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Introduction

® Mapping human-usable and meaningful names to objects in
computer systems is crucial to usability

®m Name to object mapping systems also allow for late binding

®m The DNS provides this usability and agility with respect to Internet
addresses, and is a crucial component of today’s Internet
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Introduction - Understanding the Modern DNS
Ecosystem

m While the original purpose of DNS was to provide hostname
lookups, its role has evolved over time

0 Load balancing, geographically-sensitive traffic distribution, blacklists
m DNS behavior varies based upon ISP resolvers and client devices

O What devices are involved in the DNS resolution process? How do
these devices color that process?

® DNS behavior is also driven by users and the hostnames embedded
in content by providers
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Figure: Simple Resolver Topology




Introduction - Understanding the Modern DNS
Ecosystem

®m While the original purpose of DNS was to provide hostname
lookups, its role has evolved over time

0 Load balancing, geographically-sensitive traffic distribution, blacklists
®m DNS behavior varies based upon ISP resolvers and client devices
O What devices are involved in the DNS resolution process? How do
these devices color that process?
m DNS behavior is also driven by users and content providers

®m Modern DNS behavior informs design decisions in both current
applications and future naming systems

® We must keep an up-to-date understanding of modern DNS
operation through empirical study of both system
components and operational DNS traffic
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Introduction - Communicating without Fixed
Infrastructure

B |nternet transactions need a well-known rendezvous point to
establish communication

0 Often a DNS name

®m Well-known rendezvous points are inherently brittle
O To adversaries: censors often block IPs or hostnames used for
peer-to-peer traffic
0 To other failures: network problems, power failures, lapses in domain
registration for DNS




Introduction - Communicating without Fixed
Infrastructure

B |nternet transactions need a well-known rendezvous point to
establish communication

0 Often a DNS name
®m Well-known rendezvous points are inherently brittle
O To adversaries: censors often block IPs or hostnames used for
peer-to-peer traffic
0 To other failures: network problems, power failures, lapses in domain
registration for DNS
m We introduce a mechanism that allows users to
communicate without any centralized hub, using a secret
name never manifested in the network
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Introduction - New Directions in Naming

m DNS does not encourage user-to-user information sharing
0 Publishing DNS records is often a manual process
O DNS typically stores mappings to hosts, while users are interested in
content and other users
O DNS has no types suitable storing content URLs or instant-messaging
screen names

® Modern names are typically controlled by service providers, rather
than users (e.g., “trc36@case.edu”)

O This creates lock-in




Introduction - New Directions in Naming

m DNS does not encourage user-to-user information sharing

0 Publishing DNS records is often a manual process
O DNS typically stores mappings to hosts, while users are interested in

content and other users
O DNS has no types suitable storing content URLs or instant-messaging

screen names

® Modern names are typically controlled by service providers, rather
than users (e.g., “trc36@case.edu”)

8 This creates lock-in

® We propose a new naming system centered around users,
allowing for secure publication and consumption of records
by users and their applications



Understanding the Modern DNS Ecosystem

Part of this work joint with Kyle Schomp




Goals

m Evaluating DNS system components
0 How does client-side DNS resolution work? What devices are
involved? How do they behave?
0 We probe over 1M open resolvers on the Internet to measure
topology, security, and protocol compliance




Goals

m Evaluating DNS system components
0 How does client-side DNS resolution work? What devices are
involved? How do they behave?
0 We probe over 1M open resolvers on the Internet to measure
topology, security, and protocol compliance
m Understanding real DNS traffic
0 What is the nature of DNS traffic on the Internet? How to clients use
DNS responses?

0 We examine traffic generated by users of the “Case Connection Zone"
to study client requests, server responses, and response usage




Evaluating System Components - Methodology

m Use PlanetLab to scan IPV4 for open resolvers by sending a query
falling under a domain we control

® When a resolver is found, send a variety of queries to evaluate
aspects of resolver behavior

m By controlling both the initial query and the authoritative
response, we get a more complete view of behavior than studies
only examining a single aspect




Resolver Structure

Figure: General structure of the client-side DNS infrastructure?

