
Paxson
Spring 2017

CS 161
Computer Security Discussion 2

Question 1 Software Vulnerabilities (15 min)
For the following code, assume an attacker can control the value of basket passed into
eval basket. The value of n is constrained to correctly reflect the number of elements
in basket.
The code includes several security vulnerabilities. Circle three such vulnerabilities
in the code and briefly explain each of the three.

1 struct food {
2 char name [1 0 2 4] ;
3 int c a l o r i e s ;
4 } ;
5
6 /∗ Evaluate a shopping baske t with at most 32 food items .
7 Returns the number o f low−c a l o r i e items , or −1 on a problem . ∗/
8 int eva l ba sk e t (struct food basket [] , s i z e t n) {
9 struct food good [3 2] ;

10 char bad [1 0 2 4] , cmd [1 0 2 4] ;
11 int i , t o t a l = 0 , ngood = 0 , s i z e bad = 0 ;
12
13 i f (n > 32) return −1;
14
15 for (i = 0 ; i <= n ; ++i) {
16 i f (basket [i] . c a l o r i e s < 100)
17 good [ngood++] = basket [i] ;
18 else i f (basket [i] . c a l o r i e s > 500) {
19 s i z e t l en = s t r l e n (basket [i] . name) ;
20 s np r i n t f (bad + s ize bad , len , ”%s ” , basket [i] . name) ;
21 s i z e bad += len ;
22 }
23
24 t o t a l += basket [i] . c a l o r i e s ;
25 }
26
27 i f (t o t a l > 2500) {
28 const char ∗ fmt = ”health−f a c t o r −−c a l o r i e s %d −−bad−i tems %s” ;
29 f p r i n t f (s tde r r , ” l o t s o f c a l o r i e s ! ”) ;
30 s np r i n t f (cmd , s izeof cmd , fmt , t o ta l , bad) ;
31 system (cmd) ;
32 }
33
34 return ngood ;
35 }

Reminders:

• strlen calculates the length of a string, not including the terminating ‘\0’ character.

• snprintf(buf, len, fmt, . . .) works like printf, but instead writes to buf, and
won’t write more than len - 1 characters. It terminates the characters written with
a ‘\0’.

• system runs the shell command given by its first argument.

Page 1 of 2

Question 2 Buffer Overflow Mitigations (20 min)
Buffer overflow mitigations generally fall into two categories: (1) eliminating the cause
and (2) alleviating the damage. This question is about techniques in the second category.

Several requirements must be met for a buffer overflow to succeed. Each requirement
listed below can be combated with a different countermeasure. With each mitigation
you discuss, think about where it can be implemented—common targets include the
compiler and the operating system (OS). Also discuss limitations, pitfalls, and costs of
each mitigation.

(a) The attacker needs to overwrite the return address on the stack to change the
control flow. Is it possible to prevent this from happening or at least detect when
it occurs?

(b) The overwritten return address must point to a valid instruction sequence. The at-
tacker often places the malicious code to execute in the vulnerable buffer. However,
the buffer address must be known to set up the jump target correctly. One way to
find out this address is to observe the program in a debugger. This works because
the address tends to be the same across multiple program runs. What could be done
to make it harder to accurately find out the address of the start of the malicious
code?

(c) Attackers often store their malicious code inside the same buffer that they overflow.
What mechanism could prevent the execution of the malicious code? What type of
code would break with this defense in place?

Question 3 Arc Injection (15 min)
Imagine that you are trying to exploit a buffer overflow, but you notice that none of the
code you are injecting will execute for some reason. How frustrating! You still really
want to run some malicious code, so what could you try instead?

Hint: In a stack smashing attack, you can overwrite the return address with any address
of your choosing.

Discussion 2 Page 2 of 2 CS 161 – SP 17

