
Paxson
Spring 2017

CS 161
Computer Security Discussion 9

Week of April 3, 2017

Question 1 Lists and Trees of Hashes (20 min)
BitTorrent splits large files into small file chunks which are then transmitted between
peers in such a way that each peer eventually ends up with the whole file. Commonly,
chunks are of size 28 KiB = 256 KiB.

Because you cannot trust peers, you have to verify each chunk as you download them
from a peer before you start providing them to other peers. Furthermore, you want to
be able to do this as soon as possible and not wait for the whole file to be downloaded.
You also want to be able to know which part of the file got potentially corrupted so that
you do not have to re-download the whole file.

To achieve the above properties, BitTorrent uses a Torrent file. The file contains in-
formation describing the file (or files) to be transmitted, and their chunks. You must
obtain this file from a trusted source.

(a) Initially, a Torrent file contained a list of SHA-1 hashes for each chunk. How large
is such a list for a 10 GiB large file, if one SHA-1 hash takes 160 bits?

Solution: Number of chunks: 10 GiB / 256 KiB = 10 · 230 / 218 = 10 · 212 =
40 · 210

Size of the list: 40 · 210 · 20 B = 800 KiB

(b) One way to make Torrent files smaller is to instead store only a hash of the hash
list (top hash, or root hash) in the file and retrieve the hash list itself from a peer.
Why would we want to make a Torrent file smaller? What is a downside of this
approach?

Solution: We want to reduce the size of Torrent files in order to minimize load
on the servers hosting them.

The downside is that we have to retrieve the whole list before we can verify any
chunk, because we first have to verify the list itself against the top hash. But
transmitting the hash list takes longer than transmitting the first chunk, since
800 KiB is larger than 256 KiB. Therefore, we cannot start providing the first
chunk to others as soon as we have it. We also want to avoid transmissions
larger than a chunk size.

Page 1 of 7

Moreover, hashes are not very compressible, so compression does not help much.

(c) One approach to address the issue of the size of the hash list is to split it into chunks.
However, you would then need a hash list of those chunks. A better approach is to
generalize this idea and use a data structure called a hash tree or Merkle tree:

Data
Blocks

Hash
1
Hash 1-0

+
Hash 1-1

hash()

Hash
0
Hash 0-0

+
Hash 0-1

hash()

Hash 0
+

Hash 1
hash()

Top Hash

Hash
0-0

hash(L1)

Hash
0-1

hash(L2)

Hash
1-0

hash(L3)

Hash
1-1

hash(L4)

L1 L2 L3 L4

Now you do not need the whole hash list in advance to verify one chunk. Instead,
you can ask your peer to provide you with some hashes along with the chunk just
received.

Suppose you just received chunk L2 from a peer. Which and how many hashes do
you need to verify if you correctly received chunk L2? How would you generalize
which and how many hashes you need for each chunk?

Solution:

To verify if L2 was correctly received, we need hash 0-0, hash 1, and the top
hash. Since the top hash is provided in the Torrent file, we need just two hashes
from the peer: hash 0-0 and hash 1.

In general, we need the hash of the received chunk’s sibling, the uncle of the
received chunk’s hash, and so on until the top hash. The number of required
hashes is logarithmic in the total number of chunks.

For the 10 GiB file, with each chunk we get the following size of hashes:

⌈
log2

(
40 · 210

)⌉
= 16

Discussion 9 Page 2 of 7 CS 161 – SP 17

16 · 20 B = 320 B

The downside is that now for all chunks overall we have to get 40·210 ·16 ·20 B =
12.5 MiB of hashes.

Example from the BitTorrent specs: Hashes required for verifying chunk P8 are
marked with *. You can compute the hash for the chunk P8 yourself, and you
have the top hash provided in a Torrent file.

0* = top hash

/ \

/ \

/ \

/ \

/ \

1* 2

/ \ / \

/ \ / \

/ \ / \

/ \ / \

/ \ / \

3 4 5 6* = uncle

/ \ / \ / \ / \

/ \ / \ / \ / \

/ \ / \ / \ / \

7 8 9 10 11 12* 13 14

/ \ / \ / \ / \ / \ / \ / \ / \

15 16 17 18 19 20 21 22 23* 24* 25 26 27 28 29 30

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 X X X

= chunk index = = = filler hash

c s

h i

u b

n l

k i

n

g

Hint: You might want to use something like this to implement efficient updates
for part 3 of Project 2.

(d) You do not trust your peer with the contents of a chunk, but why you can use
hashes provided by the peer for verifying the file?

Solution: We can use hashes provided by the peer for verifying the file because
we receive the top hash from a trusted source, a Torrent file. Hence, if the peer
provides us with an invalid hash or an invalid chunk, the top hash we compute
will not match the expected top hash. In such cases, we do not use the chunk
provided by the peer.

Discussion 9 Page 3 of 7 CS 161 – SP 17

Question 2 Circumventing Network Policy Controls (15 min)
You are stuck at the Chicago O’Hare airport for at least 7 more hours, and the airport
does not have free WiFi. How boring! Since you are unwilling to pay the offensive fees
the hotspot provider demands to access the Internet, you start to explore what you can
do with the limited connectivity. Quickly you find out that all connections to Internet
hosts are blocked. You also discover that the DNS server of the hotspot answers queries
for any hostname in the Internet.

As an exceptionally studious and forward-looking CS 161 student, you were prepared
for this scenario of Internet deprivation and in fact already set up your own DNS infras-
tructure prior to leaving on your trip. How is it possible to get free WiFi access in this
scenario? What needed to happen prior to the trip? Sketch a diagram and describe any
protocol you come up with.

