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ABSTRACT
In this paper we explore the evolution of both the Internet’smost
heavily used transport protocol, TCP, and the current network envi-
ronment with respect to how the network’s evolution ultimately im-
pacts end-to-end protocols. The traditional end-to-end assumptions
about the Internet are increasingly challenged by the introduction
of intermediary network elements (middleboxes) that intentionally
or unintentionally prevent or alter the behavior of end-to-end com-
munications. This paper provides measurement results showing the
impact of the current network environment on a number of tradi-
tional and proposed protocol mechanisms (e.g., Path MTU Dis-
covery, Explicit Congestion Notification, etc.). In addition, we
investigate the prevalence and correctness of implementations us-
ing proposed TCP algorithmic and protocol changes (e.g., selective
acknowledgment-based loss recovery, congestion window growth
based on byte counting, etc.). We present results of measurements
taken using an active measurement framework to study web servers
and a passive measurement survey of clients accessing information
from our web server. We analyze our results to gain further under-
standing of the differences between the behavior of the Internet in
theory versus the behavior we observed through measurements. In
addition, these measurements can be used to guide the definition of
more realistic Internet modeling scenarios. Finally, we present sev-
eral lessons that will benefit others taking Internet measurements.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.3 [Computer-Communication Networks]: Network Op-
erations; C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks; C.2.6 [Computer-Communication Networks]:
Internetworking

General Terms
Measurement, Design, Reliability, Standardization, Verification

Keywords
TCP, middleboxes, Internet, evolution
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1. INTRODUCTION
While the Internet’s architecture, protocols and applications are

constantly evolving, there is oftencompeting evolutionbetween
various network entities. This competing evolution can impact per-
formance and robustness, and even halt communications in some
cases. For instance, [39] shows that when setting up a TCP con-
nection to a web server, attempting to negotiate the use of Explicit
Congestion Notification (ECN) [44] interfered with connection es-
tablishment for over 8% of the web servers tested in 2000. For
such web servers, the client can only establish a TCP connection
by re-attempting the connection without negotiating ECN usage.
The connection failures in the presence of ECN negotiation were
caused by firewalls configured to interpret the attempt to negotiate
ECN as the signature of a port-scanning tool [22]. On the one hand,
these firewalls can be seen as incorrectly associating new function-
ality with one of the first appearances of that new functionality in
an undesirable application. On the other hand, the firewallscan also
be seen as doing their job of blocking unwanted traffic. This exam-
ple shows the fundamental problem of different evolution paths that
can cross to the detriment of smooth traffic flow on the Internet.

In this paper, we investigate the evolution of TCP [43], the In-
ternet’s most heavily used transport protocol, in the context of on-
going changes to the Internet’s basic architecture. In particular, we
study the ways in which so-called “middleboxes” (firewalls,NATs,
proxies, etc.) — which change the Internet’s basicend-to-end prin-
ciple [45] — impact TCP. We seek to elucidate unexpected interac-
tions between layers and ways in which the Internet differs from its
textbook description, including the difficulties various real-world
“gotchas” impose on the evolution of TCP (and end-to-end proto-
cols in general). The measurements presented in this paper also
serve as lessons for efforts that wish to further evolve end-to-end
protocols and the Internet architecture.

Internet research is driven by simulations, experiments, analysis,
and deployment studies designed to address particular problems in
the Internet. However, the design of effective and accuratenet-
work models is challenging due to the intrinsic complexity of the
Internet and the dynamic nature of the elements composing it. Re-
searchers need better models of networks and protocols to ground
their investigations, such that they can provide practicalbenefit on
the evolving network [27]. Therefore, a second component ofour
work assesses the current deployment status of various proposed
TCP algorithmic and protocol modifications and updates the litera-
ture with respect to the capabilities of a “modern” TCP stack. This
will aid researchers in accurately conducting future evaluations of
the network and proposed changes.

In this paper, we bring both active and passive measurement
techniques to bear to study web traffic in the context of the above



stated issues. We use extensive active measurements to assess the
capabilities and algorithms used by web servers (the primary data
senders in web transactions). Data senders are ultimately in control
of TCP’s congestion control and reliability algorithms. Therefore,
our active measurements are focused on studying which conges-
tion control algorithms, loss recovery schemes and optionsare im-
plemented and how the interaction with today’s evolving network
environment influences the correctness and performance behavior
of actual web servers. As a second component, we present pas-
sive measurements of the capabilities and limits imposed byweb
clients (the primary data receivers). Although data receivers do
not directly control the data flow on a TCP connection, clients can
optionally provide information to the data sender to effectively in-
crease performance (e.g., selective acknowledgments). Inaddition,
limits imposed by receivers (e.g., the advertised window size) can
have a dramatic impact on connection performance [9].

The remainder of this paper is organized as follows. Section2
describes related work on measurement studies of transportpro-
tocols. Section 3 describes the tools and methodology we usein
our study. Section 4 explores interactions between middleboxes
and transport protocols. Section 5 presents the results of our mea-
surements of the deployment of various TCP mechanisms in web
servers. Section 6 reports the results of our measurements about the
deployment of TCP mechanisms in web clients. Section 7 discusses
lessons learned in the study that challenged our assumptions and
ultimately shaped our measurements and tools. Section 8 presents
our conclusions, and discusses open questions and future work.

2. RELATED WORK
This paper uses and extends the methodology from [39] which

introduces the TCP Behavior Inference Tool (TBIT) which per-
forms active measurements to characterize TCP on remote hosts.
For the measurements presented in this paper, TBIT’s functional-
ity was extended in two ways. New tests were implemented to
assess different types of web server behavior, and the general de-
sign of the tool was extended to enable the implementation oftests
that elicit path behavior by, for example, allowing the use of IP
options and the generation of ICMP messages. Independent and
parallel work on TBIT extensions detailed at [32] includes tests for
Limited Transmit, Early Retransmit, and support for the Window
Scaling option in TCP. In addition, this paper is an extension of
[37]. TBIT, the measurement tool used in our work, follows anear-
lier history of active probing of TCP. For instance, [19] treats TCP
implementations as black boxes, observing how they react toexter-
nal stimuli, and studying specific TCP implementations in order to
assess the adherence to the specification.

There is also a considerable body of work on passive tests of
TCP based on the analysis of packet traces. [41] outlinestcpanaly,
a tool for analyzing a TCP implementation’s behavior by inspecting
sender and receiver packet traces of TCP connections run between
pairs of hosts, while [42] outlines observed packet dynamics based
on tcpanaly’s analysis. Finally, [9] assesses the properties of web
clients using packet traces of TCP connections to a particular web
server.

In addition, there is some research in the literature on the effect
of middleboxes on transport protocol performance (e.g., [10]). We
do not discuss the body of research on general architecturaleval-
uations of middleboxes, or on the effect of middleboxes on DNS,
BGP, and the like. Rather, the study presented in this paper focuses
on interactions between middleboxes and transport protocols.

Finally, there is a large body of literature on active and passive
approaches for estimating end-to-end network path properties using
TCP (e.g., [41, 11, 24]). In this paper we do not discuss TCP-based

tests for estimating path properties such as loss rates, available or
bottleneck bandwidth and durations of congestion episodes. Also
prevalent in the literature, yet out of scope for the currenteffort,
is the body of work based on passive measurements of traffic ona
particular link to determine the breakdown of the traffic in terms of
round-trip times, application layer protocols, transfer sizes, etc.

3. MEASUREMENTS: TOOLS AND DATA
As discussed above, we employ both active and passive mea-

surements in our study into the characteristics of web clients and
servers. Web servers act as data senders and web clients as data re-
ceivers in web transactions. Therefore, we use active measurements
to probe web servers for congestion control and loss recovery capa-
bilities, while using passive measurements to assess the options and
resource limits enforced by web clients. Our motivation, approach
and methodology is presented in the following two subsections.

3.1 Active Tests
We use TBIT [39] to conduct active measurements that probe

web servers for their characteristics. A few of the active TBIT tests
we present, such as the test that determines the size of the initial
window, could just as easily be performed by passive packet trace
analysis. However, many of the TBIT tests are not amenable to
straightforward post-facto analysis of packet traces. Forexample,
consider a test to determine if a TCP data sender is responding cor-
rectly to SACK information. To evaluate the data sender, a certain
pattern of loss events is required (e.g., multiple packets lost per
window of data). An active tool like TBIT can easily induce such a
specific loss pattern and evaluate the behavior of the data sender in
comparison to the expected behavior. Meanwhile, passive analysis
would require a tool that possessed a very general understanding of
a range of loss patterns and the expected responses — which would
be quite tricky to get right. Inducing a specific loss patterndoes
run the risk of tripping pathological behavior that is not indicative
of the overall behavior of the TCP implementation under study. We
believe the risk for biasing our overall results in this way is small
given our large sample of web servers (discussed below).

Another class of tests that involve actively attempting alterna-
tive schemes in connection initiation cannot be performed by pas-
sive trace analysis alone. For instance, consider a test formiddle-
boxes that block TCP SYN segments when the SYNs carry adver-
tisements for ECN. Packet traces can indicate whether connections
attempting to use ECN succeed or fail. However, determiningthe
reason a connection attempting to negotiate ECN failed is due to
a middlebox blocking ECN-capable SYNs takes active insertion of
SYNs with and without ECN advertisements.

