
Confidentiality

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/
February 23, 2017

Review of Where We’re At
•  Alice employs an Encryptor E to produce

ciphertext from plaintext.
•  Bob employs a Decryptor D to recover plaintext

from ciphertext.

•  So far, both E and D are configured using the
same key K.

•  K is a shared secret between Alice and Bob
–  Eavesdropper Eve doesn’t know it

(otherwise, disaster!)
•  Use of same secret key for E and D ⇒
“symmetric-key cryptography”

Block cipher

A function E : {0, 1}b ×{0, 1}k → {0, 1}b. Once we fix the
key K (of size k bits), we get:
EK : {0,1}b → {0,1}b denoted by EK(M) = E(M,K).

 (and also D(C,K), E(M,K)’s inverse)
•  Three properties:

–  Correctness:
•  EK(M) is a permutation (bijective function) on b-bit strings
•  Bijective ⇒ invertible

–  Efficiency: computable in 𝜇sec’s sec’s
–  Security:

•  For unknown K, “behaves” like a random permutation

•  Provides a building block for more extensive encryption

DES (Data Encryption Standard)
•  Designed in late 1970s
•  Block size 64 bits, key size 56 bits
•  NSA influenced two facets of its design

–  Altered some subtle internal workings in a mysterious way
–  Reduced key size 64 bits ⇒ 56 bits

•  Made brute-forcing feasible for attacker with massive (for the time)
computational resources

•  Remains essentially unbroken 40 years later!
–  The NSA’s tweaking hardened it against an attack “invented”

a decade later
•  However, modern computer speeds make it

completely unsafe due to small key size

Today’s Go-To Block Cipher:
AES (Advanced Encryption Standard)

•  20 years old
•  Block size 128 bits
•  Key can be 128, 192, or 256 bits

–  128 remains quite safe; sometimes termed “AES-128”
•  As usual, includes encryptor and (closely-related)

decryptor
•  How it works is beyond scope of this class
•  Not proven secure

–  but no known flaws
–  so we assume it is a secure block cipher

How Hard Is It To Brute-Force 128-bit Key?

•  2128 possibilities – well, how many is that?
•  Handy approximation: 210 ≈ 103

•  2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039

•  Say we build massive hardware that can try 109
keys in 1 nsec
–  So 1018 keys/sec
–  Thus, we’ll need ≈ 1021 sec

•  How long is that?
–  One year ≈ 3x107 sec
–  So need ≈ 3x1013 years ≈ 30 trillion years

Issues When Using the
Building Block

•  Block ciphers can only encrypt messages of
a certain size
–  If M is smaller, easy, just pad it (details omitted)
–  If M is larger, can repeatedly apply block cipher

•  Particular method = a “block cipher mode”
•  Tricky to get this right!

•  If same data is encrypted twice, attacker
knows it is the same
– Solution: incorporate a varying, known quantity

(IV = “initialization vector”)

Electronic Code Book (ECB) mode

•  Simplest block cipher mode
•  Split message into b-bit blocks P1, P2, …
•  Each block is enciphered independently,

separate from the other blocks
 Ci = E(Pi, K)

•  Since key K is fixed, each block is subject
to the same permutation
–  (As though we had a “code book” to map each

possible input value to its designated output)

P1 P2 P3

C1 C2 C3

Encryption

P1 P2 P3

C1 C2 C3

Decryption

Problem: Relationships between Pi’s reflected in Ci’s

Original image, RGB values split into a bunch of b-bit blocks

Encrypted with ECB and interpreting ciphertext directly as RGB

Later (identical) message again encrypted with ECB

Building a Better Cipher Block Mode

1. Ensure blocks incorporate more than just the
plaintext to mask relationships between
blocks. Done carefully, either of these works:

–  Idea #1: include elements of prior computation
–  Idea #2: include positional information

2. Plus: need some initial randomness
–  Prevent encryption scheme from determinism

revealing relationships between messages
–  Introduce initialization vector (IV)

•  Example: Cipher Block Chaining (CBC)

P1 P2 P3

C1 C2 C3

CBC: Encryption
E(Plaintext, K):
•  If b is the block size of the block cipher, split the plaintext

in blocks of size b: P1, P2, P3,..
•  Choose a random IV (do not reuse for other messages)
•  Now compute:

•  Final ciphertext is (IV, C1, C2, C3). This is what Eve sees.