" }Dwis figure courtesy of Kyle Schomp




High-level Findings

® Measured nearly 1.1M IP addresses providing open recursive DNS
service (ODNS)

® Observed 55K IP addresses visiting our Authoritative DNS (ADNS)
server on behalf of these ODNS

m 1.37% (about 16K) of ODNS actually visited our ADNS directly
(we define these as RDNSy)

m Of the approx 44K RDNS; tested for reachability, only 38% would
successfully resolve direct query




High-level Findings

® Measured nearly 1.1M IP addresses providing open recursive DNS
service (ODNS)

® Observed 55K IP addresses visiting our Authoritative DNS (ADNS)
server on behalf of these ODNS

m 1.37% (about 16K) of ODNS actually visited our ADNS directly
(we define these as RDNSy)

m Of the approx 44K RDNS; tested for reachability, only 38% would
successfully resolve direct query

® Measuring RDNS through their ODNS allows evaluation of
firewalled /otherwise prohibited resolvers

m Full details in dissertation
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Topology

® Most ODNS access the DNS through a pool of RDNS

m Many ODNS are close to their RDNS — 50% of all ODNS:RDNS
pairs have a GeolP distance of < 100 miles

m Some ODNS are quite far from their RDNS — 7% of pairs have a

distance of > 6000 miles (subject to GeolP accuracy)
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Figure: # RDNS seen on behalf of each ODNS




Security

m We find that 12.9% of RDNS and 8.3% of RDNS; remain
vulnerable to the Kaminsky attack

® Only 0.3% of RDNS encountered use 0x20 encoding to incorporate
additional entropy

O This may be an underestimate, as some RDNS providers (Google) are
known to use 0x20 with only whitelisted ADNS

# NXDOMAIN rewriting is widespread — 25% of ODNS experience
this




Caching

m We find 41% of ODNS disappear before the end of third day

m Little competition for cache space — the median duration a record
stayed in an ODNS cache is 4.5 hours.
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Figure: Cache Evictions over Time
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TTL Modification

Expected (sec) | % Liars Most Common Lie % of Liars
0 11.43% 10,000 27.19%
10 11.1% 10,000 28.7%
100 2.96% 300 26.85%
1Ks 1.76% 80 30.07%

10K 2.85% 3,600 26.14%
100K 21.82% 86,400 52.6%
1M 89.35% 604,800 74.43%
10M 89.57% 604,800 74.16%
100M 89.58% 604,800 74.11%
1B 89.57% 604,800 74.12%

Table: Summary of TTL Deviations



Methods - Understanding Real DNS Traffic

m We examine DNS traffic logs from the Case Connection Zone
(CCZ) in Cleveland, OH

O Fourteen months of daily logs with visibility into Client=RDNS traffic

0 200M DNS queries of which 162M returned an IPV4 answer




TTL Treatment

B Per-hostname, there is a variety of TTL modes from a few seconds

to a day
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TTL Treatment (cont'd)

®m TTLs of commonly requested DNS records and DNS records

corresponding to large data transfers are lower than average
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Record Usage
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Performance
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Other observations

m Akamai and Google dominate in the set of DNS answers. 23.5% of
successful DNS responses include a mapping to an Akamai server
and 13.4% of responses include a mapping to a Google server.

® We generally find a lower cache hit rate than previous work [1].
While others have observed a 90% cache hit ratio, CCZ users fulfill
2/3 of requests from the cache.

m Qur performance observations indicate generally faster DNS
performance for CCZ users than in the literature. However, when
we examine response time on a per-SLD basis, we find behavior
much closer to the literature.
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Enabling Decentralized Communication




Goal

m Enable users and applications to communicate free of tethers to
fixed infrastructure

® Some applications are already free of fixed infrastructure (e.g.,
peer-to-peer networks)
O Notable exception: finding an initial set of peers (bootstrapping)




Goal

m Enable users and applications to communicate free of tethers to
fixed infrastructure

® Some applications are already free of fixed infrastructure (e.g.,
peer-to-peer networks)
O Notable exception: finding an initial set of peers (bootstrapping)

® We design a decentralized mechanism for users sharing some secret
(string) to communicate




Components

m Utilize the 15M [2] to 30M [Kyle Schomp] ODNS on the Internet
as rendezvous points

0 One out of every 300 IP addresses is suitable

m We utilize these ODNS as independent storage devices

m | everage the caching and aging properties of DNS records to
encode arbitrary information in FDNS/RDNS caches

0 Without using a domain we control




High-level Method

m Publisher uses the secret to generate a list of IP addresses to scan
for DNS service

0 Collect a set of suitable IP addresses

m Publisher uses the secret to generate a list of DNS names that will
correspond to message bits
O Store message on each IP address in set




High-level Method

m Publisher uses the secret to generate a list of IP addresses to scan
for DNS service