TBIT provides a set of tests, each of which is designed to exam-
ine a specific aspect of the behavior of the remote web servers, or
of the path to and from the web server. Most of these tests examine
the characteristics of the TCP implementations on the web servers.
However, the tests are not restricted to TCP (e.g., the Path MTU
Discovery [38] tests). TBIT establishes a TCP connection with the
remote host at the user level. TBIT composes TCP segments (or
segments from another protocol), and uses raw IP sockets to send
them to the remote host. TBIT also sets up a host firewall to prevent
incoming packets from reaching the kernel of the local machine; a
BSD packet filter is used to deliver incoming packets to the TBIT
process. TBIT’s user-level connection is used to control the sending
of carefully constructed packets (control, data, acknowledgment,
etc.) as desired from the local host. Note that all the TBIT tests are
susceptible to network conditions to some degree. For instance, if
an ACK sent by TBIT is lost in transit to the web server the result of
the test could be inconclusive or even wrongly reported. We have
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Server name Location Cache size
pb.us.ircache.net Pittsburgh, PA 12867
uc.us.ircache.net Urbana-Champain, IL 18711
bo.us.ircache.net Boulder, CO 42120
sv.us.ircache.net Silicon Valley, CA 28800
sd.us.ircache.net San Diego, CA 19429
pa.us.ircache.net Palo Alto, CA 5511
sj.us.ircache.net MAE-West, San Jose, CA 14447
rtp.us.ircache.net Research Triangle, NC 33009
ny.us.ircache.net New York, NY 22846

Table 1: IRCache servers and locations

taken test-specific measures to make each of our tests as robust as
possible. In addition, our large set of web servers (described be-
low) helps to minimize any biases that bogus tests introduceinto
our results.

The original TBIT paper [39] repeated each test five times for
each server, accepting a result as valid only if at least three of the
five attempts returned results, and all of the results were the same.
We did not follow that methodology in this paper; instead, weran
each test once for each server. This allowed us to process a larger
set of tests.

The list of target web servers used in our study was gathered
from IRcaches, the NLANR Web Caching project [2]. We used
web cache logs gathered from nine different locations around the
United States. Table 1 shows the cache logs used from February
2004, along with the log sizes, expressed as the number of unique
IP server addresses from each cache. Since the caches are located
within the continental US, most of the cached URLs correspond to
domain names within the US. However, the cache logs also contain
a sizable set of web servers located in the other continents.Of the
84,394 unique IP addresses1 found in the cache logs: 82.6% are
from North America, 10.2% are from Europe, 4.9% are from Asia,
1.1% are from Oceania, 1.0% are from South America and 0.2%
are from Africa. A subset of the tests were also done on a list of
809 IP addresses corresponding to a list of 500 popular web sites
[1].

All the TBIT tests outlined in this paper were conducted between
February and May 2004. The TBIT client was always run from a
machine on the local network at the International Computer Sci-
ence Institute in Berkeley, CA, USA. There is no local firewall be-
tween the machine running TBIT and the Internet.

Given that data senders (web servers in our study) implement
most of TCP’s “smarts” (congestion control, loss recovery,etc.),
most of the remainder of this paper outlines active TBIT tests to
determine various characteristics of TCP implementationsand net-
works and where the evolutionary paths collide.

3.2 Passive Tests
When characterizing web clients, passive packet trace analysis is

more appropriate than active probing for two main reasons. First,
initiating a connection to a web client to probe its capabilities is dif-
ficult because often web clients are user machines that do notrun
publicly available servers. In addition, data receivers (web clients)
do not implement subtle algorithms whose impact is not readily ob-
servable in packet headers (as is the case with data senders). Rather,
data receivers expose their state, limits and capabilitiesto the data

1We note that the list of servers could be biased by a single machine
having multiple unique IP addresses – which would tend to skew
the results. However, due to the size of the server list, we believe
that such artifacts, while surely present, do not highly skew the
overall results.

% of
Type of Server Number Total
Total Number of Servers 84394 100%
I. Not SACK-Capable 24361 28.8%
II. SACK Blocks OK 54650 64.7%
III. Shifted SACK Blocks 346 0.5%
IV. Errors 5037 6.0%
IV.A. No Connection 4493 5.3%
IV.B. Early Reset 376 0.4%
IV.C. Other 160 0.2%

Table 2: Generating SACK Information at Web Servers

sender in packet headers and options (e.g., SACK information, ad-
vertised window limits, etc.). Therefore, by tracing packets near a
web server, client TCP implementations can be well characterized
with respect to client impact on web traffic. Section 6 outlines our
observations of web clients.

4. MIDDLEBOX INTERACTIONS
The increased prevalence of middleboxes puts into questionthe

general applicability of the end-to-end principle. Middleboxes in-
troduce dependencies and hidden points of failure, and can affect
the performance of transport protocols and applications inthe In-
ternet in unexpected ways. Middleboxes that divert an IP packet
from its intended destination, or modify its contents, are generally
considered fundamentally different from those that correctly termi-
nate a transport connection and carry out their manipulations at the
application layer. Such diversions or modifications violate the basic
architectural assumption that packets flow from source to destina-
tion essentially unchanged (except for TTL and QoS-relatedfields).
The effects of such changes on transport and application protocols
are unpredictable in the general case. In this section we explore the
ways that middleboxes might interfere in unexpected ways with
transport protocol performance.

4.1 Web Server SACK Generation
In Section 5 we evaluate the behavior of web servers in response

to incoming SACK information from a web client. The use of
SACK information by a web server is the primary performance en-
hancement SACK provides to web traffic. In this section, however,
we focus on whether web servers generate accurate SACK infor-
mation. In the normal course of web transactions this matters lit-
tle because little data flows from the web client to the web server.
However, while not highly applicable to web performance, this test
serves to illustrate potential problems in passing SACK informa-
tion over some networks. This test calls for the client to split an
HTTP GET request into several segments. Some of these segments
are not actually sent, to appear to the server as having been lost.
These data losses seen by the server should trigger SACK blocks
(with known sequence numbers) to be appended to the ACKs sent
by the server.

Table 2 shows the results of the server SACK generation test.
The row “Not SACK-Capable” shows the number of servers that
did not agree to the SACK Permitted option during connection
setup. The row listed “SACK OK” shows the number of web servers
that generated SACK blocks correctly. As Table 2 shows, mostof
the servers show proper SACK behavior.

A relatively small number of servers, however, return improper
SACK blocks. The row listed as “Shifted SACK Blocks” indicates
cases where the SACK blocks received contained sequence num-
bers that did not correspond to the sequence space used by connec-
tion. Instead, the sequence space in the SACK blocks wasshifted.
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This shifting could have been caused by a buggy TCP implementa-
tion, or by incorrect behavior from middleboxes on the path from
the server to the client. We note that none of the web sites from the
list of 500 popular web sites had shifted SACK blocks.

Two plausible scenarios whereby middleboxes may cause incor-
rect SACK blocks to be returned to the web client are:

• Shifting of TCP sequence numbers can be done by a NAT
box that modifies the URL in a request, and as a consequence
has to shift the TCP sequence numbers in the subsequent data
packets. In addition, the cumulative acknowledgment num-
ber and SACK blocks should be altered accordingly in the
ACKs transmitted to the clients. However, due to ignorance
or a bug, the SACK blocks may not be properly translated,
which could explain the results of our tests.

• The shifting of TCP sequence numbers also occurs with fin-
gerprint scrubbers [47] designed to modify sequence num-
bers in order to make it hard for attackers to predict TCP
sequence numbers during an attack. One way that TCP/IP
fingerprint scrubbers modify sequence numbers is by choos-
ing a random number for each connection,Xi. Then, the
sequence number in each TCP segment for the connection
traveling from theuntrustednetwork is incremented byXi.
Likewise, each segment traveling in the opposite direction
has its acknowledgment number decremented byXi. How-
ever, if the sequence numbers in the SACK blocks are not
modified as well, then the SACK blocks could be useless to
the data sender.

In some cases these bogus SACK blocks will simply be thrown
away as useless by the data sender. In cases when the SACK blocks
are merely offset a little from the natural segment boundaries, but
otherwise are within the connection’s sequence space, these incor-
rect SACK blocks can cause performance problems by inducing
TCP to retransmit data that does not need to be retransmittedand
by forcing reliance on the (often lengthy) retransmission timeout to
repair actual loss.

While the topic of web server SACK generation is not important
in terms of the performance of web transactions, the interactions
illustrated are germane to all TCP connections, and are possible ex-
planations for some of the results in Section 5.2 when web servers
negotiate SACK but do not use “Proper SACK” recovery.

4.2 ECN-capable Connections
Explicit Congestion Notification (ECN) [44] is a mechanism that

allows routers to mark packets to indicate congestion, instead of
dropping them. After the initial deployment of ECN-capableTCP
implementations, there were reports of middleboxes (in particular,
firewalls and load-balancers) that blocked TCP SYN packets at-
tempting to negotiate ECN-capability, either by dropping the TCP
SYN packet, or by responding with a TCP Reset [22]. [39] in-
cludes test results showing the fraction of web servers thatwere
ECN-capable and the fraction of paths to web servers that included
middleboxes blocking TCP SYN segments attempting to negotiate
ECN-capability. The TBIT test for ECN is described in [39].

