

TCP’s Limited Transmit algorithm, standardized in [7] 0k a
TCP sender to transmit a previously unsent data segmentthpon
receipt of each of the first two duplicate ACKs, without infeg a
loss or entering a loss recovery phase. The goal of Limitesh§+
mit is to increase the chances of connections with small avirscto
receive the three duplicate ACKs required to trigger a festins-
mission, thus avoiding a costly retransmission timeoutmited
Transmit potentially improves the performance of TCP catinas
with small windows.

The Limited Transmit test assesses deployment in web server
Like the Byte Counting test, this test is sensitive to the sifzthe
initial window employed by the server. The strategy of the te all
cases is the same but the presence or absence of Limitedritans
must be determined in the context of a specific ICW. For an ICW
of four packets, the test works as follows:

1. Acknowledge the first data segment in the initial window of
four segments. Upon receiving this ACK, the server should
open its window from four to five segments, and send two
more packets, the 5th and 6th segments.

. Drop the second segment.

N

% of
Limited Transmit (LT) Behavior Number | total
Total Number of Servers 38652 | 100%
I. Classified Servers 29023| 75%
.A. LT Implemented 8924 | 23%
I.B. LT Not Implemented 20099 | 52%
Il. Errors 9629 25%
II.LA. No Connection 420 1.1%
11.B. Not enough packets 3564 | 9.2%
1I.C. No Data Received 257 | 0.7%
1I.D. HTTP Errors 224 | 0.6%
1I.E. Request Failed 163 | 0.4%
II.F. Packet Size Changed 4900 | 12.7%
1I.G. Other 101 | 0.3%

Table 10: Deployment of Limited Transmit

mechanism at the server but TBIT sends two to account for
the possibility of ACK losses.

4. If the server does not implement Limited Transmit, then it
will do nothing when it receives the duplicate ACKs. If the
server does implement Limited Transmit, then it will send
another segment when it receives each duplicate ACK.

We note that if the duplicate ACKs sent by TBIT are dropped in
the network, then TBIT will see no response from the web serve
and will interpret this as a case where Limited Transmit isde
ployed. Greater accuracy could be gained by running thesesst
eral times for each web server, as was done with the TBIT tests
[39].

2000

1800 If LT implemented, rcv this pkt ->

1600 [B
o
1400 4
o

1200 —

1000 o g

800 - O B

seq number

600 |- 4
® <- Drop
400 4

B <- Receive and ACK + <- Send two dup ACKs

200

L L L L L
1.04 1.06 1.08 11 112

Time
Figure 4: Limited Transmit Test: Example for ICW =4

L L L
0.98 1 1.02 114

Figure 4 shows a time-sequence plot of the test describedkabo
for a server with an initial window of four packets. Table tows
the results from our tests. The table shows that Limited Sirah
is deployed in at least a fifth of the web servers in our dataget
Limited Transmit test is sensitive to the size of the initiahdow
and therefore care needs to be exercised with respect tazine s
of packets being received from the server. Note that if there
a change in the packet size for packets in the middle of the con
nection, TBIT flags the result “Packet Size Changed”, and dhoé
classify that server. As shown in the table, this happendu seime
frequency and renders that test inconclusive. Furtherpaarertain

3. TBIT sends two duplicate ACKs triggered by the receptibn o minimum number of packets need to be transferred for TBITeto b
segments and6. TBIT does not send ACKs when segments able to classify a server, therefore servers with small vagjep are
3 and 4 arrive, to provide for increased robustness against classified as not having enough packets.
unexpected server congestion window growth. Only one du-
plicate ACK would suffice to trigger the Limited Transmit

10

5.7 Congestion Window Appropriateness acknowledgments have been received.

When the TCP sender does not have data to send from the ap- It would also be possible to use TBIT to explore the conges-
plication, or is unable to send more data because of liroitatof ~ tion window used by web servers after an application-lichipe-
the TCP receive window, its congestion window should refleet ~ fiod. TBIT can create an application-limited period by @sne-
data that the sender has actually been able to send. A cimgest Peated HTTP requests, once per round-trip time, each renges
window that doesn't reflect current information about thetesiof only a range of bytes from the web page. After this enforced
the network is considered invalid [28]. TBIT’s Congestioriny ~ application-limited period, TBIT would follow by requesy the
dow Appropriateness test examines the congestion winded us full web page.
by web servers following a period of restrictions imposedthy 5.8 Minimum RTO
receive window.) o)

