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Reasoning About 
Memory Safety 

Memory Safety: no accesses to undefined memory. 
 
“Undefined” is with respect to the semantics of the 
programming language used. 
 
“Access” can be reading / writing / executing. 



Reasoning About Safety 

•  How can we have confidence that our code executes in a 
safe (and correct, ideally) fashion? 

•  Approach: build up confidence on a function-by-function / 
module-by-module basis 

•  Modularity provides boundaries for our reasoning: 
–  Preconditions: what must hold for function to operate correctly 
–  Postconditions: what holds after function completes 

•  These basically describe a contract for using the module 
•  Notions also apply to individual statements (what must 

hold for correctness; what holds after execution) 
–  Stmt #1’s postcondition should logically imply Stmt #2’s 

precondition 
–  Invariants: conditions that always hold at a given point in a 

function (this particularly matters for loops) 



/*	requires:	p	!=	NULL		
													(and	p	a	valid	pointer)	*/	
int	deref(int	*p)	{	
				return	*p;	
}	

Precondition: what needs to hold for function to 
operate correctly. 
 
Needs to be expressed in a way that a person writing 
code to call the function knows how to evaluate. 



/*	ensures:	retval	!=	NULL	(and	a	valid	pointer)	*/	
void	*mymalloc(size_t	n)	{	
				void	*p	=	malloc(n);	
				if	(!p)	{	perror("malloc");	exit(1);	}	
				return	p;	
}	

Postcondition: what the function promises will 
hold upon its return. 
 
Likewise, expressed in a way that a person using 
the call in their code knows how to make use of. 



	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				total	+=	a[i];	
		return	total;	
}	

Precondition? 



	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety: 
(1)  Identify each point of memory access 
(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function  



	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety: 
(1)  Identify each point of memory access 
(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function  



int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	??	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety: 
(1)  Identify each point of memory access 
(2) Write down precondition it requires? 
(3) Propagate requirement up to beginning of function  



int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	a	!=	NULL	&&	
																	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety: 
(1)  Identify each point of memory access 
(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function  

size(X) = number of elements allocated for region pointed to by X 
size(NULL) = 0 
 
This is an abstract notion, not something built into C (like sizeof).  



int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	a	!=	NULL	&&	
																	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety: 
(1)  Identify each point of memory access 
(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function?  



int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	a	!=	NULL	&&	
																	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

Let’s simplify, given that a never changes. 



/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	



/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

General correctness proof strategy for memory safety: 
(1)  Identify each point of memory access 
(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function?  



/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety: 
(1)  Identify each point of memory access 
(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function?  

✓



/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

✓

The 0	<=	i part is clear, so let’s focus for now on the rest. 



/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety: 
(1)  Identify each point of memory access 
(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function?  

?



/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety: 
(1)  Identify each point of memory access 
(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function?  

?



/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

How to prove our candidate invariant? 
n	<=	size(a) is straightforward because n	never changes. 



/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?



/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

What about i	<	n ?  That follows from the loop condition. 



/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

At this point we know the proposed invariant will always hold... 



/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant:	a	!=	NULL	&&	
							0	<=	i	&&	i	<	n	&&	n	<=	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

… and we’re done! 



/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant:	a	!=	NULL	&&	
							0	<=	i	&&	i	<	n	&&	n	<=	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

A more complicated loop might need us to use induction: 
 Base case: first entrance into loop. 

     Induction: show that postcondition of last statement of  
                  loop, plus loop test condition, implies invariant. 



/*	requires:	a	!=	NULL	&&	
					size(a)	>=	n	&&	
												???																								*/	
int	sumderef(int	*a[],	size_t	n)	{	
				int	total	=	0;	
				for	(size_t	i=0;	i<n;	i++)	
									total	+=	*(a[i]);	
				return	total;	
}	



/*	requires:	a	!=	NULL	&&	
					size(a)	>=	n	&&	
					for	all	j	in	0..n-1,	a[j]	!=	NULL	*/	
int	sumderef(int	*a[],	size_t	n)	{	
				int	total	=	0;	
				for	(size_t	i=0;	i<n;	i++)	
									total	+=	*(a[i]);	
				return	total;	
}	



char	*tbl[N];	/*	N	>	0,	has	type	int	*/	
	
	
int	hash(char	*s)	{	
		int	h	=	17;	
		while	(*s)	
				h	=	257*h	+	(*s++)	+	3;	
		return	h	%	N;	
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	



char	*tbl[N];	
	
/*	ensures:	???	*/	
int	hash(char	*s)	{	
		int	h	=	17;	
		while	(*s)	
				h	=	257*h	+	(*s++)	+	3;	
		return	h	%	N;	
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

What is the correct postcondition for hash()? 
(a) 0 <= retval < N, (b) 0 <= retval, 
(c) retval < N, (d) none of the above. 
Discuss with a partner. 



char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;	
		while	(*s)	
				h	=	257*h	+	(*s++)	+	3;	
		return	h	%	N;	
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	



char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	



char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	



char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	



char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	



char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

What is the correct postcondition for hash()? 
(a) 0 <= retval < N, (b) 0 <= retval, 
(c) retval < N, (d) none of the above. 
Discuss with a partner. 



char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	 Fix? 



char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
unsigned	int	hash(char	*s)	{	
		unsigned	int	h	=	17;								/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		unsigned	int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	



Class Ideas: Approaches for 
Building Secure Software/Systems 
•  Write less code 

–  Diminishes attack surface 
–  However: may not be practical for a given system 
–  Also: could lead to dense/hard-to-understand code 