Table 3 shows the results of the ECN test for 84,394 web servers.
Only a small fraction of servers are ECN-Capable – this percentage
has increased from1.1% of the web servers tested in 2000 to2.1%
in 2004. After a web server has successfully negotiated ECN we
send a data segment marked “Congestion Experienced (CE)” and
record whether the mark is reflected back to the TBIT client via
the ECN-Echo in the ACK packet. The results are given on lines
I.B.1 and I.B.2 of the table. In roughly three-quarters of cases when

Year: 2000 2004
ECN Status Hosts % Hosts %
Number of Servers 24030 100% 84394 100%
I. Classified Servers 21879 91% 80498 95.4%
I.A. Not ECN-capable 21602 90% 78733 93%
I.B. ECN-Capable 277 1.1% 1765 2.1%
I.B.1. no ECN-Echo 255 1.1% 1302 1.5%
I.B.2. ECN-Echo 22 0.1% 463 0.5%
I.C. Bad SYN/ACK 0 183 0.2%
II. Errors 2151 9% 3896 4.6%
II.A. No Connection 2151 9% 3194 3.8%
II.A.1. only with ECN 2151 9% 814 1%
II.A.2. without ECN 0 2380 2.8%
II.B. HTTP Error – 336 0.4%
II.C. No Data Received – 54 0%
II.D. Others – 312 0.4%

Table 3: ECN Test Results

% of
ECN fields in data packets Number total
ECN-capable servers 1765 100%
Received packets w/ ECT 00 (Not-ECT) 758 42%
Received packets w/ ECT 01 (ECT(1)) 0 0%
Received packets w/ ECT 10 (ECT(0)) 1167 66%
Received packets w/ ECT 11 (CE) 0 0%
Received packets w/ ECT 00 and ECT 10 174 10%

Table 4: Data-packet codepoints for ECN-Capable Servers

ECN is negotiated, a congestion indication is not returned to the
client. This could be caused by a bug in the web server’s TCP
implementation or by a middlebox that is clearing the congestion
mark as the data packet traverses the network; further investigation
is needed to explore this behavior. Finally, we also observea small
number of web servers send a malformed SYN/ACK packet, with
both the ECN-Echo and Congestion Window Reduced (CWR) bits
set in the SYN/ACK packet (line I.C of the table).

For3194 of the web servers, no TCP connection was established.
For our TBIT test, if the initial SYN packet is dropped, TBIT re-
sends the same SYN packet – TBIT does not follow the advice in
RFC 3168 of sending a new SYN packet that does not attempt to
negotiate ECN. Similarly, if TBIT receives a TCP Reset in response
to a SYN packet, TBIT drops the connection, instead of sending a
subsequent SYN packet that does not attempt to negotiate ECN-
capability.

In order to assess how many of these connection failures are
caused by the attempt of ECN negotiation, we run two back-to-
back TBIT tests to each server. The first test does not attemptto
negotiate ECN. After a two-second idle period, another connec-
tion is attempted using ECN. We observe that 814 connections(1%
of the web servers, or25% of the connection failures) are appar-
ently refused because of trying to negotiate ECN, since the connec-
tion was established successfully when no ECN negotiation was
attempted. A test limited to 500 popular web servers gives a sim-
ilar result. Table 3 indicates that the fraction of web servers with
ECN-blocking middleboxes on their path has decreased substan-
tially since September 2000 – from 9% in 2000 to 1% in 2004.

We further explored the behavior of ECN-capable servers by
recording the ECT codepoints in the data packets received byTBIT.
Table 4 shows the number of servers from which the different code-
points were observed. TBIT received data packets with the ECT 00
codepoint from about 42% of the ECN-capable servers. The ECN
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specification defines two ECT code points that may be used by a
sender to indicate its ECN capabilities in IP packets. The speci-
fication further indicates that protocols that require onlyone such
a codepointshoulduseECT (1) = 10. We observe that ECN-
capable servers do use ECT(1) and found no server made use of the
ECT (0) = 01 codepoint. We further observe that no router be-
tween our TBIT client and the ECN-capable servers reported Con-
gestion Experienced (CE) in any segment. Finally, TBIT received
both data segments withECT = 00 andECT = 10 in the same
connection from about 10% of the ECN-capable servers. This be-
havior may indicate that the ECT code point is being erased bya
network element (e.g. router or middlebox) along the path between
the ECN-capable server and the client.

4.3 Path MTU Discovery
TCP performance is generally proportional to the segment size

employed [31]. In addition, [31] argues that packet fragmentation
can cause poor performance. As a compromise, TCP can use Path
MTU Discovery (PMTUD) [38, 36] to determine the largest seg-
ment that can be transmitted across a given network path without
being fragmented. Initially, the data sender transmits a segment
with the IP “Don’t Fragment” (DF) bit set and whose size is based
on the MTU of the local network and the peer’s MSS advertise-
ment. Routers along the path that cannot forward the segmentwith-
out first fragmenting it (which is not allowed because DF is set) will
return an ICMP message to the sender noting that the segment can-
not be forwarded because it is too large. The sender then reduces
its segment size and retransmits. Problems with PMTUD are doc-
umented in [33], which notes that many routers fail to send ICMP
messages and many firewalls and other middleboxes are often con-
figured to suppress all ICMP messages, resulting in PMTUD fail-
ure. If the data sender continues to retransmit large packets with
the DF bit set, and fails to receive the ICMP messages indicating
that the large packets are being dropped along the path, the packets
are said to be disappearing into a PMTUDblack hole. We imple-
mented a PMTUD test in TBIT to assess the prevalence of web
servers using PMTUD, and the success or failure of PMTUD for
these web servers. The test is as follows:

1. TBIT is configured with avirtual link MTU, MTUv. In our
tests, we setMTUv to 256 bytes.

2. TBIT opens a connection to the web server using a SYN seg-
ment that contains an MSS Option of 1460 bytes (which is
based on the actual MTU of the network to which the TBIT
client is attached).

3. The TCP implementation at the server accepts the connec-
tion and sends MSS-sized segments, resulting in transmitted
packets of MSS + 40 bytes. If the data packets from the
server do not have the DF bit set, then TBIT classifies the
server as not attempting to use PMTUD. If TBIT receives a
packet with the DF bit set that is larger thanMTUv TBIT re-
jects the packet, and generates an ICMP message to be sent
back to the server.

4. If the server understands such ICMP packets, it will reduce
the MSS to the value specified in the MTU field of the ICMP
packet, minus 40 bytes for packet headers, and resume the
TCP connection. In this case, TBIT accepts the proper-sized
packets and the communication completes.

5. If the server is not capable of receiving and processing ICMP
packets it will retransmit the lost data using the same packet
size. Since TBIT rejects packets that are larger thanMTUv

% of
PMTUD Status Number total
Total Number of Servers 81776 100%
I. Classified Servers 71737 88%
I.A. PMTUD not-enabled 24196 30%
I.B. Proper PMTUD 33384 41%
I.C. PMTUD Failed 14157 17%

II. Errors 9956 12%
II.A. Early Reset 545 0.6%
II.B. No Connection 2101 2.5%
II.C. HTTP Errors 2843 3.4%
II.D. Others 4467 5.5%

Table 5: PMTUD Test Results

the communication will eventually time out and terminate
and TBIT classifies the server/path as failing to properly em-
ploy PMTUD.

Checking for the robustness of this test involves verifyingthat
TBIT is sending properly assembled ICMP messages back to the
server upon receiving packets that are larger than the stipulated
MTU size. We do such a check for this and other tests using a
public domain network protocol analyzer calledethereal[4] which
behaves in a tcpdump-like fashion but allows the user to observe
easily the structure and composition of the captured packets. Using
ethereal we analyze the communications between TBIT and differ-
ent servers and observe the exchange of ICMP packets from TBIT
to the servers, check if they are properly assembled (e.g. proper
checksums), and observe the associated server response to these
packets.

Table 5 shows that PMTUD is used successfully for slightly less
than half of the servers on our list. For 31% of the servers on our
list, the server did not attempt Path MTU Discovery. For 18% of
the servers on our list, Path MTU Discovery failed, presumably
because of middleboxes that block ICMP packets on the path tothe
web server. The results were even worse for the list of 500 popular
web servers, with Path MTU Discovery failing for 35% of the sites.

Alternate methods for determining the path MTU are being con-
sidered in the Path MTU Discovery Working Group in the IETF,
based on the sender starting with small packets and progressively
increasing the segment size. If the sender does not receive an ACK
packet for the larger packet, it changes back to smaller packets.

In a similar sender-based strategy calledblack-hole detection,
if a packet with the DF bit set is retransmitted a number of times
without being acknowledged, then the MSS will be set to 536 bytes
[3]. We performed a variant of the PMTUD test in which TBIT
does not send the ICMP packets, to see if any server reduces the
size of the packets sent simply because it didn’t receive an ACK
for the larger packet. We didn’t find any servers performing black-
hole detection.

Since a non-trivial number of network elements discard well-
known ICMP packets, the results of our tests do not offer hopefor
protocol designers proposing to use new ICMP messages to signal
various network path properties to end systems (e.g., for explicit
corruption notification [20], handoff or outage notification, etc.).

4.4 IP Options
IP packets may contain options to encode additional information

at the end of IP headers. A number of concerns have been raised
regarding the use of IP options. One concern is that the use ofIP
options may significantly increase the overhead in routers,because
in some cases packets with IP options are processed on theslow
path of the forwarding engine. A second concern is that receiv-
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ing IP packets with malformed IP options may trigger alignment
problems on many architectures and OS versions. Solutions to this
problem range from patching the OS, to blocking access to packets
using unknown IP options or using IP options in general. A third
concern is that of possible denial of service attacks that may be
caused by packets with invalid IP options going to network routers.
These concerns, together with the fact that the generation and pro-
cessing of IP options is nonmandatory at both the routers andthe
end hosts, have led routers, hosts, and middleboxes to simply drop
packets with unknown IP options, or even to drop packets withstan-
dard and properly formed options. This is of concern to designers
of transport protocols because of proposals for new transport mech-
anisms that would involve using new IP options in transport proto-
cols (e.g., [30, 20]).