In this test, TBIT uses a TCP receive window of one segmentto . | CP USes a retransmit timer to guarantee the delivery of data
limit the web server’s sending rate to one packet per RTerfive |n.th(.e absence of feedback from the.rec.elver. The duration of
RTTs, TBIT increases the receive window significantly, araitsy ~ this timer is referred to as thRetransmit TimeOURTO). A de-
to see how many packets the web server sends in response. Conf@iled description of the algorithm for computing the RTO dze
sider a web server using standard slow-start from an iniiiatiow found in [14, 40]. [40] recommends a minimum RTO of one sec-
of K segments, increasing its congestion window without regard ©nd; though itis well-known that many TCP implementatiose a
to whether that window has actually been used. Such a webrsery Smaller value for the minimum RTO. A small minimum RTO gives

will have built up a congestion window ok + 5 segments af- Petter TCP performance in high-congestion environmenisieva
ter five round-trip times of sending one packet per rourplttrie, larger minimum RTO is more robust to reordering and varialele
because each ACK increases the congestion window by one seg-'ays (12]. . o

ment. The web server could suddenly sénd- 5 packets back-to- The TBIT test to explore minimum RTO values initiates a con-

back when the receive window limitation is removed. In casty ~ nection with agiven server, and receives and acknowledgeiefs
a web server using the Congestion Window Validation procedu 88 usual until packe20 has been received. By this time, the TCP

from [28] will have a congestion window of either two segrmeeot sender has taken a number of measurements of the roundvtep t
the ICW, whichever is largé. and has estimated the average and mean deviation of the-népind
time for computing the RTO. Upon packe®’s reception, TBIT
16K L stops ACKing packets and measures the time until the retrizns
14K sion for the last packet; this is used as an estimate of the (&SEQ

i 1 by the server.

12K+ q

10K

4

Number of Servers
5 2 2 8
T T T T
. . .

N
=
T

=1 B S S T
2 3 4 5 6 7 8 9 11 12 13 14 16 17 18 19 20 21 24 31 40 41
Number of Packets in Last Window

N A

RTO

Figure 5: The congestion window after a receive-window-
limited period

Figure 5 shows the number of segments that each server sends i
response to the increased receive window at the end of thgeSen
tion Window Appropriateness test. The majority of servespond

—_— 2*RTT
- RTO

with a window of two to four packets, showing moderate bebiavi 0 01 02 o3 0s 05 06
consistent with Congestion Window Validation. A smallexdtion
of the servers respond with a large window of eight or ninégts; Figure 6: RTO vs. Initial RTT
suggesting that the server increases its congestion wimndthout Figure 6 shows the RTO values used by servers for retransgnitt
regard for the actual number of segments sent. the given packet. The-axis shows the initial round-trip time, and

In some cases the number of segments transmitted shows thathe y-axis shows the measured RTO for the server. The RTO used
the server is violating the standard rules for opening theges- by a server will often be larger than the minimum RTO enforiogd

tion window during slow-start, even aside from the issueh®f t that server. However, of the 37,000 servers shown in Figu46%
appropriateness of a congestion window that has never t#h U responded with an RTO of less than a second.
Because a conformant web server can have an initial window of

at most four segments, a conformant web server can have a cong. PASSIVE CLIENT MEASUREMENTS

gestion window of at most nine segments after five singlé«giac
The previous sections discuss results from active measuntsm

YRFC 2861 [28] was written when the ICW was still only one from a TBIT client machine to a target set of web server desti-

packet, so RFC 2861 doesn't explicitly say that the ICW sthdel nations. Such analysis sheds light on the correctness afof-pe

taken as a lower bound for the reduced congestion window.-How Lot P ; ;
ever, RFC 3390 says that the sender MAY Use the initial window mance characteristics of a significant population of infiakl web

as a lower bound for the restart window after an idle period, i& 5The minimum RTO test requires a transfer of at least 20 packet
makes sense that the sender would use the initial windowaagea | and therefore we could not assess the minimum RTO to over half
bound in this case as well. the web servers in our list.