O Collect a set of suitable IP addresses

m Publisher uses the secret to generate a list of DNS names that will
correspond to message bits

O Store message on each IP address in set

m Using the same secret, the recipient discovers the same set of IP
addresses and queries for the same domain names

0 Decodes the message




Finding the same servers

m Both clients share some secret “secret”

® Both clients do the following:
O First IP to scan: shal( “secret”+“IPNumberl”)[Last4Bytes]




Finding the same servers

m Both clients share some secret “secret”
® Both clients do the following:

O First IP to scan: shal( “secret”+“IPNumberl”)[Last4Bytes]
B “secret” and “IPNumberX" are only strings

O Second IP to scan: shal(“secret”+ “IPNumber2”)[Last4Bytes]
O Scan until X DNS servers found

m This discovery process is independent of the IPs of the clients.




Scanning

At full speed, hundreds or thousands of packets can be sent per
second on a home Internet connection

Median # of probes sent between detected open DNS server IPs is
194, mean 281.

99th percentile is 1,284 probes

Even at slow scanning rates, this is tractable




Storing Data

An RDNS Server certainly won't accept arbitrary data, but we can
insert any valid record into the cache.

anomaly@paragon ~ $ dig eecs.case.edu
eecs.case.edu. 86400 IN A 129.22.104.78
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Storing Data

An RDNS Server certainly won't accept arbitrary data, but we can
insert any valid record into the cache.

~$ dig eecs.case.edu
eecs.case.edu. 86400 IN A 129.22.104.78
eecs.case.edu. 86397 IN A 129.22.104.78

We just stored a piece of data in our RDNS Server!
eecs.case.edu. 86392 IN A 129.22.104.78
eecs.case.edu. 86388 IN A 129.22.104.78

From the TTL we can determine how long a record has been in
the cache
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Storing Data - TTL Method

m Compare the TTLs of multiple records

m Publisher requests messagebitl.tk before or after requesting
belowmearel.tk, based upon bit to transmit
® The recipient requests both records.

O If the received TTL for messagebitl.tk < TTL for belowmearel.tk,
call this a “1" bit

O Else, consider this a “0” bit




Obtaining DNS Names

m We leverage DNS wildcarding
O Many domains constructed such that *.domain.com = 1.2.3.4
0 We can therefore leverage the cache hits of bitl.domain.com,
bit2.domain.com, etc
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Obtaining DNS Names

m We leverage DNS wildcarding
O Many domains constructed such that *.domain.com = 1.2.3.4
0 We can therefore leverage the cache hits of bitl.domain.com,
bit2.domain.com, etc

m Several TLDs are themselves wildcarded
0 including .ws and .tk




Success Rate (Publication)

Given a usable server:

Attempted Publications | 104K | 100 %

Success 92K | 88 %
No Data Found 36K | 3.4 %
Corrupt data 5.0K | 4.8 %

Packet loss 36K | 3.4 %




Success Rate (Lookup)
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Extending

m Generic bit-pipe, so we can implement:
0 Forward Error Correction
0 CRC Checking
g Encryption




Enhancements

® Successfully widened the channel by using the value of the
difference between TTLs instead of binary comparison

0 We were able to publish and retrieve 140 character tweets
® Eliminated the reliance on wildcard domains
O When a domain does not exist, an SOA record is returned with the
negative response

0 This SOA record has a TTL that counts down

® Enabled communication using a different method relying on cache
presence and not TTL
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New Directions in Naming




Goals and Use Cases

® Simplify user-to-user information sharing by enabling ordinary users
to publish name =- object mappings

® Move beyond the host-centric naming scheme of DNS to enable
users to name arbitrary meta-information

0 Web Bookmarks - “misha:webpage” or “misha” in lieu “of
http://engr.case.edu/rabinovich_michael /"
0 Service-specific identifiers - “misha:skype”
® Combat service-provider lock-in by giving users control over names
untangled from specific providers or protocols
0 “mark:email” can be repointed to a new email provider at will
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Goals and Use Cases (cont'd)

® Enable device mobility by allowing applications to publish
configuration meta-information
0 An email account configured on one device could be available on all of
a user's devices

O Browser tabs on one device can be opened on another device in a
different browser

m Composable Services - publish desired spam settings to be
implemented by all of a user's email servers




Goals and Use Cases (cont'd)

Enable device mobility by allowing applications to publish
configuration meta-information

0 An email account configured on one device could be available on all of
a user’s devices

O Browser tabs on one device can be opened on another device in a
different browser

