
Software Security: Defenses

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/
January 26, 2017

Reasoning About
Memory Safety

Memory Safety: no accesses to undefined memory.

“Undefined” is with respect to the semantics of the
programming language used.

“Access” can be reading / writing / executing.

Reasoning About Safety

•  How can we have confidence that our code executes in a
safe (and correct, ideally) fashion?

•  Approach: build up confidence on a function-by-function /
module-by-module basis

•  Modularity provides boundaries for our reasoning:
–  Preconditions: what must hold for function to operate correctly
–  Postconditions: what holds after function completes

•  These basically describe a contract for using the module
•  Notions also apply to individual statements (what must

hold for correctness; what holds after execution)
–  Stmt #1’s postcondition should logically imply Stmt #2’s

precondition
–  Invariants: conditions that always hold at a given point in a

function (this particularly matters for loops)

/*	requires:	p	!=	NULL		
													(and	p	a	valid	pointer)	*/	
int	deref(int	*p)	{	
				return	*p;	
}	

Precondition: what needs to hold for function to
operate correctly.

Needs to be expressed in a way that a person writing
code to call the function knows how to evaluate.

/*	ensures:	retval	!=	NULL	(and	a	valid	pointer)	*/	
void	*mymalloc(size_t	n)	{	
				void	*p	=	malloc(n);	
				if	(!p)	{	perror("malloc");	exit(1);	}	
				return	p;	
}	

Postcondition: what the function promises will
hold upon its return.

Likewise, expressed in a way that a person using
the call in their code knows how to make use of.

	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				total	+=	a[i];	
		return	total;	
}	

Precondition?

	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	??	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires?
(3) Propagate requirement up to beginning of function

int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	a	!=	NULL	&&	
																	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

size(X) = number of elements allocated for region pointed to by X
size(NULL) = 0

This is an abstract notion, not something built into C (like sizeof).

int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	a	!=	NULL	&&	
																	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	a	!=	NULL	&&	
																	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

Let’s simplify, given that a never changes.

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

✓

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

✓

The 0	<=	i part is clear, so let’s focus for now on the rest.

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

?

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

?

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

How to prove our candidate invariant?
n	<=	size(a) is straightforward because n	never changes.

/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

What about i	<	n ? That follows from the loop condition.

/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

At this point we know the proposed invariant will always hold...

/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant:	a	!=	NULL	&&	
							0	<=	i	&&	i	<	n	&&	n	<=	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

… and we’re done!

/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant:	a	!=	NULL	&&	
							0	<=	i	&&	i	<	n	&&	n	<=	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

A more complicated loop might need us to use induction:
 Base case: first entrance into loop.

 Induction: show that postcondition of last statement of
 loop, plus loop test condition, implies invariant.

/*	requires:	a	!=	NULL	&&	
					size(a)	>=	n	&&	
												???																								*/	
int	sumderef(int	*a[],	size_t	n)	{	
				int	total	=	0;	
				for	(size_t	i=0;	i<n;	i++)	
									total	+=	*(a[i]);	
				return	total;	
}	

/*	requires:	a	!=	NULL	&&	
					size(a)	>=	n	&&	
					for	all	j	in	0..n-1,	a[j]	!=	NULL	*/	
int	sumderef(int	*a[],	size_t	n)	{	
				int	total	=	0;	
				for	(size_t	i=0;	i<n;	i++)	
									total	+=	*(a[i]);	
				return	total;	
}	

char	*tbl[N];	/*	N	>	0,	has	type	int	*/	
	
	
int	hash(char	*s)	{	
		int	h	=	17;	
		while	(*s)	
				h	=	257*h	+	(*s++)	+	3;	
		return	h	%	N;	
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	???	*/	
int	hash(char	*s)	{	
		int	h	=	17;	
		while	(*s)	
				h	=	257*h	+	(*s++)	+	3;	
		return	h	%	N;	
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;	
		while	(*s)	
				h	=	257*h	+	(*s++)	+	3;	
		return	h	%	N;	
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	 Fix?

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
unsigned	int	hash(char	*s)	{	
		unsigned	int	h	=	17;								/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		unsigned	int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

Class Ideas: Approaches for
Building Secure Software/Systems
•  Write less code

–  Diminishes attack surface
–  However: may not be practical for a given system
–  Also: could lead to dense/hard-to-understand code

•  Write clear documentation
–  Bring API clarity to how to correctly use libraries
–  Takes time
–  Now there are two things to keep consistent
–  Helps attackers learn about system

Class Ideas, con’t

•  Regular tests
– Ensure unit integrity
– Potentially automate validation of pre/post

conditions
– But: costs time, may be incomplete, which

may lead to a false sense of security
•  Use a memory-safe language like Java

– May diminish performance
– May be incompatible with the installed base
– Could increase attack surface (difficult to

gauge)

