Confidentiality

CS 161: Computer Security Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula, David Fifield, Mia Gil Epner, David Hahn, Warren He, Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic, Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/

February 23, 2017

Review of Where We're At

- Alice employs an Encryptor E to produce ciphertext from plaintext.
- Bob employs a Decryptor D to recover plaintext from ciphertext.
- So far, both E and D are configured using the same key K.
- K is a shared secret between Alice and Bob
 - Eavesdropper Eve doesn't know it (otherwise, disaster!)
- Use of same secret key for E and D ⇒
 "symmetric-key cryptography"

Block cipher

A function E : $\{0, 1\}^b \times \{0, 1\}^k \rightarrow \{0, 1\}^b$. Once we fix the key K (of size k bits), we get:

- $$\begin{split} \mathsf{E}_{\mathsf{K}} &: \{0,1\}^{\mathsf{b}} \to \{0,1\}^{\mathsf{b}} \quad \text{denoted by } \mathsf{E}_{\mathsf{K}}(\mathsf{M}) = \mathsf{E}(\mathsf{M},\mathsf{K}).\\ & (\text{and also } \mathsf{D}(\mathsf{C},\mathsf{K}), \, \mathsf{E}(\mathsf{M},\mathsf{K})\text{'s inverse}) \end{split}$$
- Three properties:
 - Correctness:
 - $E_{K}(M)$ is a permutation (bijective function) on b-bit strings
 - Bijective \Rightarrow invertible
 - Efficiency: computable in μ sec's
 - Security:
 - For unknown K, "behaves" like a random permutation
- Provides a *building block* for more extensive encryption

DES (Data Encryption Standard)

- Designed in late 1970s
- Block size 64 bits, key size 56 bits
- NSA influenced two facets of its design
 - Altered some subtle internal workings in a mysterious way
 - Reduced key size 64 bits \Rightarrow 56 bits
 - Made brute-forcing feasible for attacker with **massive** (for the time) computational resources
- Remains essentially unbroken 40 years later!
 - The NSA's tweaking hardened it against an attack "invented" a decade later
- However, modern computer speeds make it completely unsafe due to small key size

Today's Go-To Block Cipher: AES (Advanced Encryption Standard)

- 20 years old
- Block size 128 bits
- Key can be 128, 192, or 256 bits
 - 128 remains quite safe; sometimes termed "AES-128"
- As usual, includes encryptor and (closely-related) decryptor
- How it works is beyond scope of this class
- Not proven secure
 - but no known flaws
 - so we assume it is a secure block cipher

How Hard Is It To Brute-Force 128-bit Key?

- 2¹²⁸ possibilities well, how many is that?
- Handy approximation: $2^{10} \approx 10^3$
- $2^{128} = 2^{10^{*}12.8} \approx (10^{3})^{12.8} \approx (10^{3})^{13} \approx 10^{39}$
- Say we build massive hardware that can try 10⁹ keys in 1 nsec
 - So 10¹⁸ keys/sec
 - Thus, we'll need ≈ 10²¹ sec
- How long is that?
 - One year ≈ $3x10^7$ sec
 - So need ≈ $3x10^{13}$ years ≈ 30 trillion years

Issues When Using the Building Block

- Block ciphers can only encrypt messages of a certain size
 - If M is smaller, easy, just pad it (details omitted)
 - If M is larger, can repeatedly apply block cipher
 - Particular method = a "block cipher mode"
 - Tricky to get this right!
- If same data is encrypted twice, attacker knows it is the same
 - Solution: incorporate a varying, known quantity (IV = "initialization vector")

Electronic Code Book (ECB) mode

- Simplest block cipher mode
- Split message into b-bit blocks P₁, P₂, ...
- Each block is enciphered independently, separate from the other blocks
 C_i = E(P_i, K)
- Since key K is fixed, each block is subject to the same permutation
 - (As though we had a "code book" to map each possible input value to its designated output)

Encryption

Electronic Codebook (ECB) mode encryption

Decryption

Electronic Codebook (ECB) mode decryption

Problem: Relationships between P_i's reflected in C_i's

Original image, RGB values split into a bunch of b-bit blocks

Encrypted with ECB and interpreting ciphertext directly as RGB

Later (identical) message again encrypted with ECB

Building a Better Cipher Block Mode

- 1. Ensure blocks incorporate more than just the plaintext to mask relationships between blocks. Done carefully, *either* of these works:
 - Idea #1: include elements of prior computation
 - Idea #2: include positional information
- 2. Plus: need some initial randomness
 - Prevent encryption scheme from determinism revealing relationships between messages
 - Introduce initialization vector (IV)
- Example: Cipher Block Chaining (CBC)

CBC: Encryption

E(Plaintext, K):

- If b is the block size of the block cipher, split the plaintext in blocks of size b: P₁, P₂, P₃,..
- Choose a random IV (do not reuse for other messages)
- Now compute:

Cipher Block Chaining (CBC) mode encryption

• Final ciphertext is (IV, C_1, C_2, C_3) . This is what Eve sees.

CBC: Decryption

D(Ciphertext, K):

- Take IV out of the ciphertext
- If b is the block size of the block cipher, split the ciphertext in blocks of size b: C₁, C₂, C₃, ...
- Now compute this:

Cipher Block Chaining (CBC) mode decryption

• Output the plaintext as the concatenation of P₁, P₂, P₃, ...

Original image, RGB values split into a bunch of b-bit blocks

Encrypted with CBC

Widely used

Issue: sequential encryption, hard to parallelize

Parallelizable alternative: CTR mode

Security: If no reuse of nonce, both are provably secure

(assuming underlying block cipher is secure)

CTR: Encryption

Important that nonce/IV does not repeat across different encryptions.