Composable Services - publish desired spam settings to be
implemented by all of a user's email servers

Enable new functionality based on widespread access to
meta-information

We propose MISS, a new naming system centered around users,
allowing for secure publication and consumption of names by users
and their applications
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Requirements

m Extensibility: MISS must be agnostic to the to the types of data
stored and able to handle future applications

m Accessibility: MISS must allow users to expose records at their
discretion and on a per record-basis to user-defined groups

B |ntegrity: Records must be modifiable only by their owner and
verifiable by others

m Portability: Users' MISS collections must not be permanently
entangled with a particular service provider

m Usability: The complexity of MISS must be abstracted away by
applications so that general users find it usable
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Collection

m A container for all of a user's meta-information records

Represented by the fingerprint of a user’'s public key

Naming collections by keys ensures that collections may be
generated by users without any external help or control

MISS itself maps these collection identifier's to human-readable,
context-sensitive names




Record

® Each record is identified by the collection it is in as well as a name
and type (arbitrary strings)

® Names may be provided by users or by applications, types will
usually be application-based

®m Much like transport port numbers, MISS types and names may be
well-known or ad-hoc

m EFach MISS record is encoded in XML, and MISS is agnostic to the
content of the data portion of the record

<miss_record>
<name>foo</name>
<type>frob</type>
<expires>1278597127</expires>
<signature> [...] </signature>
<frob>
<exl>foo.example.com</exl>
<ex2>userBA</ex2>
</frob>
</miss_record>

a0 ) a7 Figure: Example MISS record.



Local Interface - Missd

® Runs on the same device as applications

B Provides a general interface into the global database without
application-specific configuration
O Insofar as its lookup capabilities, this is similar to a DNS resolver

® Provides applications with get() and put() primitives for accessing
data repository

m Constructs records using application data, user’s encryption keys
and privacy settings, and uploads

O Keeps items in the global repository up-to-date w.r.t. TTL

m Performs lookups on other collections and verifies data received
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Global Access - MISS Server/DHT

m Hold and provide access to collections on behalf of users

m Participate in the MISS DHT, a global DHT holding only MISS
master records

0 MISS master records identify the MISS server responsible for hosting a
given collection 1D

0 MISS master records are self-certifying, as they will be self-signed




MISS System Overview
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Figure: Conceptual diagram of MISS system.




Bootstrapping

® |n order to associate a collection ID with a human-readable name,
collection ID's could be shared:

0 Via NFC using smartphones

0 Using X- headers in emails

0 By embedding meta tags in HTML pages
0 Using vCards

O Via standard directory services (e.g. LDAP, Active Directory)
O etc...




Experiments

m Built a prototype MISS system

m MISS Server (Apache) could sustain up to 27K requests/second
m MISSD imposed parse/validation overhead of 26ms in the 95th
percentile
m Built MISS DHT on 100 Planetlab nodes
O Median record fetch time of 500ms
O Likely an overestimate due PL performance
O Fetches mitigated by caching and prefetching

®m Undergraduate students were able to build user-facing apps on top
of this structure
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That's all, folks!

Questions?
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DNS Introduction

m DNS is responsible for converting names to IP addresses
0 www.case.edu = 129.22.104.136
m Responsible for identifying well-known services
O case.edu mail exchange (MX) = smtp.case.edu
® UDP-based protocol with two major actors
O Recursive DNS Resolvers (RDNS)
B Do the work of looking up names
O Authoritative DNS Servers (ADNS)

B Responsible for handing out answers
B “Own" a portion of the namespace
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DNS Namespace

“.” Root Zone
Operated by ICANN

“uk” Zone
Operated by Nominet

“.edu” Zone
Operated by EduCause/Verisign

“case.edu” Zone

Operated by CWRU
Delegation of Authority



DNS Resolution Process
ADNS

Recursive Resolver (RDNS)

Address for
www.casc.cdu ?

User
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DNS Resolution Process
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DNS Resolution Process
ADNS
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DNS Resolution Process
ADNS
Recursive Resolver (RDNS) Root DNS Server

Address for www.case.edu ?

-

Ask the .edu server (address)

.cdu DNS Scrver

Address for
www.casc.cdu ?
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DNS Resolution Process
ADNS
Recursive Resolver (RDNS) Root DNS Server

Address for www.case.edu ?

-

Ask the .edu server (address)

Address for
www.casc.cdu ?

case.edu DNS Server
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Twitter Success Rate (Lookup)
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SOA Success Rate (Lookup)
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