•  Write clear documentation 
–  Bring API clarity to how to correctly use libraries 
–  Takes time 
–  Now there are two things to keep consistent 
–  Helps attackers learn about system 



Class Ideas, con’t 

•  Regular tests 
– Ensure unit integrity 
– Potentially automate validation of pre/post 

conditions 
– But: costs time, may be incomplete, which 

may lead to a false sense of security 
•  Use a memory-safe language like Java 

– May diminish performance 
– May be incompatible with the installed base 
– Could increase attack surface (difficult to 

gauge) 



Class Ideas, con’t 

•  Make things crash 
–  i.e., alter code so if potential integrity issue, it leads 

to a crash rather than possible code execution 
–  A better outcome than “pwnage” 
–  Creates a denial-of-service vulnerability 

•  Use open source 
–  Can enable better assessment of risk … 
– … though this might not be practical given code size 
–  Easier for attacker to assess vulnerabilities 
–  May not be practical (availability of needed 

functionality) 
–  Possibly the open-source system becomes a juicy 

attacker target 



Class Ideas, con’t 

•  Hire people to break into your systems 
– Penetration testers, aka “pen-testers” 
– Can also consider “bounties” paid to those 

who find vulnerabilities (need non-destructive 
rules-of-engagement) 

– Can gain detailed understanding of threats 
– Can cost quite  bit 

•  Regular code reviews 
– Can be very effective 
– Costs considerable time & money 



Class Ideas, con’t 

•  Sandboxing 
– Run code in isolated envorinments 
– A way to achieve privilege separation / 

minimizes TCB 
– Can require significant effort to implement 
– Problem might not naturally fit into such 

partitioning 
– Adds communication overhead 



Why does software have 
vulnerabilities? 

•  Programmers are humans. 
And humans make mistakes. 
–  Use tools. 

 
•  Programmers often aren’t security-aware. 

–  Learn about common types of security flaws. 
 

•  Programming languages aren’t designed well 
for security. 
–  Use better languages (Java, Python, …). 



Testing for Software Security Issues 

•  What makes testing a program for security problems 
difficult? 
–  We need to test for the absence of something 

•  Security is a negative property! 
–  “nothing bad happens, even in really unusual circumstances” 

–  Normal inputs rarely stress security-vulnerable code 
•  How can we test more thoroughly? 

–  Random inputs (fuzz testing) 
–  Mutation 
–  Spec-driven 

•  How do we tell when we’ve found a problem? 
–  Crash or other deviant behavior 

•  How do we tell that we’ve tested enough? 
–  Hard: but code-coverage tools can help 



Testing for Software Security Issues 

•  What makes testing a program for security problems 
difficult? 
–  We need to test for the absence of something 

•  Security is a negative property! 
–  “nothing bad happens, even in really unusual circumstances” 

–  Normal inputs rarely stress security-vulnerable code 
•  How can we test more thoroughly? 

–  Random inputs (fuzz testing) 
–  Mutation 
–  Spec-driven 

•  How do we tell when we’ve found a problem? 
–  Crash or other deviant behavior; now enable expensive checks 

•  How do we tell that we’ve tested enough? 
–  Hard: but code coverage tools can help 



Working Towards Secure Systems 
•  Along with securing individual components, we 

need to keep them up to date … 
•  What’s hard about patching? 

–  Can require restarting production systems 
–  Can break crucial functionality 







Working Towards Secure Systems 
•  Along with securing individual components, we 

need to keep them up to date … 
•  What’s hard about patching? 

–  Can require restarting production systems 
–  Can break crucial functionality 
–  Management burden: 

•  It never stops (the “patch treadmill”) … 





(Stopped here in lecture) 



Working Towards Secure Systems 
•  Along with securing individual components, we 

need to keep them up to date … 
•  What’s hard about patching? 

–  Can require restarting production systems 
–  Can break crucial functionality 
–  Management burden: 

•  It never stops (the “patch treadmill”) … 
•  … and can be difficult to track just what’s needed where 

•  Other (complementary) approaches? 
–  Vulnerability scanning: probe your systems/networks 

for known flaws 
–  Penetration testing (“pen-testing”): pay someone to 

break into your systems … 
•  … provided they take excellent notes about how they did it! 





Some Approaches for 
Building Secure Software/Systems 
•  Run-time checks 

–  Automatic bounds-checking (overhead) 
–  What do you do if check fails? 

•  Address randomization 
–  Make it hard for attacker to determine layout 
–  But they might get lucky / sneaky 

•  Non-executable stack, heap 
–  May break legacy code 
–  See also Return-Oriented Programming (ROP) 

•  Monitor code for run-time misbehavior 
–  E.g., illegal calling sequences 
–  But again: what do you if detected? 



Approaches for Secure Software, con’t 

•  Program in checks / “defensive programming” 
–  E.g., check for null pointer even though sure pointer 

will be valid 
–  Relies on programmer discipline 

•  Use safe libraries 
–  E.g. strlcpy, not strcpy; snprintf, not sprintf	
–  Relies on discipline or tools … 

•  Bug-finding tools 
–  Excellent resource as long as not many false 

positives 
•  Code review 

–  Can be very effective … but expensive 



Approaches for Secure Software, con’t 
•  Use a safe language 

–  E.g., Java, Python, C# 
–  Safe = memory safety, strong typing, hardened 

libraries 
–  Installed base? 
–  Performance? 

•  Structure user input 
–  Constrain how untrusted sources can interact with 

the system	
–  Perhaps by implementing a reference monitor 

•  Contain potential damage 
–  E.g., run system components in jails or VMs 
–  Think about privilege separation 