11

servers, and also provides insights into the charactesisfithe in-
termediate nodes on the paths that carry packets betwediBtfie
client and the servers. However, this is only one part of tbeys
We are also interested in observing the Internet from thegeeative
of web clients. To achieve this perspective we collect faitket
traces of traffic to and from the web server of our researcbriab
tory. In this section we present the result from the analgsthose
traces.

We collected packet traces of full TCP packets to and from por
80 on our lab’s web server for roughly two weeks (from Febru-
ary 24, 2004 to March 10, 2004). Capturing entire packets al-
lowed us to verify the TCP checksum and discard packets ttat d
not pass. In the dataset we observed 206,236 connectioms fro
28,364 clients (where a “client” is defined as an IP addre€X).
these, 613 (or, 0.3%) connections were not analyzed dueeto th
packet trace missing the initial SYN sent by the client aretdh
fore throwing off our analysi§. We do not believe that deleting
these connections biased our results.

The first set of items we measure are the capabilities thatclie
TCPs advertise during connection startup. Of all the clieB05
(or 0.7%) show inconsistent capabilities across connestfoom
the same IP address. An example inconsistency would be ane co
nection from a particular IP address advertising supporS&CK,
while a subsequent connection does not. Our inconsistemagkc
includes the SACK permitted option, the timestamp optidrg t
window scale option (and the advertised value), the MSSoopti
(and the MSS value) and whether the connection advertiggosu
for ECN. Options may be inconsistent due to a NAT between the
client and our server that effectively hides multiple ctiebehind a
single IP address. Alternatively, system upgrades andgumafiion
changes may also account for inconsistency over the cofiaa o
dataset.

We next study TCP’s cumulative acknowledgment and the selec
tive acknowledgment (SACK) option [35]. In our dataset, 90
clients (or 87.8%) advertised “SACK permitted” in the inltSYN.
Across the entire dataset 236,192 SACK blocks were returoet
the clients to our web server. We observe loss (retransonissi
from the server) without receiving any SACK blocks with ohlyo
clients that advertised SACK capability. This could be doeat
bug in client implementations, middlebox interference ionge
network dynamics (e.g., ACK loss). Therefore, we concluu# t
clients advertising “SACK permitted” nearly always follaw with
SACK blocks, as necessary.

As outlined in Section 4.1, the TBIT SACK tests yield some
transfers where the sequence numbers in the SACK blockstfrem
clients are “shifted” from the sequence numbers in the laskets.
Inaccurate SACK blocks can lead to the sender spurioudignet
mitting data that successfully arrived at the receiver,watting on
a timeout to resend data that was advertised as arriving bighw
was never cumulatively acknowledged. To look for such a phe-
nomenon in web clients or middleboxes close to clients we ana
lyzed the SACK blocks received from the clients and deteeahin
whether they fall along the segment boundaries of the welessr
transmitted data segments. We found 1,242 SACK blocks $86).
that do not fall along data segment boundaries. These SAQikbI
were generated by 49 clients (or 0.2%). The discrepancydmiw
the rate of receiving strange SACK blocks and the percentge
hosts responsible for these SACK blocks suggests a clidates
middlebox bug. These results roughly agree with the resuliec-
tion 4.1. Of the bogus SACK blocks received, 397 were offget.+-

5The dataset is really composed from separate 24-hour packet

traces, and so connections which continue across two otthes
traces are lost mid-connection.

12

the sequence numbers in the SACK block were within the seguen
space used by the connection, but did not fall along data segm
boundaries. Meanwhile, the remaining 845 bogus SACK blocks
were for sequence space never used by the connection. Nmds: a
sible explanation for some of the strange SACK blocks is ¢t
packet tracing infrastructure missed a data segment ameffthe
when a SACK arrives we have no record of the given packet bound
aries. However, given that)(the discrepancy between the overall
rate of observing these SACKs when compared to the percentag
of clients involved andi¢) many of the bogus SACK blocks were
completely outside the sequence space used by the cormesto
believe that packet capturing glitches are not the predanticause

of these bogus SACK blocks.

