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Introduction

� Mapping human-usable and meaningful names to objects in
computer systems is crucial to usability

� Name to object mapping systems also allow for late binding

� The DNS provides this usability and agility with respect to Internet
addresses, and is a crucial component of today’s Internet
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Topics of Study

� Understanding the Modern DNS ecosystem
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Introduction - Understanding the Modern DNS
Ecosystem

� While the original purpose of DNS was to provide hostname
lookups, its role has evolved over time
� Load balancing, geographically-sensitive traffic distribution, blacklists

� DNS behavior varies based upon ISP resolvers and client devices
� What devices are involved in the DNS resolution process? How do

these devices color that process?

� DNS behavior is also driven by users and the hostnames embedded
in content by providers
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Introduction - Understanding the Modern DNS
Ecosystem

� While the original purpose of DNS was to provide hostname
lookups, its role has evolved over time
� Load balancing, geographically-sensitive traffic distribution, blacklists

� DNS behavior varies based upon ISP resolvers and client devices
� What devices are involved in the DNS resolution process? How do

these devices color that process?

� DNS behavior is also driven by users and content providers

� Modern DNS behavior informs design decisions in both current
applications and future naming systems

� We must keep an up-to-date understanding of modern DNS
operation through empirical study of both system
components and operational DNS traffic
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Introduction - Communicating without Fixed
Infrastructure

� Internet transactions need a well-known rendezvous point to
establish communication
� Often a DNS name

� Well-known rendezvous points are inherently brittle
� To adversaries: censors often block IPs or hostnames used for

peer-to-peer traffic
� To other failures: network problems, power failures, lapses in domain

registration for DNS
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Introduction - Communicating without Fixed
Infrastructure

� Internet transactions need a well-known rendezvous point to
establish communication
� Often a DNS name

� Well-known rendezvous points are inherently brittle
� To adversaries: censors often block IPs or hostnames used for

peer-to-peer traffic
� To other failures: network problems, power failures, lapses in domain

registration for DNS

� We introduce a mechanism that allows users to
communicate without any centralized hub, using a secret
name never manifested in the network
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Introduction - New Directions in Naming

� DNS does not encourage user-to-user information sharing
� Publishing DNS records is often a manual process
� DNS typically stores mappings to hosts, while users are interested in

content and other users
� DNS has no types suitable storing content URLs or instant-messaging

screen names

� Modern names are typically controlled by service providers, rather
than users (e.g., “trc36@case.edu”)
� This creates lock-in
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Introduction - New Directions in Naming

� DNS does not encourage user-to-user information sharing
� Publishing DNS records is often a manual process
� DNS typically stores mappings to hosts, while users are interested in

content and other users
� DNS has no types suitable storing content URLs or instant-messaging

screen names

� Modern names are typically controlled by service providers, rather
than users (e.g., “trc36@case.edu”)
� This creates lock-in

� We propose a new naming system centered around users,
allowing for secure publication and consumption of records
by users and their applications
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Understanding the Modern DNS Ecosystem
Part of this work joint with Kyle Schomp
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Goals

� Evaluating DNS system components
� How does client-side DNS resolution work? What devices are

involved? How do they behave?
� We probe over 1M open resolvers on the Internet to measure

topology, security, and protocol compliance
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Goals

� Evaluating DNS system components
� How does client-side DNS resolution work? What devices are

involved? How do they behave?
� We probe over 1M open resolvers on the Internet to measure

topology, security, and protocol compliance

� Understanding real DNS traffic
� What is the nature of DNS traffic on the Internet? How to clients use

DNS responses?
� We examine traffic generated by users of the “Case Connection Zone”

to study client requests, server responses, and response usage
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Evaluating System Components - Methodology

� Use PlanetLab to scan IPV4 for open resolvers by sending a query
falling under a domain we control

� When a resolver is found, send a variety of queries to evaluate
aspects of resolver behavior

� By controlling both the initial query and the authoritative
response, we get a more complete view of behavior than studies
only examining a single aspect
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Resolver Structure

ODNS

RDNSd

FDNS HDNS

RDNSi

ADNS
Client-side

RDNS

Figure: General structure of the client-side DNS infrastructure1

1This figure courtesy of Kyle Schomp
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High-level Findings

� Measured nearly 1.1M IP addresses providing open recursive DNS
service (ODNS)

� Observed 55K IP addresses visiting our Authoritative DNS (ADNS)
server on behalf of these ODNS

� 1.37% (about 16K) of ODNS actually visited our ADNS directly
(we define these as RDNSd)

� Of the approx 44K RDNSi tested for reachability, only 38% would
successfully resolve direct query
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High-level Findings

� Measured nearly 1.1M IP addresses providing open recursive DNS
service (ODNS)