P1 P2 P3

C1 C2 C3

CBC: Decryption
D(Ciphertext, K):
•  Take IV out of the ciphertext
•  If b is the block size of the block cipher, split the ciphertext

in blocks of size b: C1, C2, C3, …
•  Now compute this:

•  Output the plaintext as the concatenation of P1, P2, P3, ...

Original image, RGB values split into a bunch of b-bit blocks

Encrypted with CBC

CBC

Widely used

Issue: sequential encryption, hard to parallelize

Parallelizable alternative: CTR mode

Security: If no reuse of nonce, both are
provably secure
(assuming underlying block cipher is secure)

(Nonce = Same as IV)

C1 C2 C3

P1 P2 P3

CTR: Encryption

Important that nonce/IV does not
repeat across different encryptions.

Choose at random!

Note, CTR decryption uses block
cipher’s encryption, not decryption

C1 C2 C3

P1 P2 P3

CTR: Decryption

Modern Symmetric-Key Encryption:

Stream Ciphers

Stream ciphers

•  Block cipher: fixed-size, stateless, requires
“modes” to securely process longer messages

•  Stream cipher: keeps state from processing past
message elements, can continually process new
elements

•  Common approach: “one-time pad on the cheap”:
–  XORs the plaintext with some “random” bits

•  But: random bits ≠ the key (as in one-time pad)
–  Instead: output from cryptographically strong

pseudorandom number generator (PRNG)

Pseudorandom Number Generators
(PRNGs)

•  Given a seed, outputs sequence of seemingly
random bits. (Keeps internal state.)

 PRNG(seed) ⇒ “random” bits
•  Can output arbitrarily many random bits
•  Can a PRNG be truly random?

–  No. For seed length s, it can only generate at most
2s distinct possible sequences.

•  A cryptographically strong PRNG “looks” truly
random to an attacker
–  attacker cannot distinguish it from a random sequence

Building Stream Ciphers

Encryption, given key K and message M:
–  Choose a random value IV
–  E(M, K) = PRNG(K, IV) ⊕ M

Decryption, given key K, ciphertext C, and
initialization vector IV:

–  D(C, K) = PRNG(K, IV) ⊕ C
Can encrypt message of any length
because PRNG can produce any number
of random bits

Mi

(Small) K, IV

PRNG	

Keystream

⨁

Mi: ith message
of plaintext

(Small) K, IV

PRNG	

Keystream

⨁
Ci

Alice Bob

Using a PRNG to Build a
Stream Cipher

Okay, but how do we build a
Cryptographically Strong PRNG?

•  Here’s a simple design for a PRNG that generates
128-bit pseudo-random numbers
–  Only state needed is SEED and N (# of calls so far)

•  PRNG(SEED) = { return AES-128SEED(++N) }
–  i.e., encrypt counter of # of calls using SEED as key
–  Because AES-128 acts like a random permutation of

128-bit bitstrings, even a tiny change in input such as
N vs. N+1 completely and unpredictably changes output

Building a Cryptographically
Strong PRNG, con’t

•  Here’s a version that incorporates an IV
–  Only state needed is SEED and N (# of calls so far), plus

an IV
•  PRNG(SEED, IV)

 = { return AES-128SEED(++N ⊕ IV) }
–  i.e., encrypt (counter of # of calls, XOR’d with IV) using

SEED as key

•  In fact, let’s compare using this PRNG to build a
stream cipher with the block cipher “CTR” mode …

Mi

IV⨁(++n)

AES-128K	

Keystream

⨁

Mi: ith message
of plaintext

IV⨁(++n)

AES-128K	

Keystream

⨁
Ci

Alice Bob

Using a PRNG to Build a
Stream Cipher

Only difference from our stream cipher built on AES-128 is use
of a different operator (concatenation vs. XOR) to combine IV
and counter. Both are equally secure as long as IV is random.