Next we outline the prevalence of Duplicate SACK (D-SACK)
[23] blocks in our dataset. D-SACK blocks are used by data re-
ceivers to report data that has arrived more than once antdean
used for various tasks, such as attempting to set a propéicaliep
ACK threshold and reversing needless changes to TCP’s senge
tion control state caused by spurious retransmissions1[1,648].

In our dataset we observed 809 hosts (or, 3% of all hosts)rsgnd
D-SACK blocks. Note that more than 3% of the hosts may support
D-SACK, but were not faced with a situation whereby transinis

of a D-SACK was warranted.

We also investigated whether there were cases when the aumul
tive acknowledgment in incoming ACKs did not fall on a segitnen
boundary. Of the roughly 4.7 million ACKs received by our web
server, 18,387 ACKs contained cumulative ACK numbers ticht d
not agree with the segments sent. These ACKs were origirgted
36 clients. The rate of receiving these strange ACKs is 04% i
the entire dataset, meanwhile the number of clients redperfer
these ACKs represents 0.1% of the dataset, indicating thgdyb
clients or middleboxes may be the cause of these ACKs.

In our dataset, the timestamp option is advertised by 6,[i€6ts
(or 21.5%). Clients that do not accurately echo timestanipega
to the server or middleboxes that alter the timestamp of aipgs
packet may cause performance degradation to the conndzyion
increasing or reducing the retransmission timeout (RT@)nage
of the server. If the RTO is too small the data sender will bote
prematurely, needlessly resending data and reducing thgese
tion window. If the RTO is too large performance will suffened
to needless waiting before retransmitting a segment. Inlataset,

20 clients returned at least one timestamp that the server sent
(some of the timestamps returned by these clients were)valids

result suggests that the network and the endpoints aréuidythar-

rying timestamps in the vast majority of cases.

1 I
0.9 ﬁ
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 —/J
1000 10000 100000
Advertised Window (bytes)

le+06

Figure 7: Distribution of advertised windows use by web
clients.

We next examine the advertised windows used by web clients.
[9] shows how the client’s advertised window often dictaties
ultimate performance of the connection. Figure 7 shows istei-d
bution of the maximum window advertisement observed foheac
client in our dataset. Roughly, the distribution shows nsode
8 KB, 16 KB and 64 KB. These results show an increase in ad-
vertised window sizes over those reported in [9] (in 200@)ourr
dataset the median advertised window observed is just @/&B3
and the mean is almost 44 KB, whereas [9] reports the median ad
vertised window as 8 KB and a mean of 18 KB. Additionally, 54
clients (or 26.6% of our dataset) advertised support for '§Gfh-
dow scaling option [29], which calls for the advertised windto
be scaled by a given factor to allow for larger windows than ca
naturally be advertised in the given 16 bits in the TCP heahlest
over 97% of the clients that indicate support for window sal
advertise a window scale factor of zero — indicating thatdifent
is not scaling its advertised window (but understands windoal-
ing if the server wishes to scale its window). Just over 1%hef t
clients in our dataset use a scale factor of 1, indicatingttread-
vertised window in the client’s segments should be doubkdfdrie
using. We observed larger window scale factors (as high &s 9)
small numbers in our dataset.

We next look at the MSS advertised by web clients in the ihitia
three-way handshake. Two-thirds of the clients used an MSS o
1460 bytes (Ethernet-sized packets). Over 94% of the sliestd
an MSS of between 1300 bytes and 1460 bytes. The deviation fro
Ethernet-sized packets may be caused by tunnels. Roughiyf4%
the clients in our dataset advertised an MSS of roughly 53ésby
We observed advertisements as small as 128 bytes and asfarge
9138 bytes. This analysis roughly agrees with [9].

Finally, we note that we observed 48 clients (or 0.2% of the
clients in our dataset) advertising the capability to usgliei Con-
gestion Notification (ECN) [44]. That is, only 48 clients $&YNs
with both the ECN-Echo and Congestion Window Reduced bits in
the TCP header set to one.

7. MEASUREMENT LESSONS

In conducting the measurements presented in this paper we ob
served a number of properties of the network and the endragste
that challenged our assumptions and ultimately shapedoals.t
In this section, we distill several lessons learned thagmstiton-
ducting similar measurements should keep in mind.