� Observed 55K IP addresses visiting our Authoritative DNS (ADNS)
server on behalf of these ODNS

� 1.37% (about 16K) of ODNS actually visited our ADNS directly
(we define these as RDNSd)

� Of the approx 44K RDNSi tested for reachability, only 38% would
successfully resolve direct query

� Measuring RDNS through their ODNS allows evaluation of
firewalled/otherwise prohibited resolvers

� Full details in dissertation
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Topology
� Most ODNS access the DNS through a pool of RDNS
� Many ODNS are close to their RDNS – 50% of all ODNS:RDNS
pairs have a GeoIP distance of < 100 miles

� Some ODNS are quite far from their RDNS – 7% of pairs have a
distance of > 6000 miles (subject to GeoIP accuracy)
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Security

� We find that 12.9% of RDNS and 8.3% of RDNSi remain
vulnerable to the Kaminsky attack

� Only 0.3% of RDNS encountered use 0x20 encoding to incorporate
additional entropy
� This may be an underestimate, as some RDNS providers (Google) are

known to use 0x20 with only whitelisted ADNS

� NXDOMAIN rewriting is widespread – 25% of ODNS experience
this
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Caching
� We find 41% of ODNS disappear before the end of third day
� Little competition for cache space – the median duration a record
stayed in an ODNS cache is 4.5 hours.
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Figure: Cache Evictions over Time
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TTL Modification

Expected (sec) % Liars Most Common Lie % of Liars
0 11.43% 10,000 27.19%
10 11.1% 10,000 28.7%
100 2.96% 300 26.85%
1Ks 1.76% 80 30.07%
10K 2.85% 3,600 26.14%
100K 21.82% 86,400 52.6%
1M 89.35% 604,800 74.43%
10M 89.57% 604,800 74.16%
100M 89.58% 604,800 74.11%
1B 89.57% 604,800 74.12%

Table: Summary of TTL Deviations

15 / 47



Methods - Understanding Real DNS Traffic

� We examine DNS traffic logs from the Case Connection Zone
(CCZ) in Cleveland, OH
� Fourteen months of daily logs with visibility into Client⇒RDNS traffic

� 200M DNS queries of which 162M returned an IPV4 answer

16 / 47



TTL Treatment
� Per-hostname, there is a variety of TTL modes from a few seconds
to a day
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TTL Treatment (cont’d)
� TTLs of commonly requested DNS records and DNS records
corresponding to large data transfers are lower than average
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Record Usage
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Performance
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Other observations

� Akamai and Google dominate in the set of DNS answers. 23.5% of
successful DNS responses include a mapping to an Akamai server
and 13.4% of responses include a mapping to a Google server.

� We generally find a lower cache hit rate than previous work [1].
While others have observed a 90% cache hit ratio, CCZ users fulfill
2/3 of requests from the cache.

� Our performance observations indicate generally faster DNS
performance for CCZ users than in the literature. However, when
we examine response time on a per-SLD basis, we find behavior
much closer to the literature.
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Enabling Decentralized Communication
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Goal

� Enable users and applications to communicate free of tethers to
fixed infrastructure

� Some applications are already free of fixed infrastructure (e.g.,
peer-to-peer networks)
� Notable exception: finding an initial set of peers (bootstrapping)
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Goal

� Enable users and applications to communicate free of tethers to
fixed infrastructure

� Some applications are already free of fixed infrastructure (e.g.,
peer-to-peer networks)
� Notable exception: finding an initial set of peers (bootstrapping)

� We design a decentralized mechanism for users sharing some secret
(string) to communicate
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Components

� Utilize the 15M [2] to 30M [Kyle Schomp] ODNS on the Internet
as rendezvous points
� One out of every 300 IP addresses is suitable

� We utilize these ODNS as independent storage devices
� Leverage the caching and aging properties of DNS records to
encode arbitrary information in FDNS/RDNS caches
� Without using a domain we control
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High-level Method

� Publisher uses the secret to generate a list of IP addresses to scan
for DNS service
� Collect a set of suitable IP addresses

� Publisher uses the secret to generate a list of DNS names that will
correspond to message bits
� Store message on each IP address in set
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High-level Method

� Publisher uses the secret to generate a list of IP addresses to scan
for DNS service
� Collect a set of suitable IP addresses

� Publisher uses the secret to generate a list of DNS names that will
correspond to message bits
� Store message on each IP address in set

� Using the same secret, the recipient discovers the same set of IP
addresses and queries for the same domain names
� Decodes the message
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Finding the same servers

� Both clients share some secret “secret”
� Both clients do the following:

� First IP to scan: sha1(“secret”+“IPNumber1”)[Last4Bytes]
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Finding the same servers

� Both clients share some secret “secret”
� Both clients do the following:

� First IP to scan: sha1(“secret”+“IPNumber1”)[Last4Bytes]
� “secret” and “IPNumberX” are only strings

� Second IP to scan: sha1(“secret”+“IPNumber2”)[Last4Bytes]
� Scan until X DNS servers found

� This discovery process is independent of the IPs of the clients.
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Scanning

� At full speed, hundreds or thousands of packets can be sent per
second on a home Internet connection

� Median # of probes sent between detected open DNS server IPs is
194, mean 281.