TBIT’s IP options test considers TCP connections with three
types of IP options in the TCP SYN packet, theIP Record Route
Option, the IP Timestamp Option, and a new option calledIP Op-
tion X, which is an undefined option and represents any new IP
option that might be standardized in the future. We experimented
with two variants of Option X, both of size 4. The first variant
uses a copy bit of zero, class bits set to zero and 25 as the option
number. The second variant of IP Option X sets the class bits to a
reserved value, and uses an option number of 31. The results for
experiments with both Option X variants are similar.

Checking for the robustness of this test involves verifyingthat
TBIT is sending properly assembled IP options in the messages
sent to the servers. We also observe the composition of the server’s
response to options such as theRecord Routeoption to verify that
the server is properly understanding the options assembledand sent
to it by TBIT.
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Figure 1: Handling IP Options in TCP SYN packets.
Figure 1 shows the TCP connection behavior with different IP

options in the associated SYN packets. For each attempted connec-
tion there are three possible outcomes: no connection established,
connection established with the IP option ignored, or IP option ac-
cepted. As Figure 1 shows, in many cases no connection was es-
tablished when the Record Route Option or the Timestamp Option
was included in the SYN packet. When IP Option X is included in
the SYN segment, the connection was not established to over 70%
of the web servers tested. The results were slightly worse when
limited to the list of 500 popular web sites. This does not bode well
for the deployment of new IP options in the Internet.

Most IP options are usually expressed in the first packet (e.g., the
TCP SYN packet) in the communication between end hosts. We
performed an additional test to assess the behavior when IP option
X is placed in data packets in the middle of an established connec-
tion. For each established connection TBIT offers two classifica-
tions: “success” or “broken connection”. The former indicates that
the server successfully delivered its data regardless of the IP op-
tion insertion. The latter classification indicates that the insertion
of the IP option forced the connection to be idle for at least 12 sec-

onds (which we then define as “broken”). We performed two sets
of tests, with and without insertion of option X. Across bothsets
of tests roughly 3% of the connection attempts failed. The tests
without IP options show nearly 6% of the connections are “bro-
ken” for some reason. Meanwhile, when inserting IP option X into
the middle of the transfer, 44% of the connections are broken, in-
dicating a significant issue when attempting to utilize IP options in
mid-connection.

4.5 TCP Options
Next we turn our attention to potential problems when TCP op-

tions are employed. TCP options are more routinely used than
IP options. For instance, TCP uses the timestamp option [29]to
(among other things) take round-trip time measurements more fre-
quently than once per round-trip time, for the Protection Against
Wrapped Sequences [29] algorithm and for detecting spurious time-
outs [34].

However, middleboxes along a path can interfere with the use
of TCP options, in an attempt to thwart attackers trying to finger-
print hosts. Network mapping tools such as NMAP (Network Map-
per) use information from TCP options to gather informationabout
hosts; this is calledfingerprinting. Countermeasures to fingerprint-
ing, sometimes calledfingerprint scrubbers[47], attempt to block
fingerprinting by inspecting and minimally manipulating the traffic
stream. One of the strategies used by fingerprint scrubbers is to re-
order TCP options in the TCP header; any unknown options may
be included after all other options. The TBIT test for TCP options
checks to see if sites reject connections negotiating specific or un-
known TCP options, or drop packets encountered in the middleof
the stream that contain those options.

The TCP options test first assesses the behavior of the web server
when the TCP Timestamp option is included in the SYN packet. To
test for performance with unknown TCP options, we also initiate
connections using an unallocated option number,TCP OptionY ,
in the SYN packet.

Checking for the robustness of this test involves verifyingthat
TBIT is sending properly assembled TCP options in the messages
sent to the servers.

Our tests indicate a connection failure rate of about 0.2% inall
scenarios. Option Y is ignored in the remainder of the connections.
The timestamp option is ignored by roughly 15% of the servers(but
the connection is otherwise fine). The reason the servers ignore
the timestamp option is not visible to TBIT, but could be either a
middlebox stripping or mangling the option or the web servernot
supporting timestamps. Next we assess the use of TCP optionsin
the middle of a TCP connection, by establishing a connectionwith-
out TCP options and then using the Timestamp option or OptionY
on a data packet in the middle of the connection. The connection
failure rate for both options is roughly 3% – indicating thatsending
unknown TCP options midstream is not problematic for most web
servers.

5. DEPLOYMENT OF TRANSPORT MECH-
ANISMS

This section describes TBIT tests to assess the deployment status
of various TCP mechanisms in web servers. Such tests are useful
from a number of angles. First, it is useful for protocol design-
ers to understand the deployment cycle for proposed changes. In
addition, as discussed previously, it is useful to test the actual be-
havior of proposed mechanisms in the Internet, keeping an eye out
for unexpected behaviors and interactions. Another goal ofthis
section is to guide researchers in constructing models for the de-
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Date: May 2001 Feb. 2004
% of % of

TCP Stack Num. total Num. total
Total Number of Servers 4550 84394
I. Classified Servers 3728 72% 27914 33%
I.A. NewReno 1571 35% 21266 25%
I.B. Reno 667 15% 3925 5%
I.C. Reno, Aggressive-FR 279 6% 190 0.2%
I.D. Tahoe 201 4% 983 1.2%
I.E. Tahoe, No FR 1010 22% 1181 1.4%
I.F. Aggr. Tahoe-NoFR 0 0% 7 0%
I.G. Uncategorized 362 0.4%
II. Classified but ignored 11529 14%
(due to unwanted drops)

III. Errors 822 18% 44950 53%
III.A. No Connection 2183 2.6%
III.B. Not Enough Packets 22767 27%
III.C. No Data Received 3352 4%
III.D. HTTP Error 13903 16%
III.E. Request Failed 839 1%
III.F. MSS Error 266 0.3%
III.G. Other 2035 2.4%

Table 6: Reno/NewReno Deployment in Web Servers.

sign and evaluation of transport protocols. For example, ifTCP
deployments are dominated by NewReno and SACK TCP, then it
is counter-productive for researchers to evaluate congestion control
performance with simulations, experiments, or analysis based on
Reno TCP.

5.1 Reno/NewReno Test
The Reno/NewReno test, adapted from the original TBIT [39],

determines whether a web server uses Tahoe, Reno, or NewReno
loss recovery and congestion control mechanisms for a TCP con-
nection that is not SACK-capable. It is well-known that Reno’s
congestion control mechanisms perform poorly when multiple pack-
ets are dropped from a window of data [21]. Tracking the deploy-
ment of NewReno can guide researchers in their choices of mod-
els for simulations, experiments, or analysis of congestion control
in the Internet; researchers that use Reno instead of NewReno or
SACK TCP in their simulations or experiments could end up with
significantly-skewed results that have little relevance for the current
or future Internet. Another reason for these tests is to lookfor unan-
ticipated behaviors; for example, the Reno/NewReno tests in [39]
discovered a variant of TCP without Fast Retransmit that resulted
from a vendor’s buggy implementation.

The Reno/NewReno test determines the sender’s congestion con-
trol mechanism by artificially creating packet drops that elicit the
congestion control algorithm of the server. In order to enable the
server to have enough packets to send, TBIT negotiates a small
MSS (256 bytes in our tests). However, using a small MSS in-
creases the chances of observing reordering packets (see Section
7), and this reordering can change the behavior elicited from the
server. Therefore, the current test has evolved from the original
TBIT test to make it more robust to packet reordering, and conse-
quently to be able to classify behavior the original TBIT wasnot
able to understand. The framework of the Reno/NewReno test is
as described in [39], with the receiver dropping the13th and16th
data packets.

Table 6 shows the results of the Reno/NewReno test. The Tahoe,
Tahoe without Fast Retransmit (FR), Reno, and NewReno variants
are shown in [39]. Reno with Aggressive Fast Retransmit, called

RenoPlus in [39], is also shown in [39]; Reno with AggressiveFast
Retransmit has some response to a partial acknowledgment during
Fast Recovery, but does not take the NewReno step of retransmit-
ting a packet in response to such a partial acknowledgment. For
each TCP variant, the table shows the number and percentage of
web servers using that variant. We note that the results fromMay
2001 and February 2004 are not directly comparable; they usedif-
ferent lists of web servers, and the February 2004 list is consid-
erably larger than the May 2001 list. However, Table 6 implies
that the deployment of NewReno TCP has increased significantly
in the last few years; NewReno is now deployed in 77% of the web
servers on our list for which we could classify the loss recovery
strategy. In addition, the deployment of TCP without Fast Retrans-
mit has decreased significantly; this poorly-behaving variant was
discovered in [39], where it was reported to be due to a vendor’s
failed attempt to optimize TCP performance for web pages that are
small enough to fit in the socket buffer of the sender.

5.2 Web Server SACK Usage
The SACK Behavior test reports the fraction of servers that are

SACK-capable, and categorizes the variant of SACK congestion
control behavior for a TCP connection with a SACK-capable client.
TCP’s Selective Acknowledgment (SACK) option [35] enablesthe
transmission of extended acknowledgment information to augment
TCP’s standard cumulative acknowledgment. SACK blocks are
sent by the data receiver to inform the data transmitter of non-
contiguous blocks of data that have been received and queued. The
SACK information can be used by the sender to retransmit only
the data needed by the receiver. SACK TCP gives better perfor-
mance than either Reno or NewReno TCP when multiple packets
are dropped from a window of data [21].