100K
' JoK 15K
10K 8K —

1K b

I

1024 1460

151
100 H 46
0 H
128 256 512

32 64

1

Number of servers
5
T

MSS Value
Figure 8: Minimum MSS Test

The TBIT tests presented in this paper attempt to use a small
MSS so that the web server splits the data transfer into mege s
ments than it naturally would. In turn, this provides TBITthvi
additional ways to manipulate the data stream. For instahee
server transmits one segment of 1280 bytes then TBIT camaisdye
conduct certain tests, such as assessing the Initial WinéHmw-
ever, if the server is coaxed into sending 10 segments of $&%b
more tests become possible (due to the increased varietgnas
ios TBIT can present to the server). The set of TBIT testsqutesl
in [39] employed a 100 byte MSS. When we initiated the present

13

study we found this MSS to be too small for a significant num-
ber of web servers. Therefore, determining the smallestvalble
MSS is important for TBIT-like measurements. Figure 8 shtives
distribution of minimum MSS sizes we measured across thefset
web servers used in our study. As shown, nearly all servérgevi
cept an MSS as small as 128 bytes, with many servers supgortin
MSS sizes of 32 and 64 bytes. Another aspect of the segment siz
that surprised us is that segment sizes sometimes charigg the
course of a connection (e.g., as reported in the tests of ABSRc-
tion 5) . Therefore, we encourage researchers to design thesit
are robust to changing packet sizes (or, at the least wanmstreof

a test when such an event is observed).

5.5%

2 st E
2
S 4.1%
8 4 677K 1
- | | | -
s 4 12M 2.7% |
g 338K
e L |l || 1.8% .]
5 8.2M 114K L4%
P e e N 39K 14K |
aam ||]|
2.2M 1.1M
0
64 128 256 512 1024
MSS Value

Figure 9: Reordering vs MSS

Choosing a small MSS to maximize the number of segments the
web server transmits is a worthy goal. However, we also fiad th
as the MSS is reduced the instances of packet reorderingaser
Figure 9 shows the percentage of reordered segments astafunc
of the MSS size.

One explanation of this phenomenon is that using a smalle8 MS
yields transfers that consist of more segments and theréfave
more opportunities for reordering. Alternatively, smaltfets may
be treated differently in the switch fabric — which has beleoven
to be a cause of reordering in networks [15]. Whatever theeau
researchers should keep this result in mind when desigriperie
ments that utilize small segments. Additionally, the resuggests
that performance comparisons done using small segmentaiotay
be directly extrapolated to real-world scenarios whergdaseg-
ments are the rule (as shown in Section 6) since reorderipgdta
performance [15, 16, 48].

As outlined in Section 5, we find web servers’ slow start behav
iors to be somewhat erratic at times. For instance, Sect®firgls
some web servers using “weak slow start” where the web server
does not increase the congestion window as quickly as atldwe
the standards In addition, we also found cases where the conges-
tion window is opened more aggressively than allowed. Thifse
ferences in behavior make designing TBIT-like tests diffisince
the tests cannot be staked around a single expected behavior

Also, we found that some of our TBIT measurements could not
be asself containedas were all the tests from the original TBIT
work [39]. Some of the tests we constructed depended on pecu-
liarities of each web server. For instance, the Limited $rai
test outlined in Section 5.6 requires apriori knowledgehef web
server’s initial window. This sort of test complicates maasent
because multiple passes are required to assess some op#imlca
ities of the web servers.

Finally, we note that in our passive analysis of web cliergreh
acteristicsverifying the TCP checksum is kigy some of our ob-
servations. In our dataset, we received at least one segmiignt

"Such non-aggressive behavior is explicitly allowed unberstan-
dard congestion control specification [13], but we founduipsis-
ing that a web server would be more conservative than negessa

[TCP Mechanism [Section | Deployment Status |

Loss Recovery 6,5.2 SACK is prevalent (in two-thirds of servers and nine-terghslients).
5.1 NewReno is the predominant non-SACK loss recovery strategy
D-SACK 6,5.2 D-SACK is gaining prevalence (supported by 40% of servedsaireast 3% of clients)
Congestion Responsg 5.4 Most servers halve their congestion window correctly adtérss.
Byte Counting 55 Most web servers use packet counting to increase the comgegndow.
Initial Cong. Window | 5.3 Most web servers use an ICW of 1 or 2 segments.
ECN 4.2 ECN is not prevalent.
Advertised Window | 6 The most widely used advertised window among clients is 64\HtB many clients
using 8 KB and 16 KB, as well.
MSS 6 Most of the clients in our survey use an MSS of around 1460sbyte