� 99th percentile is 1,284 probes

� Even at slow scanning rates, this is tractable
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Storing Data

An RDNS Server certainly won’t accept arbitrary data, but we can
insert any valid record into the cache.

anomaly@paragon ˜ $ dig eecs.case.edu
eecs.case.edu. 86400 IN A 129.22.104.78
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Storing Data

An RDNS Server certainly won’t accept arbitrary data, but we can
insert any valid record into the cache.

anomaly@paragon ˜ $ dig eecs.case.edu
eecs.case.edu. 86400 IN A 129.22.104.78
eecs.case.edu. 86397 IN A 129.22.104.78

We just stored a piece of data in our RDNS Server!
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anomaly@paragon ˜ $ dig eecs.case.edu
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Storing Data

An RDNS Server certainly won’t accept arbitrary data, but we can
insert any valid record into the cache.

anomaly@paragon ˜ $ dig eecs.case.edu
eecs.case.edu. 86400 IN A 129.22.104.78
eecs.case.edu. 86397 IN A 129.22.104.78

We just stored a piece of data in our RDNS Server!
eecs.case.edu. 86392 IN A 129.22.104.78
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Storing Data

An RDNS Server certainly won’t accept arbitrary data, but we can
insert any valid record into the cache.

anomaly@paragon ˜ $ dig eecs.case.edu
eecs.case.edu. 86400 IN A 129.22.104.78
eecs.case.edu. 86397 IN A 129.22.104.78

We just stored a piece of data in our RDNS Server!
eecs.case.edu. 86392 IN A 129.22.104.78
eecs.case.edu. 86388 IN A 129.22.104.78

From the TTL we can determine how long a record has been in
the cache
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Storing Data - TTL Method

� Compare the TTLs of multiple records

� Publisher requests messagebit1.tk before or after requesting
belowmeare1.tk, based upon bit to transmit

� The recipient requests both records.
� If the received TTL for messagebit1.tk < TTL for belowmeare1.tk,

call this a “1” bit
� Else, consider this a “0” bit
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Obtaining DNS Names

� We leverage DNS wildcarding
� Many domains constructed such that *.domain.com ⇒ 1.2.3.4
� We can therefore leverage the cache hits of bit1.domain.com,

bit2.domain.com, etc

30 / 47



Obtaining DNS Names

� We leverage DNS wildcarding
� Many domains constructed such that *.domain.com ⇒ 1.2.3.4
� We can therefore leverage the cache hits of bit1.domain.com,

bit2.domain.com, etc

� Several TLDs are themselves wildcarded

30 / 47



Obtaining DNS Names

� We leverage DNS wildcarding
� Many domains constructed such that *.domain.com ⇒ 1.2.3.4
� We can therefore leverage the cache hits of bit1.domain.com,

bit2.domain.com, etc

� Several TLDs are themselves wildcarded
� including .ws and .tk
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Success Rate (Publication)

Given a usable server:

Attempted Publications 104K 100 %

Success 92K 88 %

No Data Found 3.6K 3.4 %

Corrupt data 5.0K 4.8 %

Packet loss 3.6K 3.4 %
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Success Rate (Lookup)
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Extending

� Generic bit-pipe, so we can implement:
� Forward Error Correction
� CRC Checking
� Encryption
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Enhancements

� Successfully widened the channel by using the value of the
difference between TTLs instead of binary comparison
� We were able to publish and retrieve 140 character tweets

� Eliminated the reliance on wildcard domains
� When a domain does not exist, an SOA record is returned with the

negative response

� This SOA record has a TTL that counts down

� Enabled communication using a different method relying on cache
presence and not TTL
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New Directions in Naming
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Goals and Use Cases

� Simplify user-to-user information sharing by enabling ordinary users
to publish name ⇒ object mappings

� Move beyond the host-centric naming scheme of DNS to enable
users to name arbitrary meta-information
� Web Bookmarks - “misha:webpage” or “misha” in lieu “of

http://engr.case.edu/rabinovich michael/”

� Service-specific identifiers - “misha:skype”