The SACK Behavior test builds on the original TBIT test, with
added robustness against packet reordering. TBIT first determines
if the server is SACK-capable by attempting the negotiationof the
SACK Permitted option during the connection establishmentphase.
For a SACK-capable server, the test determines if the serveruses
the information in the SACK blocks sent by the receiver. TBIT
achieves this by dropping incoming data packets15, 17 and 19,
and sending appropriate SACK blocks indicating the blocks of re-
ceived data. Once the SACK blocks are sent, TBIT observes the
retransmission behavior of the server.

Table 7 shows the results for the SACK test. The servers re-
ported as “Not SACK-Capable” are those that did not agree to the
SACK Permitted option negotiated by TBIT. The servers listed as
“Proper SACK” are those that responded properly by re-sending
only the data not acknowledged in the received SACK blocks. The
servers listed as “Semi-SACK” make some use of the information
in the SACK blocks2. In contrast, the servers listed as “NewReno”
and “Tahoe-NO-FR” make no use of the information in the SACK
blocks, even though they claim to be SACK-capable. The four
types of SACK behaviors are shown in Figure 4 in [39].

While the 2001 and 2004 results are not directly comparable,
the results in Table 7 indicate that the fraction of web-servers that
report themselves as SACK-capable has increased since 2001, and
that most (90%) of the successfully-classified SACK-capable web
servers now make use of the information in SACK blocks.

As suggested by the results in Section 4.1, some of the results in

2There is a chance that the Semi-SACK servers actually perform
Proper SACK, but have fallen prey to ACK loss. However, since
SACKs are sent a number of times, the ACK loss would have to
be quite bad before the server missed a block entirely. Therefore,
while possible, we do not believe that ACK loss biases our aggre-
gate conclusions in a large way.
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Date: May 2001 Feb. 2004
% of % of

SACK Type Num. total Num. total
Total Number of Servers 4550 100% 84394 100%
I. Not SACK-Capable 2696 59% 24607 29%
II. SACK-Capable 1854 41% 57216 68%
II.A. Uses SACK Info: 550 12% 23124 27%
II.A.1. Proper SACK – 15172 18%
II.A.2. Semi-Sack – 7952 9%
II.B. Doesn’t use SACK 759 17% 2722 3%

Info:
II.B.1. NewReno – 1920 2%
II.B.2. TahoeNoFR – 802 1%
II.C. Inconsistent Results 545 12% 173 0.2%
II.D. Not enough Packets 20740 24.5%
II.E. No Data Received 549 0.5%
II.F. HTTP Errors 9853 12%
II.G. Request Failed 2 0%
II.H. MSS Error 55 0%
III. Errors 2569 3%
III.A. No Connection 1770 2%
III.B. Other 799 1%

Table 7: SACK Deployment in Web Servers

Table 7 that are not “Proper SACK” could be influenced by mid-
dleboxes that translate the TCP sequence space, but do not properly
translate SACK blocks.3

An additional D-SACK test measures the deployment of D-SACK
(duplicate-SACK), an extension to the TCP SACK option for ac-
knowledging duplicate packets [23]. When deployed at TCP re-
ceivers, D-SACK can help TCP servers detect packet replication
by the network, false retransmits due to reordering, retransmit time-
outs due to ACK loss, and early retransmit timeouts [16, 17, 48].
Our tests show that roughly half of the SACK-capable web servers
implement D-SACK. The more relevant question is whether D-
SACK is also deployed in web clients; we comment on this aspect
further in Section 6.

5.3 Initial Congestion Window
The Initial Congestion Window (ICW) test from [39] determines

the initial congestion windows used by web servers. Traditionally,
TCP started data transmission with a single segment and using slow
start to increase the congestion window [14]. However, [13]allows
an initial window of two segments, and [8] allows an initial win-
dow of three or four segments, depending on the segment size.In
particular, an initial window of two or more segments can reduce
the number of round-trip times needed for the transfer of a small
object, and can shorten the recovery time when a packet is dropped
from the initial window of data (by stimulating duplicate ACKs
that potentially can trigger fast retransmit rather than waiting on
the retransmission timeout).

The test starts with TBIT establishing a TCP connection to a
given web server using a256 byte MSS. The small MSS increases
the chances that the server will have enough packets to exercise its
ICW. TBIT then requests the corresponding web page, and receives
all packets initially sent by the server, without ACKing anyof the
incoming segments. The lack of ACKs forces the server to retrans-
mit the first segment in the ICW. TBIT then counts the number of
segments received, reports the ICW value computed and terminates

3We note that the results in Section 4.1 are from a different run
from those in Table 7, and have slightly different numbers for the
prevalence of not-SACK-capable servers.

the test.
Despite the small MSS, there still may be some servers without

enough data to fill their ICW. TBIT detects such cases by watching
for the FIN bit set in one of the data segments. Such tests are incon-
clusive; the corresponding servers have an ICW equal to or larger
than the number of packets received. We report only those servers
that had enough data to send their entire ICW without settingthe
FIN bit.
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Figure 2: Initial Window Test, for an MSS of 256 bytes.

Figure 2 shows the distribution of ICWs used by the measured
web servers. The figure shows that most web servers use an initial
window of one or two segments, and a smaller number of servers
use an initial window of three or four segments. In addition,there
are a few servers using ICW values of more than four segments –
including some servers using ICWs larger than 10 segments. These
results are similar to those from 2001 [39], which show 2% of the
web servers had an initial window of three or four segments, and
3% had initial windows larger than four segments. Thus, TCP ini-
tial windows of three or four segments are seeing very slow deploy-
ment in web servers.

We note that the ICWs shown in Figure 2 could change with dif-
ferent values for the MSS. For example, www.spaceimaging.com
has an ICW of 64 segments when the MSS is restricted to 256 bytes,
but an ICW ofonly 14 segments with an MSS of 1460 bytes.
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Figure 3: Percent of connections with dropped/reordered pack-
ets vs. ICW

Figure 3 shows the fraction of connections with dropped or re-
ordered packets, as a function of the ICW value used by the server
hosting the associated connections. The web servers with larger
initial windows of three or four packets do not have a higher per-
centage of connections with packet drops. Even the occasional TCP
connections with ICWs greater than four segments are not more
likely to see packet drops. In addition, reordering rates are simi-
lar for ICWs of 1–3 segments and then the percentage of servers
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Date: May 2001 April 2004
% of % of

Window Halving Num. total Num. total
Total Number of Servers 4550 100% 84394 100%
I. Classified Servers 3461 76% 30690 36%
I.A. Window Halved 3330 73% 29063 34%
I.B. Window Not Halved 131 2.8% 1627 2%
II. Errors 1089 24% 53704 64%
II.A. No Connection 5097 6%
II.B. Not Enough Packets 22362 26%
II.C. No Data Received 4966 6%
II.D. HTTP Error 13478 16%
II.E. Request Failed 976 1.7%
II.G. Unwanted Reordering 4622 5.5%
II.H. Unwanted drops 732 0.9%
II.I. Other 1117 1.3%

Table 8: Window Halving Test Results

experiencing reordering drops off.

5.4 Congestion Window Halving
A conformant TCP implementation is expected to halve its con-

gestion window after a packet loss [13]. This congestion control
behavior is critical for avoiding congestion collapse in the network
[26]. The Congestion Window Halving test in May 2001, from the
original TBIT, verified that servers effectively halve their conges-
tion window upon a loss event; in this section we run the test again
on a much larger set of web servers, and show that the early re-
sult still holds. Because much of the traffic in the Internet consists
of TCP traffic from web servers to clients, this result implies that
much of the traffic in the Internet is using conformant end-to-end
congestion control. This is consistent with the view that, unlike
clients, busy web servers have a stake in the deployment of end-to-
end congestion control in the Internet [26].

The Congestion Window Halving test works by initiating a trans-
fer from the web server, waiting until the server has built upto a
congestion window of eight segments, and then dropping a packet.
After the loss, the server should reduce the congestion window
to four segments. We classify the result as “Window Halved” if
the congestion window is reduced to at most five packets afterthe
loss, and we classify the result as “Window Not Halved” otherwise.
TBIT is only able to determine a result for those servers thathave
enough data to send to build up a congestion window of eight seg-
ments. A detailed description of the test is available in [39]. TBIT
maintains a receive window of8 segments, to limit the congestion
window used by the sender.

Table 8 shows the results for the Congestion Window Halving
test. Table 8 shows that, as in 2001, most of the servers exhibited
correct window halving behavior. For the servers that did not halve
the congestion window, a look at the packet traces suggests that
these are servers limited by the receive window, whose congestion
windows at the time of loss would otherwise have been greaterthan
eight segments. One possibility is that these servers maintain the
congestion window independently from the receive window, and
do not properly halve the effective window when the congestion
window is greater than the receive window. We note that RFC 2581
specifies that after a loss, the sender should determine the amount
of outstanding data in the network, and set the congestion window
to half that value in response to a loss.