Solution: In this scenario, you can tunnel Internet traffic through DNS. The key
idea is to encapsulate your traffic into DNS queries that you send to a DNS server in
the Internet under your control. This server decapsulates the DNS queries and relays
the data to its intended destination, stuffs the response traffic into a DNS reply and
ships it back to you.

For this to work, you must have set up a DNS server and a tunnel domain prior to
leaving on the trip. Assume you own the domain cs161.edu and you would like to
use t.cs161.edu as the tunnel subdomain.1 Further, assume that the IP address of
t.cs161.edu is 6.6.6.6 and you have deployed a custom DNS server at that address
listening on port 53 for incoming requests.

The following graphic illustrates the necessary steps to establish a DNS tunnel. On
the left hand side you see the network stack, where the bottom three layers correspond
to the regular DNS communication in the hotspot network, depicted by the black
arrows in the Figure on the right. The top three layers represent the overlay network
that you create inside the DNS communication. In this case, assume that you would
like to establish an HTTP connection to 192.150.187.12 and have already created
an HTTP request with appropriate TCP/IP headers. For simplicity, let us refer to
this bundled data as encoded-request.

1One often uses a separate subdomain for tunneling to be able to use the main domain also for other
purposes. Another reason is that some (web-based) domain management tools only allow you to set NS
entries for subdomains but not for the top-level domain itself.

Discussion 9 Page 4 of 7 CS 161 – SP 17

NS
cs161.edu

Hotspot
DNS serverHotspot network

1

5b
5a

2

3

4

HTTP

TCP

IP

DNS

UDP

IP

NS
t.cs161.edu

You

1. To get the data to the server, you ask the local hotspot resolver to look up
encoded-request.t.cs161.edu.

2. Assuming the hotspot resolver already knows the nameserver for cs161.edu,
the resolver now needs to find out who is responsible for t.cs161.edu.

3. The authoritative nameserver for cs161.edu tells the hotspot resolver that
t.cs161.edu is managed by 6.6.6.6.

4. Next, the hotspot resolver sends the query for encoded-request.t.cs161.edu
to 6.6.6.6. Your custom nameserver at this address knows how to decode the
incoming data, forward the HTTP request to 192.150.187.12 and encode the
HTTP reply plus the TCP/IP headers.

5a. The encoded response is sent back as a TXT record, another form of DNS record
we have not yet encountered.2 This record allows you to associate arbitrary text
with a DNS name.

5b. After having received the encoded HTTP response as a TXT record, the
hotspot resolver forwards it you. At this point, you can decode the data in
the TXT record and rebuild the overlay TCP/IP stack to extract the HTTP
reply.

Note that steps (2) and (3) only occur once because the hotspot resolver will cache
the nameserver for t.cs161.edu.

If you would like to read more about DNS tunneling, you can find a good introduction
at http://dnstunnel.de/. Moreover, the software iodine (http://dev.kryo.se/
iodine/) is a concrete example of a DNS tunnel implementation that ships both a
client to be used on your laptop and a custom DNS server daemon.

2A question you might find interesting to explore: if the DNS server could only return A records (32-bit
IP addresses), could you still get some sort of HTTP tunneling to work?

Discussion 9 Page 5 of 7 CS 161 – SP 17

http://dnstunnel.de/
http://dev.kryo.se/iodine/
http://dev.kryo.se/iodine/

Question 3 Project 2 Rollback Prevention (15 min)
In Project 2, you were not required to prevent rollback attacks where the server reverted
the state of a file to a previous value. In this problem you will design a scheme to
prevent partial rollback attacks. (A partial rollback is one where the server rolls back
the contents of one file, but not another.) Clients in your scheme can cooperate to work
together against a malicious server, but may not keep state on the client.

(a) The simplest scheme has each user write to a shared hash chain that exists on the
server. After an upload operation, the user who performed that operation adds a
new entry to the chain and uploads it to the storage server. What should each
entry contain so that users can verify the state of the server by examining the hash
chain?

Solution: There are many valid answers to this question. We will go in to one
of them.

The idea here is that we are imagining a shared global hash chain on the server.
Each entry should contain enough information to reconstruct what should have
happened.

So, our scheme will have a hash chain where whenever a user uploads a new file,
they add a new hash to the chain containing the following:

• A random, fresh transaction ID. (Not strictly necessary, but a good prac-
tice.)

• The user who is performing the update.

• The key the file is stored at on the server.

• The asymmetric signature of the file data. (Could be also just a hash.)

• The previous most-recent hash that existed on the server.

• An asymmetric signature of the entire block.

Then, whenever we make an action on the server, it becomes simple (if ineffi-
cient) to check that the state at the server matches the hash chain correctly.
We first download the chain, and then verify each hash starting from the top
hash. If the server ever rolls back the state of a single file, they would also have
to roll back that part of the hash chain. This is only possible if the state they
are rolling back is the most recently updated file.

That is, the server can only completely revert state to a previously seen state,
not just the state of a single file.

(b) Can we create a more secure scheme if we allow clients to maintain state? What
additional guarantees can we provide?

Discussion 9 Page 6 of 7 CS 161 – SP 17

Solution: In the previous scheme, the server can still roll back to a previously
seen state by changing everything. If we allow clients to keep state, we can
prevent the server from ever reverting state.

Again, there are many valid schemes to do this; we discuss one below.

We keep a hash chain for each file independently on the server. When we share
a file with someone else, we also send them a link to the hash chain so they can
update it with any updates they also make. Our hash chain entries contain the
same information as above.

On the client, we keep a copy of the random transaction ID of the file for each
file. This makes it so that the server cannot rollback any file because the ID
will be invalid.

Another less efficient solution is to simply only remember the latest transaction
ID of the global hash chain from the solution to the previous problem.

Discussion 9 Page 7 of 7 CS 161 – SP 17