Choose at random!

CTR: Decryption

Note, CTR decryption uses block cipher's *encryption*, **not** decryption

Modern Symmetric-Key Encryption: Stream Ciphers

Stream ciphers

- Block cipher: fixed-size, stateless, requires "modes" to securely process longer messages
- Stream cipher: keeps state from processing past message elements, can continually process new elements
- Common approach: "one-time pad on the cheap":
 - XORs the plaintext with some "random" bits
- But: random bits ≠ the key (as in one-time pad)
 - Instead: output from cryptographically strong pseudorandom number generator (PRNG)

Pseudorandom Number Generators (PRNGs)

- Given a seed, outputs sequence of seemingly random bits. (Keeps internal state.)
 PRNG(seed) ⇒ "random" bits
- Can output arbitrarily many random bits
- Can a PRNG be truly random?
 - No. For seed length s, it can only generate at most 2^s distinct possible sequences.
- A cryptographically strong PRNG "looks" truly random to an attacker

- attacker cannot distinguish it from a random sequence

Building Stream Ciphers

Encryption, given key K and message M:

- Choose a random value IV
- $E(M, K) = PRNG(K, IV) \oplus M$

Decryption, given key K, ciphertext C, and initialization vector IV:

- D(C, K) = PRNG(K, IV) \oplus C

Can encrypt message of any length because PRNG can produce any number of random bits

Using a PRNG to Build a Stream Cipher

Okay, but how do we build a Cryptographically Strong PRNG?

- Here's a simple design for a PRNG that generates 128-bit pseudo-random numbers
 - Only state needed is SEED and N (# of calls so far)
- PRNG(SEED) = { return AES-128_{SEED}(++N) }
 - i.e., encrypt counter of # of calls using SEED as key
 - Because AES-128 acts like a random permutation of 128-bit bitstrings, even a tiny change in input such as N vs. N+1 completely and unpredictably changes output

Building a Cryptographically Strong PRNG, con't

- Here's a version that incorporates an IV
 - Only state needed is SEED and N (# of calls so far), plus an IV
- PRNG(SEED, IV)
 - = { return AES-128_{SEED}(++N \oplus IV) }
 - i.e., encrypt (counter of # of calls, XOR'd with IV) using SEED as key
- In fact, let's compare using this PRNG to build a stream cipher with the block cipher "CTR" mode ...

Using a PRNG to Build a Stream Cipher

(Nonce = Same as IV)

Only difference from our stream cipher built on AES-128 is use of a different operator (concatenation vs. XOR) to combine IV and counter. Both are equally secure as long as IV is random.

Public Key Cryptography

- Having two keys rather than one seems like a step backwards ...
- … However, what if knowing K_E (and E and D) doesn't allow Eve to infer K_D?
- If Bob can generate a pair (K_E, K_D) that have this property for E and D, then Bob can just publish K_E for the world to see
 - No need to pre-exchange keys with Alice!

Public Key Cryptography, con't

- For Eve, encryption function E_K(M_i) is now fully determined! Surely she can invert it ... ?
- E_{K} needs to be a one-way function, such that computing $E_{K}^{-1}(x)$ is *computationally intractable* ...
- Unless you have some additional knowledge
 i.e., K_D
- Where can we get such a seemingly magic pair of functions E along with D = E_K⁻¹(x)?

– Let's look at one such public-key approach: RSA

Number Theory Refresher: Efficient Multiplication/Exponentitation

• If 'a' and 'b' have N bits each:

Can multiply them in O(N²) time (actually, a bit faster)

Can exponentiate modulo p (a^b mod p or b^a mod p) in O(N³) time

• We're going to care about BIG integers (N≈1000)

Number Theory Refresher: *Totients*

- φ(n) = totient of n
 = # of i, 0 < i < n: i and n are relatively prime
- $\varphi(p) = p-1$ if p is a prime $\varphi(p \cdot q) = (p-1)(q-1)$ if p, q are distinct primes
- Euler's theorem:

Given 'a' relatively prime to n, $a^{\phi(n)} = 1 \mod n$

Finding BIG Primes Quickly

- Here's a probabilistic algorithm:
 - 1. Generate a random candidate prime p'
 - 2. Generate random integer a: 1 < a < p' 1
 - 3. Compute $a^{(p'-1)} \mod p'$. If $\neq 1$, discard p', go to 1
 - 4. Otherwise, go to 2, unless have made enough iterations to have confidence p' "surely" must be prime
 - Enough iterations: while ∃ non-primes for which the equation in Euler's theorem almost always holds, they're exceedingly rare
- Runs in O(N⁴) time for finding an N-bit prime

Putting it all together: RSA

- 1. Generate random primes p, q
- 2. Compute $n = p \cdot q$
- 3. Compute $\varphi(n) = (p-1)(q-1)$ Important: if Eve sees n, she can't deduce $\varphi(n)$ *unless she can factor n* into p and q
- 4. Choose $2 < e < \varphi(n)$, where e and $\varphi(n)$ are relatively prime Could be something simple like e=3, if rel. prime.
- 5. Public key $K_E = \{ n, e \}$. Both are Well Known.
- 6. Compute $d = e^{-1} \mod \varphi(n)$ d is *multiplicative inverse* of e, modulo $\varphi(n)$

easy to find if you know $\varphi(n)$

(believed) HARD to compute if you don't know p, q

7. Private key $K_D = \{ d \}$