Table 11: Information for modeling TCP behavior in the Inter net.

| Behavior [Section | Possible Interactions with Routers or Middleboxes
SACK 5.2,6 In small numbers of cases, web clients and servers recei@$%ocks with incorrect
sequence numbers.
ECN 4.2 Advertising ECN prevents connection setup for a small (amdrdshing) set of hosts.
PMTUD 4.3 Less than half of the web servers successfully complete @ath Discovery.
PMTUD is attempted but fails for one-sixth of the web servers
IP Options | 4.4 For roughly one-third of the web servers, no connectiontatdished when the client includes

an IP Record Route or Timestamp option in the TCP SYN packet.
For most servers, no connection is established when tha alieludes an unknown IP Option.
TCP Options| 4.5 The use of TCP options does not interfere with connectiombdishment. Few problems
were detected with unknown TCP options, and options indudelata packets in mid-stream.

Table 12: Information on interactions between transport protocols and routers or middleboxes.

a bad TCP checksum from 120 clients (or 0.4% of the clients in measurements involving the interactions between TCP addlei
the dataset). This prevalence of bogus checksums is langar t boxes along the network path are summarized in Tables 112nd 1

the prevalence of some of the identified characteristichk®fteb There exist significant avenues for future work in the light o
client (or network). For instance, we identified only 49 ntethat the results presented in this paper. There are a wealth afrtamt
advertise support for ECN and report receiving bogus SAGIKKS TCP behaviors that we have not examined in our tests, and new

from 36 clients. If we had not verified the TCP checksum theset TCP mechanisms are continually being proposed, stanealdizd
characteristics could have easily been skewed by mangleda deployed (e.g., HighSpeed TCP [25]). Assessing their gepémt,
and we’d have been none-the-wiser. In our experiments, wd us characteristics and behaviors in the context of the evgliiternet

tcpdump to capture full packets and theopurify’ to verify the architecture are useful avenues of future work.

checksums and then store only the packet headers in thefitesce Another class of extensions to this work is exploring thegvédr

we further analyzel. of TCP in additional applications (e.g., peer-to-peerays, email,
web caching, etc.). Also, we performed all our tests havhey t

8. CONCLUSIONS AND FUTURE WORK measurement client machine in our research laboratoryth&ur

network and host dynamics may be elicited by performing FBIT
like tests in different environments such as having the T&i@nt
behind different types of middleboxes (e.g. firewalls, NABK:.)

at different security levels.

An additional interesting area for future investigationusing
TBIT-like tools for performanceevaluation. For instance, a perfor-
mance comparison of servers using various initial congestiin-
dow values or servers with and without SACK-based loss regov
may prove useful. Developing techniques for conducting kimid
of performance comparison in a solid and meaningful way ¢ed
tecting when such a comparison is not meaningful) is a rieh &r
future investigation. Furthermore, performing tests fromltiple
vantage points to assess middlebox prevalence and belaviar
wider scale would be useful.

As new transport protocols such as SCTP and DCCP begin to
be deployed, another area for future work will be to constrogls

8http://www.tcpdump.org to monitor the behavior, deployment and characteristicthese
%http://irg.cs.ohiou.eddfeblanton/tcpurify/ protocols in the Internet.

10Before truncating a captured packet to store on the headers f While we examined some ways that middleboxes interfere with
later processingicpurify stores a code in the TCP checksum field TCP communications, a key open question is that of assessiys
indicating whether the checksum in the original packet vigisty that middleboxes affect theerformancef transport protocols or of

wrong or whethertcpurify did not have enough of the packet to 5ojications. One middlebox that clearly affects TCP pentince
make a determination.)