� Combat service-provider lock-in by giving users control over names
untangled from specific providers or protocols
� “mark:email” can be repointed to a new email provider at will
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Goals and Use Cases (cont’d)
’
� Enable device mobility by allowing applications to publish
configuration meta-information
� An email account configured on one device could be available on all of

a user’s devices

� Browser tabs on one device can be opened on another device in a
different browser

� Composable Services - publish desired spam settings to be
implemented by all of a user’s email servers
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Goals and Use Cases (cont’d)
’
� Enable device mobility by allowing applications to publish
configuration meta-information
� An email account configured on one device could be available on all of

a user’s devices

� Browser tabs on one device can be opened on another device in a
different browser

� Composable Services - publish desired spam settings to be
implemented by all of a user’s email servers

� Enable new functionality based on widespread access to
meta-information

� We propose MISS, a new naming system centered around users,
allowing for secure publication and consumption of names by users
and their applications
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Requirements

� Extensibility: MISS must be agnostic to the to the types of data
stored and able to handle future applications

� Accessibility: MISS must allow users to expose records at their
discretion and on a per record-basis to user-defined groups

� Integrity: Records must be modifiable only by their owner and
verifiable by others

� Portability: Users’ MISS collections must not be permanently
entangled with a particular service provider

� Usability: The complexity of MISS must be abstracted away by
applications so that general users find it usable
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Collection

� A container for all of a user’s meta-information records

� Represented by the fingerprint of a user’s public key

� Naming collections by keys ensures that collections may be
generated by users without any external help or control

� MISS itself maps these collection identifier’s to human-readable,
context-sensitive names
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Record
� Each record is identified by the collection it is in as well as a name
and type (arbitrary strings)

� Names may be provided by users or by applications, types will
usually be application-based

� Much like transport port numbers, MISS types and names may be
well-known or ad-hoc

� Each MISS record is encoded in XML, and MISS is agnostic to the
content of the data portion of the record

<miss_record>
  <name>foo</name>
  <type>frob</type>
  <expires>1278597127</expires>
  <signature> [...] </signature>
  <frob>
    <ex1>foo.example.com</ex1>
    <ex2>userA</ex2>
  </frob>
</miss_record>

Figure: Example MISS record.
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Local Interface - Missd

� Runs on the same device as applications
� Provides a general interface into the global database without
application-specific configuration
� Insofar as its lookup capabilities, this is similar to a DNS resolver

� Provides applications with get() and put() primitives for accessing
data repository

� Constructs records using application data, user’s encryption keys
and privacy settings, and uploads
� Keeps items in the global repository up-to-date w.r.t. TTL

� Performs lookups on other collections and verifies data received
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Global Access - MISS Server/DHT

� Hold and provide access to collections on behalf of users
� Participate in the MISS DHT, a global DHT holding only MISS
master records
� MISS master records identify the MISS server responsible for hosting a

given collection ID
� MISS master records are self-certifying, as they will be self-signed
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MISS System Overview

MISS
Server

MISS
Server

MISS
Server

MISS
Server

MISS
Server

MISS
Server

missd

App1
App2

App3

Figure: Conceptual diagram of MISS system.
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Bootstrapping

� In order to associate a collection ID with a human-readable name,
collection ID’s could be shared:
� Via NFC using smartphones
� Using X- headers in emails
� By embedding meta tags in HTML pages
� Using vCards
� Via standard directory services (e.g. LDAP, Active Directory)
� etc...
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Experiments

� Built a prototype MISS system

� MISS Server (Apache) could sustain up to 27K requests/second

� MISSD imposed parse/validation overhead of 26ms in the 95th
percentile

� Built MISS DHT on 100 Planetlab nodes
� Median record fetch time of 500ms
� Likely an overestimate due PL performance
� Fetches mitigated by caching and prefetching

� Undergraduate students were able to build user-facing apps on top
of this structure
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That’s all, folks!

Questions?
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DNS Introduction

� DNS is responsible for converting names to IP addresses
� www.case.edu ⇒ 129.22.104.136

� Responsible for identifying well-known services
� case.edu mail exchange (MX) ⇒ smtp.case.edu

� UDP-based protocol with two major actors
� Recursive DNS Resolvers (RDNS)

� Do the work of looking up names

� Authoritative DNS Servers (ADNS)
� Responsible for handing out answers
� “Own” a portion of the namespace
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DNS Namespace
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DNS Resolution Process
ADNS
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RD Success Rate (Lookup)
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Twitter Success Rate (Lookup)
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SOA Success Rate (Lookup)
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HTTP Traffic. Passive and Active Measurement Conference, April
2010.

55 / 47


	Introduction
	Understanding the Modern DNS ecosystem
	Enabling Decentralized Communication
	New Directions in Naming
	DNS Introduction