Class Ideas, con’t

•  Make things crash
–  i.e., alter code so if potential integrity issue, it leads

to a crash rather than possible code execution
–  A better outcome than “pwnage”
–  Creates a denial-of-service vulnerability

•  Use open source
–  Can enable better assessment of risk …
– … though this might not be practical given code size
–  Easier for attacker to assess vulnerabilities
–  May not be practical (availability of needed

functionality)
–  Possibly the open-source system becomes a juicy

attacker target

Class Ideas, con’t

•  Hire people to break into your systems
– Penetration testers, aka “pen-testers”
– Can also consider “bounties” paid to those

who find vulnerabilities (need non-destructive
rules-of-engagement)

– Can gain detailed understanding of threats
– Can cost quite bit

•  Regular code reviews
– Can be very effective
– Costs considerable time & money

Class Ideas, con’t

•  Sandboxing
– Run code in isolated envorinments
– A way to achieve privilege separation /

minimizes TCB
– Can require significant effort to implement
– Problem might not naturally fit into such

partitioning
– Adds communication overhead

Why does software have
vulnerabilities?

•  Programmers are humans.
And humans make mistakes.
–  Use tools.

•  Programmers often aren’t security-aware.

–  Learn about common types of security flaws.

•  Programming languages aren’t designed well
for security.
–  Use better languages (Java, Python, …).

Testing for Software Security Issues

•  What makes testing a program for security problems
difficult?
–  We need to test for the absence of something

•  Security is a negative property!
–  “nothing bad happens, even in really unusual circumstances”

–  Normal inputs rarely stress security-vulnerable code
•  How can we test more thoroughly?

–  Random inputs (fuzz testing)
–  Mutation
–  Spec-driven

•  How do we tell when we’ve found a problem?
–  Crash or other deviant behavior

•  How do we tell that we’ve tested enough?
–  Hard: but code-coverage tools can help

Testing for Software Security Issues

•  What makes testing a program for security problems
difficult?
–  We need to test for the absence of something

•  Security is a negative property!
–  “nothing bad happens, even in really unusual circumstances”

–  Normal inputs rarely stress security-vulnerable code
•  How can we test more thoroughly?

–  Random inputs (fuzz testing)
–  Mutation
–  Spec-driven

•  How do we tell when we’ve found a problem?
–  Crash or other deviant behavior; now enable expensive checks

•  How do we tell that we’ve tested enough?
–  Hard: but code coverage tools can help

Working Towards Secure Systems
•  Along with securing individual components, we

need to keep them up to date …
•  What’s hard about patching?

–  Can require restarting production systems
–  Can break crucial functionality

Working Towards Secure Systems
•  Along with securing individual components, we

need to keep them up to date …
•  What’s hard about patching?

–  Can require restarting production systems
–  Can break crucial functionality
–  Management burden:

•  It never stops (the “patch treadmill”) …

(Stopped here in lecture)

Working Towards Secure Systems
•  Along with securing individual components, we

need to keep them up to date …
•  What’s hard about patching?

–  Can require restarting production systems
–  Can break crucial functionality
–  Management burden:

•  It never stops (the “patch treadmill”) …
•  … and can be difficult to track just what’s needed where

•  Other (complementary) approaches?
–  Vulnerability scanning: probe your systems/networks

for known flaws
–  Penetration testing (“pen-testing”): pay someone to

break into your systems …
•  … provided they take excellent notes about how they did it!

Some Approaches for
Building Secure Software/Systems
•  Run-time checks

–  Automatic bounds-checking (overhead)
–  What do you do if check fails?

•  Address randomization
–  Make it hard for attacker to determine layout
–  But they might get lucky / sneaky

•  Non-executable stack, heap
–  May break legacy code
–  See also Return-Oriented Programming (ROP)

•  Monitor code for run-time misbehavior
–  E.g., illegal calling sequences
–  But again: what do you if detected?

Approaches for Secure Software, con’t

•  Program in checks / “defensive programming”
–  E.g., check for null pointer even though sure pointer

will be valid
–  Relies on programmer discipline

•  Use safe libraries
–  E.g. strlcpy, not strcpy; snprintf, not sprintf	
–  Relies on discipline or tools …

•  Bug-finding tools
–  Excellent resource as long as not many false

positives
•  Code review

–  Can be very effective … but expensive

Approaches for Secure Software, con’t
•  Use a safe language

–  E.g., Java, Python, C#
–  Safe = memory safety, strong typing, hardened

libraries
–  Installed base?
–  Performance?

•  Structure user input
–  Constrain how untrusted sources can interact with

the system	
–  Perhaps by implementing a reference monitor

•  Contain potential damage
–  E.g., run system components in jails or VMs
–  Think about privilege separation