The measurement study reported in this paper has exploeed th
deployment of TCP mechanisms in web servers and clients, and
has considered the interactions between TCP performantthan
behavior of middleboxes along the network path (e.g., SAGHKrt
mation generation, ECN, Path MTU Discovery, packets witlodP
TCP options). Our concerns have been to track the deploy(oent
lack of deployment) of transport-related mechanisms ingpart
protocols; to look out for the ways that the performance ofinae
nisms in the Internet differs from theory; to consider hovadhé-
boxes interfere with transport protocol operation; anddosider
how researchers should update their models of transpaxiquis
in the Internet to take into account current practice and eeme
alistic network environment. The main contribution of thigrk is
to illustrate the ways that the performance of protocol raegms
in the Internet differ from theory. The insights gathereahfrour

14

is that of Performance Enhancing Proxies (PEPs) [18] thedlkbor
single TCP connections into two connections potentiallgnging
end-to-end behavior. While [10] presents some resultsisngin-
eral area, additional active tests would be useful to inyatt this
area further.

Finally, a completely different kind of test that may ben&fim
the active probing approach outlined in this paper would be o

to detect the presence or absence of Active Queue Managemen

mechanisms at the congested link along a path. To some gittisnt
can be done with passive tests, by looking at the patternwfd-o
trip times before and after a packet drop. However, actistst@ay
be more powerful, by allowing the researcher to send shog afi
back-to-back packets, as well as potentially problematithat the
tool would need to induce transient congestion in the ndtwor
assess the queueing strategy.

Acknowledgments

Orion Hodson assisted with our TBIT measurements. Tharscs al
to Gorry Fairhurst, Sourabh Ladha, and the anonymous review

for their helpful feedback.

9. REFERENCES

[1] Alexa web search - top 500
http://www.alexa.com/site/ds/togites.

[2] NLANR Web Caching project. http://www.ircache.net/.

[3] PMTU Black Hole Detection Algorithm Change for WindowsTN
3.51. Microsoft Knowledge Base Artible - 136970.

[4] Ethereal: Network Protocol Analyzer, 2004.

[5] M. Allman. On the Generation and Use of TCP Acknowledgetae
Computer Communication Revie28(5), October 1998.

[6] M. Allman. TCP Byte Counting Refinemen8omputer Communica-
tion Review29(3), July 1999.

[7] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing TE€Rbss
Recovery Using Limited Transmit, January 2001. RFC 3042.

[8] M. Allman, S. Floyd, and C. Partridge. Increasing TCHRigial Win-
dow, 2002. RFC 3390.

[9] Mark Allman. A Web Server’'s View of the Transport Lay€omputer
Communications Revie80(5):10-20, October 2000.

[10] Mark Allman. On the Performance of Middleboxes. ACM SIG-
COMM/USENIX Internet Measurement Conferengages 307-312,
October 2003.

[11] Mark Allman and Vern Paxson. On Estimating End-to-Enehwbrk
Path Properties. IACM SIGCOMM pages 229-240, 1999.

[12] Mark Allman and Vern Paxson. On Estimating End-to-Enehibrk
Path Properties. IACM SIGCOMM September 1999.

[13] Mark Allman, Vern Paxson, and W. Richard Stevens. TCRdestion
Control, April 1999. RFC 2581.

[14] R.Barden. Requirements for Internet Hosts — Commutioicd.ayers,
October 1989. RFC 1122.

[15] Jon C.R. Bennet, Craig Patridge, and Nicholas Schetfacket Re-
ordering is not PathologicaEEE/ACM Transactions on Networking
7(6), August 1999.

web sites.

[16] Ethan Blanton and Mark Allman. On Making TCP More Ro-

bust to Packet ReorderingCM Computer Communication Review
32(1):20-30, January 2002.

[17] Ethan Blanton and Mark Allman. Using TCP DSACKs and SR
plicate TSNs to Detect Spurious Retransmissions, 2004. 308.

[18] John Border, Markku Kojo, Jim Griner, Gabriel Montenggand
Zach Shelby. Performance Enhancing Proxies Intended timaitt
Link-Related Degradations, June 2001. RFC 3135.

[19] Douglas E. Comer and John C. Lin. Probing TCP Implentanta.
In USENIX Summer 1994 Conferend®94.

[20] Wesley Eddy, Shawn Ostermann, and Mark Allman. New mgies
for Making Transport Protocols Robust to Corruption-Basexs.
ACM Computer Communication Revie8#(5), October 2004.