5.5 Byte Counting
As described in RFC 2581 [13], TCP increases the congestion

window (cwnd) by one MSS for each ACK that arrives during slow

start (so-called “packet counting”, or “PC”). Delayed ACKs, de-
scribed in [14, 13], allow a TCP receiver to ACK up to two seg-
ments in a single ACK. This reduction in the number of ACKs
transmitted effectively leads to a reduction in the rate with which
the congestion window opens, when compared to a receiver that
ACKs each incoming segment. In order to compensate for this re-
tarded growth, [5, 6] propose increasingcwndbased on the number
of bytes acknowledged by each incoming ACK, instead of basing
the increase on the number of ACKs received. [6] argues that such
anAppropriate Byte Counting (ABC)algorithm should only be used
in the initial slow start period, not during slow start-based loss re-
covery. In addition to improving slow-start behavior, ABC closes
a security hole by which receivers may induce senders to increase
the sending rate inappropriately by sending ACK packets that each
ACK a fraction of the sequence space in a data packet [46].

The Byte Counting test is sensitive to the specific slow startbe-
havior exhibited by the server. We have observed a large number of
possible slow start congestion window growth patterns in servers
which do not correspond to standard behavior. For this reason, we
were forced to implement an elaborate test for an algorithm as sim-
ple as Byte Counting. The test works as follows, for an initial con-
gestion window of one segment:

1. Receive and acknowledge the first data packet. After this
ACK is received by the server, the congestion window should
be incremented to two packets (using either PC or ABC).

2. ACK the second and third data packets with separate ACK
packets. After these two ACKs are received, the server should
increment its congestion window by two packets (using ei-
ther PC or ABC).

3. ACK the next four packets with a single cumulative ACK
(e.g., with an acknowledgment of the seventh data packet).

4. Continue receiving packets without ACKing any of them un-
til the server times out and retransmits a packet.

5. Count the number of new packets,N , that arrived at least
three quarters of a round-trip time after sending the last ACK.

6. Count the number of earlier ACKs,R, (out of the three ear-
lier ACKs) which were sent within an RTT of the first of the
N packets above. These are ACKs that were sent shortly
before the last ACK. For servers with the standard expected
behavior,R should be 0.

7. Compute the increase,L, in the server congestion window
triggered by the last ACK as follows:

L = N − 4 − 2 ∗ R (1)

• If L = 1, then PC was used.

• If L > 1, then the server increased its congestion win-
dow byL segments in response to this ACK. We clas-
sify this as the server performing Byte Counting with a
limit of at leastL.

The observation behind the design of this test is thatN is the
number of packets that the server sent after receiving the ACK
packets in the preceding RTT. TheseN packets are assumed to
include two packets for each ACK received that ACKed only one
packet. TheseN packets are also assumed to include four packets
due to the advance in the cumulative acknowledgment field when
the last ACK was received. Any extra packets sent should be due
to the increase in the congestion window due to the receipt ofthe
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% of
Slow-Start Behavior Number total
Total Number of Servers: 44579 100%
I. Classified Servers 23170 52%
I.A. Packet Counting 15331 51.9%
I.B. Appropriate Byte Counting 65 0.1%
II. Unknown Behvaior 288 0.6%
III. Errors 21121 47.4%
III.A. No Connection 528 1.2%
III.B. Not enough packets 13112 29.4%
III.C. No data received 386 0.9%
III.D. HTTP Error 215 0.5%
III.E. Request Failed 181 0.4%
III.F. Packet Size Changed 5762 13%
III.G. Unwanted Reordering 827 2%
III.H. Other 7 0%

Table 9: Byte Counting Test Results

last ACK. We note that the complexity of this test is an example
in which the difference between theory and practice in protocol be-
havior significantly complicates the scenarios that need tobe con-
sidered. Table 9 shows the results of the Byte Counting test,show-
ing that Byte Counting had minimal deployment when these tests
were performed.

We note that the Byte Counting test is not sufficient to distin-
guish between Packet Counting, and ABC withL = 1. The Byte
Counting test also uses the estimated RTT in inferring whichdata
packets were sent by the server after the server received thefinal
ACK packet, and this use of the estimated RTT is a possible source
of error. From looking at packet traces, we observed one or two
tests that were labeled by TBIT as Byte Counting, where the ac-
tual RTTs in the connection were unclear, and the packet trace was
consistent with either Byte Counting or Packet Counting. However,
from the traces that we looked at, we don’t think that this possible
source of error is a significant factor in our overall results.

5.6 Limited Transmit
TCP’s Limited Transmit algorithm, standardized in [7], allows a

TCP sender to transmit a previously unsent data segment uponthe
receipt of each of the first two duplicate ACKs, without inferring a
loss or entering a loss recovery phase. The goal of Limited Trans-
mit is to increase the chances of connections with small windows to
receive the three duplicate ACKs required to trigger a fast retrans-
mission, thus avoiding a costly retransmission timeout. Limited
Transmit potentially improves the performance of TCP connections
with small windows.

The Limited Transmit test assesses deployment in web servers.
Like the Byte Counting test, this test is sensitive to the size of the
initial window employed by the server. The strategy of the test in all
cases is the same but the presence or absence of Limited Transmit
must be determined in the context of a specific ICW. For an ICW
of four packets, the test works as follows:

1. Acknowledge the first data segment in the initial window of
four segments. Upon receiving this ACK, the server should
open its window from four to five segments, and send two
more packets, the 5th and 6th segments.

2. Drop the second segment.
3. TBIT sends two duplicate ACKs triggered by the reception of

segments5 and6. TBIT does not send ACKs when segments
3 and 4 arrive, to provide for increased robustness against
unexpected server congestion window growth. Only one du-
plicate ACK would suffice to trigger the Limited Transmit

% of
Limited Transmit (LT) Behavior Number total
Total Number of Servers 38652 100%
I. Classified Servers 29023 75%
I.A. LT Implemented 8924 23%
I.B. LT Not Implemented 20099 52%
II. Errors 9629 25%
II.A. No Connection 420 1.1%
II.B. Not enough packets 3564 9.2%
II.C. No Data Received 257 0.7%
II.D. HTTP Errors 224 0.6%
II.E. Request Failed 163 0.4%
II.F. Packet Size Changed 4900 12.7%
II.G. Other 101 0.3%

Table 10: Deployment of Limited Transmit

mechanism at the server but TBIT sends two to account for
the possibility of ACK losses.

4. If the server does not implement Limited Transmit, then it
will do nothing when it receives the duplicate ACKs. If the
server does implement Limited Transmit, then it will send
another segment when it receives each duplicate ACK.

We note that if the duplicate ACKs sent by TBIT are dropped in
the network, then TBIT will see no response from the web server,
and will interpret this as a case where Limited Transmit is not de-
ployed. Greater accuracy could be gained by running the testsev-
eral times for each web server, as was done with the TBIT testsin
[39].
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Figure 4: Limited Transmit Test: Example for ICW = 4

Figure 4 shows a time-sequence plot of the test described above
for a server with an initial window of four packets. Table 10 shows
the results from our tests. The table shows that Limited Transmit
is deployed in at least a fifth of the web servers in our dataset. The
Limited Transmit test is sensitive to the size of the initialwindow
and therefore care needs to be exercised with respect to the size
of packets being received from the server. Note that if thereis
a change in the packet size for packets in the middle of the con-
nection, TBIT flags the result “Packet Size Changed”, and does not
classify that server. As shown in the table, this happened with some
frequency and renders that test inconclusive. Furthermore, a certain
minimum number of packets need to be transferred for TBIT to be
able to classify a server, therefore servers with small web pages are
classified as not having enough packets.
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5.7 Congestion Window Appropriateness
When the TCP sender does not have data to send from the ap-

plication, or is unable to send more data because of limitations of
the TCP receive window, its congestion window should reflectthe
data that the sender has actually been able to send. A congestion
window that doesn’t reflect current information about the state of
the network is considered invalid [28]. TBIT’s Congestion Win-
dow Appropriateness test examines the congestion window used
by web servers following a period of restrictions imposed bythe
receive window.

In this test, TBIT uses a TCP receive window of one segment to
limit the web server’s sending rate to one packet per RTT. After five
RTTs, TBIT increases the receive window significantly, and waits
to see how many packets the web server sends in response. Con-
sider a web server using standard slow-start from an initialwindow
of K segments, increasing its congestion window without regard
to whether that window has actually been used. Such a web server
will have built up a congestion window ofK + 5 segments af-
ter five round-trip times of sending one packet per round-trip time,
because each ACK increases the congestion window by one seg-
ment. The web server could suddenly sendK +5 packets back-to-
back when the receive window limitation is removed. In contrast,
a web server using the Congestion Window Validation procedure
from [28] will have a congestion window of either two segments or
the ICW, whichever is larger.4
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Figure 5: The congestion window after a receive-window-
limited period

Figure 5 shows the number of segments that each server sends in
response to the increased receive window at the end of the Conges-
tion Window Appropriateness test. The majority of servers respond
with a window of two to four packets, showing moderate behavior
consistent with Congestion Window Validation. A smaller fraction
of the servers respond with a large window of eight or nine packets,
suggesting that the server increases its congestion windowwithout
regard for the actual number of segments sent.

In some cases the number of segments transmitted shows that
the server is violating the standard rules for opening the conges-
tion window during slow-start, even aside from the issue of the
appropriateness of a congestion window that has never been used.
Because a conformant web server can have an initial window of
at most four segments, a conformant web server can have a con-
gestion window of at most nine segments after five single-packet

4RFC 2861 [28] was written when the ICW was still only one
packet, so RFC 2861 doesn’t explicitly say that the ICW should be
taken as a lower bound for the reduced congestion window. How-
ever, RFC 3390 says that the sender MAY use the initial window
as a lower bound for the restart window after an idle period, and it
makes sense that the sender would use the initial window as a lower
bound in this case as well.

acknowledgments have been received.
It would also be possible to use TBIT to explore the conges-

tion window used by web servers after an application-limited pe-
riod. TBIT can create an application-limited period by using re-
peated HTTP requests, once per round-trip time, each requesting
only a range of bytes from the web page. After this enforced
application-limited period, TBIT would follow by requesting the
full web page.