(Nonce = Same as IV)

C1 C2 C3

P1 P2 P3

AES-128 AES-128 AES-128

Mi: ith message
of plaintext

Alice Bob

Eve

E(Mi,	K)	
Ci: ith message
of ciphertext D(Ci,	K)	

K K

Ci

Mi

Mi?

E(Mi, K) and D(Ci, K) are
inverses for the same K

“Symmetric-key encryption”

Mi: ith message
of plaintext

Alice Bob

Eve

E(Mi,	KE)	
Ci: ith message
of ciphertext D(Ci,	KD)	

KE KD

Ci

Mi

Mi?

E(Mi, KE) and D(Ci, KD) are
inverses for particular KE and KD

“Asymmetric-key encryption”

Mi: ith message
of plaintext

Alice Bob

Eve

Ci: ith message
of ciphertext

Ci

Mi

Mi?

E(Mi,	KE)	 D(Ci,	KD)	

KE
“Asymmetric-key encryption”

KD

E(Mi, KE) and D(Ci, KD) are
inverses for particular KE and KD

Public Key Cryptography

•  Having two keys rather than one seems like a
step backwards …

•  ... However, what if knowing KE (and E and D)
doesn’t allow Eve to infer KD?

•  If Bob can generate a pair ⟨KE, KD⟩ that have this
property for E and D, then Bob can just publish KE
for the world to see
–  No need to pre-exchange keys with Alice!

Mi: ith message
of plaintext

Alice Bob

Eve

E(Mi,	KE)	
Ci: ith message
of ciphertext D(Ci,	KD)	

KE

Ci

Mi

Mi?

E(Mi, KE) and D(Ci, KD) are
inverses for particular KE and KD

“Public-key encryption”

KD KD? KE

Public Key Cryptography, con’t

•  For Eve, encryption function EK(Mi) is now fully
determined! Surely she can invert it … ?

•  EK needs to be a one-way function, such that
computing EK

-1(x) is computationally intractable …
•  ... Unless you have some additional knowledge

–  i.e., KD

•  Where can we get such a seemingly magic pair of
functions E along with D = EK

-1(x)?
–  Let’s look at one such public-key approach: RSA

Number Theory Refresher: Efficient
Multiplication/Exponentitation

•  If ‘a’ and ‘b’ have N bits each:

Can multiply them in O(N2) time

 (actually, a bit faster)

Can exponentiate modulo p
(ab mod p or ba mod p) in O(N3) time

•  We’re going to care about BIG integers (N≈1000)

Number Theory Refresher:
Totients

•  φ(n) = totient of n
 = # of i, 0 < i < n: i and n are relatively prime

•  φ(p) = p-1 if p is a prime
φ(p·q) = (p-1)(q-1) if p, q are distinct primes

•  Euler’s theorem:

Given ‘a’ relatively prime to n, aφ(n) = 1 mod n

Finding BIG Primes Quickly
•  Here’s a probabilistic algorithm:

1.  Generate a random candidate prime p'
2.  Generate random integer a: 1 < a < p' - 1
3.  Compute a(p'-1) mod p'. If ≠ 1, discard p', go to 1
4.  Otherwise, go to 2, unless have made enough

iterations to have confidence p' “surely” must be prime
•  Enough iterations: while ∃ non-primes for which the equation in

Euler’s theorem almost always holds, they’re exceedingly rare

•  Runs in O(N4) time for finding an N-bit prime

Putting it all together: RSA
1.  Generate random primes p, q
2.  Compute n = p·q
3.  Compute φ(n) = (p-1)(q-1)

 Important: if Eve sees n, she can’t deduce φ(n)
 unless she can factor n into p and q

4.  Choose 2 < e < φ(n), where e and φ(n) are relatively prime
 Could be something simple like e=3, if rel. prime.

5.  Public key KE = { n, e }. Both are Well Known.
6.  Compute d = e-1 mod φ(n)

 d is multiplicative inverse of e, modulo φ(n)
 easy to find if you know φ(n)

7.  Private key KD = { d }
(believed) HARD to compute if you don’t know p, q