[21] Kevin Fall and Sally Floyd. Simulation-based Companis of Tahoe,

15

URL

Reno, and SACK TCPComputer Communications Revie®6(3),
July 1996.

[22] S. Floyd. Inappropriate TCP Resets Considered Harrgfi02. RFC
3360.

[23] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Exé@®n to
the Selective Acknowledgement (SACK) Option for TCP, JUQ.
RFC 2883.

{24] Sally Floyd. Tools for Bandwidth Estimation. Web pag&RL

‘http://www.icir.org/models/tools.html’.

[25] Sally Floyd. HighSpeed TCP for Large Congestion Windpidecem-
ber 2003. RFC 3649.

[26] Sally Floyd and Kevin Fall. Promoting the Use of EndEoed Conges-
tion Control in the InternelEEE/ACM Transactions on Networking
7(6), August 1999.

[27] Sally Floyd and Eddie Kohler. Internet Research Needid8 Mod-
els. InProceedings of the First Workshop on Hot Topics in Networks
(HotNets-I) October 2002.

[28] Mark Handley, Jitendra Padhye, and Sally Floyd. TCP dastion
Window Validation, June 2000. RFC 2861.

[29] V. Jacobson, R. Barden, and D. Borman. TCP Extensionsligh
Performance, May 1992. RFC 1323.

[30] Amit Jain, Sally Floyd, Mark Allman, and Pasi Sarolal@iuick-Start
for TCP and IP, September 2004. Internet-Draft draft-aynitk-
start-03.txt.

[31] Christopher Kent and Jeffrey Mogul. Fragmentation Sidered
Harmful. INnACM SIGCOMM October 1987.

[32] Sourabh Ladha. The TCP Behavior Inference Tool (TBIXieBsions,
2004. URL http://www.cis.udel.edu/ ladha/tbit-ext.html

[33] Kevin Lahey. TCP Problems with Path MTU Discovery, Sepber
2000. RFC 2923.

[34] R. Ludwig and M. Meyer. The Eifel Detection Algorithmrfd@CP,
2003. RFC 3522.

[35] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn fRanow.
TCP Selective Acknowledgement Options, October 1996. RFIB2

[36] Jack McCann, Steve Deering, and Jeffrey C. Mogul. PaltUNDis-
covery for IP Version 6, August 1996. RFC 1981.

[37] Alberto Medina, Mark Allman, and Sally Floyd. Measugitnterac-
tions Between Transport Protocols and MiddleboxesAGM SIG-
COMM/USENIX Internet Measurement Confergr@etober 2004.

[38] Jeffrey C. Mogul and Steve Deering. Path MTU Discovétgyember
1990. RFC 1191.

[39] Jitendra Padhye and Sally Floyd. Identifying the TCFh&gor of
Web Servers. IRCM SIGCOMM August 2001.

[40] V. Paxson and M. Allman. Computing TCP’s Retransmisslamer,
November 2000. RFC 2988.

[41] Vern Paxson. Automated Packet Trace Analysis of TCPémpnta-
tions. INACM SIGCOMM September 1997.

[42] Vern Paxson. End-to-End Internet Packet DynamicsAGM SIG-
COMM, September 1997.

[43] Jon Postel. Transmission Control Protocol, Septeni$dl. RFC
793.

[44] K.K. Ramakrishnan, Sally Floyd, and David Black. Theditibn of
Explicit Congestion Notification (ECN) to IP, September 20BFC
3168.

[45] J.H. Saltzer, D.P. Reed, and David Clark. End-to-Engufsnents
in System Design. IfProceedings of the Second International Con-
ference on Distributed Computing Systerpages 509-512, August
1981.

[46] S. Savage, N. Cardwell, D. Wetherall, and T. AndersddPTonges-
tion Control with a Misbehaving ReceivehCM Computer Commu-
nication Review29(5), October 1999.

[47] Matthew Smart, G. Robert Malan, and Farnam Jahaniafediiag
TCP/IP Stack Fingerprinting. 18th USENIX Security Symposium
pages 229-240, 2000.

[48] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP: A
Reordering-Robust TCP with DSACK. Proceedings of the Eleventh
IEEE International Conference on Networking Protocols NFZ
2003) 2003.