5.8 Minimum RTO
TCP uses a retransmit timer to guarantee the delivery of data

in the absence of feedback from the receiver. The duration of
this timer is referred to as theRetransmit TimeOut(RTO). A de-
tailed description of the algorithm for computing the RTO can be
found in [14, 40]. [40] recommends a minimum RTO of one sec-
ond, though it is well-known that many TCP implementations use a
smaller value for the minimum RTO. A small minimum RTO gives
better TCP performance in high-congestion environments, while a
larger minimum RTO is more robust to reordering and variablede-
lays [12].

The TBIT test to explore minimum RTO values initiates a con-
nection with a given server, and receives and acknowledges packets
as usual until packet20 has been received. By this time, the TCP
sender has taken a number of measurements of the round-trip time,
and has estimated the average and mean deviation of the round-trip
time for computing the RTO. Upon packet20’s reception, TBIT
stops ACKing packets and measures the time until the retransmis-
sion for the last packet; this is used as an estimate of the RTOused
by the server.
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Figure 6: RTO vs. Initial RTT

Figure 6 shows the RTO values used by servers for retransmitting
the given packet. Thex-axis shows the initial round-trip time, and
they-axis shows the measured RTO for the server. The RTO used
by a server will often be larger than the minimum RTO enforcedby
that server. However, of the 37,000 servers shown in Figure 6, 40%
responded with an RTO of less than a second.5

6. PASSIVE CLIENT MEASUREMENTS
The previous sections discuss results from active measurements

from a TBIT client machine to a target set of web server desti-
nations. Such analysis sheds light on the correctness and perfor-
mance characteristics of a significant population of in-the-field web
5The minimum RTO test requires a transfer of at least 20 packets
and therefore we could not assess the minimum RTO to over half
the web servers in our list.
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servers, and also provides insights into the characteristics of the in-
termediate nodes on the paths that carry packets between theTBIT
client and the servers. However, this is only one part of the story.
We are also interested in observing the Internet from the perspective
of web clients. To achieve this perspective we collect full packet
traces of traffic to and from the web server of our research labora-
tory. In this section we present the result from the analysisof those
traces.

We collected packet traces of full TCP packets to and from port
80 on our lab’s web server for roughly two weeks (from Febru-
ary 24, 2004 to March 10, 2004). Capturing entire packets al-
lowed us to verify the TCP checksum and discard packets that did
not pass. In the dataset we observed 206,236 connections from
28,364 clients (where a “client” is defined as an IP address).Of
these, 613 (or, 0.3%) connections were not analyzed due to the
packet trace missing the initial SYN sent by the client and there-
fore throwing off our analysis.6 We do not believe that deleting
these connections biased our results.

The first set of items we measure are the capabilities the client
TCPs advertise during connection startup. Of all the clients, 205
(or 0.7%) show inconsistent capabilities across connections from
the same IP address. An example inconsistency would be one con-
nection from a particular IP address advertising support for SACK,
while a subsequent connection does not. Our inconsistency check
includes the SACK permitted option, the timestamp option, the
window scale option (and the advertised value), the MSS option
(and the MSS value) and whether the connection advertises support
for ECN. Options may be inconsistent due to a NAT between the
client and our server that effectively hides multiple clients behind a
single IP address. Alternatively, system upgrades and configuration
changes may also account for inconsistency over the course of our
dataset.

We next study TCP’s cumulative acknowledgment and the selec-
tive acknowledgment (SACK) option [35]. In our dataset, 24,906
clients (or 87.8%) advertised “SACK permitted” in the initial SYN.
Across the entire dataset 236,192 SACK blocks were returnedfrom
the clients to our web server. We observe loss (retransmissions
from the server) without receiving any SACK blocks with onlytwo
clients that advertised SACK capability. This could be due to a
bug in client implementations, middlebox interference or simple
network dynamics (e.g., ACK loss). Therefore, we conclude that
clients advertising “SACK permitted” nearly always followup with
SACK blocks, as necessary.

As outlined in Section 4.1, the TBIT SACK tests yield some
transfers where the sequence numbers in the SACK blocks fromthe
clients are “shifted” from the sequence numbers in the lost packets.
Inaccurate SACK blocks can lead to the sender spuriously retrans-
mitting data that successfully arrived at the receiver, andwaiting on
a timeout to resend data that was advertised as arriving but which
was never cumulatively acknowledged. To look for such a phe-
nomenon in web clients or middleboxes close to clients we ana-
lyzed the SACK blocks received from the clients and determined
whether they fall along the segment boundaries of the web server’s
transmitted data segments. We found 1,242 SACK blocks (or 0.5%)
that do not fall along data segment boundaries. These SACK blocks
were generated by 49 clients (or 0.2%). The discrepancy between
the rate of receiving strange SACK blocks and the percentageof
hosts responsible for these SACK blocks suggests a client-side or
middlebox bug. These results roughly agree with the resultsin Sec-
tion 4.1. Of the bogus SACK blocks received, 397 were offset –i.e.,

6The dataset is really composed from separate 24-hour packet
traces, and so connections which continue across two of these
traces are lost mid-connection.

the sequence numbers in the SACK block were within the sequence
space used by the connection, but did not fall along data segment
boundaries. Meanwhile, the remaining 845 bogus SACK blocks
were for sequence space never used by the connection. Note: apos-
sible explanation for some of the strange SACK blocks is thatour
packet tracing infrastructure missed a data segment and therefore
when a SACK arrives we have no record of the given packet bound-
aries. However, given that (i) the discrepancy between the overall
rate of observing these SACKs when compared to the percentage
of clients involved and (ii) many of the bogus SACK blocks were
completely outside the sequence space used by the connection, we
believe that packet capturing glitches are not the predominant cause
of these bogus SACK blocks.

Next we outline the prevalence of Duplicate SACK (D-SACK)
[23] blocks in our dataset. D-SACK blocks are used by data re-
ceivers to report data that has arrived more than once and canbe
used for various tasks, such as attempting to set a proper duplicate
ACK threshold and reversing needless changes to TCP’s conges-
tion control state caused by spurious retransmissions [16,17, 48].
In our dataset we observed 809 hosts (or, 3% of all hosts) sending
D-SACK blocks. Note that more than 3% of the hosts may support
D-SACK, but were not faced with a situation whereby transmission
of a D-SACK was warranted.

We also investigated whether there were cases when the cumula-
tive acknowledgment in incoming ACKs did not fall on a segment
boundary. Of the roughly 4.7 million ACKs received by our web
server, 18,387 ACKs contained cumulative ACK numbers that did
not agree with the segments sent. These ACKs were originatedby
36 clients. The rate of receiving these strange ACKs is 0.4% in
the entire dataset, meanwhile the number of clients responsible for
these ACKs represents 0.1% of the dataset, indicating that buggy
clients or middleboxes may be the cause of these ACKs.

In our dataset, the timestamp option is advertised by 6,106 clients
(or 21.5%). Clients that do not accurately echo timestamp values
to the server or middleboxes that alter the timestamp of a passing
packet may cause performance degradation to the connectionby
increasing or reducing the retransmission timeout (RTO) estimate
of the server. If the RTO is too small the data sender will timeout
prematurely, needlessly resending data and reducing the conges-
tion window. If the RTO is too large performance will suffer due
to needless waiting before retransmitting a segment. In ourdataset,
20 clients returned at least one timestamp that the server never sent
(some of the timestamps returned by these clients were valid). This
result suggests that the network and the endpoints are faithfully car-
rying timestamps in the vast majority of cases.
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We next examine the advertised windows used by web clients.
[9] shows how the client’s advertised window often dictatesthe
ultimate performance of the connection. Figure 7 shows the distri-
bution of the maximum window advertisement observed for each
client in our dataset. Roughly, the distribution shows modes at
8 KB, 16 KB and 64 KB. These results show an increase in ad-
vertised window sizes over those reported in [9] (in 2000). In our
dataset the median advertised window observed is just over 32 KB
and the mean is almost 44 KB, whereas [9] reports the median ad-
vertised window as 8 KB and a mean of 18 KB. Additionally, 7,540
clients (or 26.6% of our dataset) advertised support for TCP’s win-
dow scaling option [29], which calls for the advertised window to
be scaled by a given factor to allow for larger windows than can
naturally be advertised in the given 16 bits in the TCP header. Just
over 97% of the clients that indicate support for window scaling
advertise a window scale factor of zero — indicating that theclient
is not scaling its advertised window (but understands window scal-
ing if the server wishes to scale its window). Just over 1% of the
clients in our dataset use a scale factor of 1, indicating that the ad-
vertised window in the client’s segments should be doubled before
using. We observed larger window scale factors (as high as 9)in
small numbers in our dataset.

We next look at the MSS advertised by web clients in the initial
three-way handshake. Two-thirds of the clients used an MSS of
1460 bytes (Ethernet-sized packets). Over 94% of the clients used
an MSS of between 1300 bytes and 1460 bytes. The deviation from
Ethernet-sized packets may be caused by tunnels. Roughly 4%of
the clients in our dataset advertised an MSS of roughly 536 bytes.
We observed advertisements as small as 128 bytes and as largeas
9138 bytes. This analysis roughly agrees with [9].

Finally, we note that we observed 48 clients (or 0.2% of the
clients in our dataset) advertising the capability to use Explicit Con-
gestion Notification (ECN) [44]. That is, only 48 clients sent SYNs
with both the ECN-Echo and Congestion Window Reduced bits in
the TCP header set to one.

7. MEASUREMENT LESSONS
In conducting the measurements presented in this paper we ob-

served a number of properties of the network and the end systems
that challenged our assumptions and ultimately shaped our tools.
In this section, we distill several lessons learned that others con-
ducting similar measurements should keep in mind.
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Figure 8: Minimum MSS Test

The TBIT tests presented in this paper attempt to use a small
MSS so that the web server splits the data transfer into more seg-
ments than it naturally would. In turn, this provides TBIT with
additional ways to manipulate the data stream. For instance, if a
server transmits one segment of 1280 bytes then TBIT cannot easily
conduct certain tests, such as assessing the Initial Window. How-
ever, if the server is coaxed into sending 10 segments of 128 bytes
more tests become possible (due to the increased variety of scenar-
ios TBIT can present to the server). The set of TBIT tests presented
in [39] employed a 100 byte MSS. When we initiated the present

study we found this MSS to be too small for a significant num-
ber of web servers. Therefore, determining the smallest allowable
MSS is important for TBIT-like measurements. Figure 8 showsthe
distribution of minimum MSS sizes we measured across the setof
web servers used in our study. As shown, nearly all servers will ac-
cept an MSS as small as 128 bytes, with many servers supporting
MSS sizes of 32 and 64 bytes. Another aspect of the segment size
that surprised us is that segment sizes sometimes change during the
course of a connection (e.g., as reported in the tests of ABC in Sec-
tion 5) . Therefore, we encourage researchers to design tests that
are robust to changing packet sizes (or, at the least warn theuser of
a test when such an event is observed).
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Choosing a small MSS to maximize the number of segments the

web server transmits is a worthy goal. However, we also find that
as the MSS is reduced the instances of packet reordering increase.
Figure 9 shows the percentage of reordered segments as a function
of the MSS size.

One explanation of this phenomenon is that using a smaller MSS
yields transfers that consist of more segments and therefore have
more opportunities for reordering. Alternatively, small packets may
be treated differently in the switch fabric — which has been shown
to be a cause of reordering in networks [15]. Whatever the cause,
researchers should keep this result in mind when designing experi-
ments that utilize small segments. Additionally, the result suggests
that performance comparisons done using small segments maynot
be directly extrapolated to real-world scenarios where larger seg-
ments are the rule (as shown in Section 6) since reordering impacts
performance [15, 16, 48].

As outlined in Section 5, we find web servers’ slow start behav-
iors to be somewhat erratic at times. For instance, Section 5.5 finds
some web servers using “weak slow start” where the web server
does not increase the congestion window as quickly as allowed by
the standards7. In addition, we also found cases where the conges-
tion window is opened more aggressively than allowed. Thesedif-
ferences in behavior make designing TBIT-like tests difficult since
the tests cannot be staked around a single expected behavior.

Also, we found that some of our TBIT measurements could not
be asself containedas were all the tests from the original TBIT
work [39]. Some of the tests we constructed depended on pecu-
liarities of each web server. For instance, the Limited Transmit
test outlined in Section 5.6 requires apriori knowledge of the web
server’s initial window. This sort of test complicates measurement
because multiple passes are required to assess some of the capabil-
ities of the web servers.

Finally, we note that in our passive analysis of web client char-
acteristicsverifying the TCP checksum is keyto some of our ob-
servations. In our dataset, we received at least one segmentwith
7Such non-aggressive behavior is explicitly allowed under the stan-
dard congestion control specification [13], but we found it surpris-
ing that a web server would be more conservative than necessary.
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TCP Mechanism Section Deployment Status
Loss Recovery 6, 5.2 SACK is prevalent (in two-thirds of servers and nine-tenthsof clients).

5.1 NewReno is the predominant non-SACK loss recovery strategy.
D-SACK 6, 5.2 D-SACK is gaining prevalence (supported by 40% of servers and at least 3% of clients).
Congestion Response 5.4 Most servers halve their congestion window correctly aftera loss.
Byte Counting 5.5 Most web servers use packet counting to increase the congestion window.
Initial Cong. Window 5.3 Most web servers use an ICW of 1 or 2 segments.
ECN 4.2 ECN is not prevalent.
Advertised Window 6 The most widely used advertised window among clients is 64 KBwith many clients

using 8 KB and 16 KB, as well.
MSS 6 Most of the clients in our survey use an MSS of around 1460 bytes.

Table 11: Information for modeling TCP behavior in the Inter net.

Behavior Section Possible Interactions with Routers or Middleboxes
SACK 5.2,6 In small numbers of cases, web clients and servers receive SACK blocks with incorrect

sequence numbers.
ECN 4.2 Advertising ECN prevents connection setup for a small (and diminishing) set of hosts.
PMTUD 4.3 Less than half of the web servers successfully complete PathMTU Discovery.

PMTUD is attempted but fails for one-sixth of the web servers.
IP Options 4.4 For roughly one-third of the web servers, no connection is established when the client includes

an IP Record Route or Timestamp option in the TCP SYN packet.
For most servers, no connection is established when the client includes an unknown IP Option.

TCP Options 4.5 The use of TCP options does not interfere with connection establishment. Few problems
were detected with unknown TCP options, and options included in data packets in mid-stream.

Table 12: Information on interactions between transport protocols and routers or middleboxes.

a bad TCP checksum from 120 clients (or 0.4% of the clients in
the dataset). This prevalence of bogus checksums is larger than
the prevalence of some of the identified characteristics of the web
client (or network). For instance, we identified only 49 clients that
advertise support for ECN and report receiving bogus SACK blocks
from 36 clients. If we had not verified the TCP checksum these two
characteristics could have easily been skewed by mangled packets
and we’d have been none-the-wiser. In our experiments, we used
tcpdump8 to capture full packets and thentcpurify9 to verify the
checksums and then store only the packet headers in the tracefiles
we further analyzed10.

8. CONCLUSIONS AND FUTURE WORK
The measurement study reported in this paper has explored the

deployment of TCP mechanisms in web servers and clients, and
has considered the interactions between TCP performance and the
behavior of middleboxes along the network path (e.g., SACK infor-
mation generation, ECN, Path MTU Discovery, packets with IPor
TCP options). Our concerns have been to track the deployment(or
lack of deployment) of transport-related mechanisms in transport
protocols; to look out for the ways that the performance of mecha-
nisms in the Internet differs from theory; to consider how middle-
boxes interfere with transport protocol operation; and to consider
how researchers should update their models of transport protocols
in the Internet to take into account current practice and a more re-
alistic network environment. The main contribution of thiswork is
to illustrate the ways that the performance of protocol mechanisms
in the Internet differ from theory. The insights gathered from our
8http://www.tcpdump.org
9http://irg.cs.ohiou.edu/∼eblanton/tcpurify/

10Before truncating a captured packet to store on the headers for
later processing,tcpurify stores a code in the TCP checksum field
indicating whether the checksum in the original packet was right,
wrong or whethertcpurify did not have enough of the packet to
make a determination.

measurements involving the interactions between TCP and middle-
boxes along the network path are summarized in Tables 11 and 12.

There exist significant avenues for future work in the light of
the results presented in this paper. There are a wealth of important
TCP behaviors that we have not examined in our tests, and new
TCP mechanisms are continually being proposed, standardized and
deployed (e.g., HighSpeed TCP [25]). Assessing their deployment,
characteristics and behaviors in the context of the evolving Internet
architecture are useful avenues of future work.

Another class of extensions to this work is exploring the behavior
of TCP in additional applications (e.g., peer-to-peer systems, email,
web caching, etc.). Also, we performed all our tests having the
measurement client machine in our research laboratory. Further
network and host dynamics may be elicited by performing TBIT-
like tests in different environments such as having the TBITclient
behind different types of middleboxes (e.g. firewalls, NATs, etc.)
at different security levels.

An additional interesting area for future investigation isusing
TBIT-like tools for performanceevaluation. For instance, a perfor-
mance comparison of servers using various initial congestion win-
dow values or servers with and without SACK-based loss recovery
may prove useful. Developing techniques for conducting this kind
of performance comparison in a solid and meaningful way (andde-
tecting when such a comparison is not meaningful) is a rich area for
future investigation. Furthermore, performing tests frommultiple
vantage points to assess middlebox prevalence and behavioron a
wider scale would be useful.

As new transport protocols such as SCTP and DCCP begin to
be deployed, another area for future work will be to construct tools
to monitor the behavior, deployment and characteristics ofthese
protocols in the Internet.

While we examined some ways that middleboxes interfere with
TCP communications, a key open question is that of assessingways
that middleboxes affect theperformanceof transport protocols or of
applications. One middlebox that clearly affects TCP performance
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is that of Performance Enhancing Proxies (PEPs) [18] that break
single TCP connections into two connections potentially changing
end-to-end behavior. While [10] presents some results in this gen-
eral area, additional active tests would be useful to investigate this
area further.

Finally, a completely different kind of test that may benefitfrom
the active probing approach outlined in this paper would be one
to detect the presence or absence of Active Queue Management
mechanisms at the congested link along a path. To some extent, this
can be done with passive tests, by looking at the pattern of round-
trip times before and after a packet drop. However, active tests may
be more powerful, by allowing the researcher to send short runs of
back-to-back packets, as well as potentially problematic,in that the
tool would need to induce transient congestion in the network to
assess the queueing strategy.
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