Software Security: Defenses

CS 161: Computer Security

Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,
David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/




Reasoning About
Memory Safety




Reasoning About Safety

How can we have confidence that our code executes in a
safe (and correct, ideally) fashion?

Approach: build up confidence on a function-by-function /
module-by-module basis

Modularity provides boundaries for our reasoning:

— : what must hold for function to operate correctly
— : what holds after function completes

These basically describe a contract for using the module

Notions also apply to individual statements (what must
hold for correctness; what holds after execution)

— Stmt #1’s postcondition should logically imply Stmt #2's
precondition

. conditions that always hold at a given point in a
function (this particularly matters for loops)



/* requires: p != NULL
(and p a valid pointer) */
int deref(int *p) {
return *p;

¥




/* ensures: retval != NULL (and a valid pointer) */
void *mymalloc(size t n) {
void *p = malloc(n);
if (!'p) { perror("malloc"); exit(1l); }
return p;




int sum(int a[], size t n) {
int total = 9;
for (size t i=0; i<n; i++)
total += a[i];
return total;

}



int sum(int a[], size t n) {
int total = 9;
for (size t 1=0; i<n; i++)
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) ldentify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function



int sum(int a[], size t n) {
int total = 9;
for (size t 1=0; i<n; i++)
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function



int sum(int a[], size t n) {
int total = 9;
for (size t i=0; i<n; i++)
[* 22 */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires?

(3) Propagate requirement up to beginning of function



int sum(int a[], size t n) {
int total = ©;
for (size t 1=0; i<n; i++)
/* requires: a != NULL &&
O <=1 && 1 < size(a) */
total += a[i];
return total;

}

Gen
(1) |

(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function




int sum(int a[], size t n) {
int total = ©;
for (size t 1=0; i<n; i++)
/* requires: a != NULL &&
O <= 1 && 1 < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?



int sum(int a[], size t n) {
int total = ©;
for (size t 1=0; i<n; i++)
/* requires: a != NULL &&
O <=1 & & 1 < size(a) */
total += a[i];
return total;

}

Let's simplify, given that a never changes.



/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 9;
for (size t i=0; i<n; i++)
/* requires: 0 <= 1 && 1 < size(a) */
total += a[i];
return total;

}



/* requires: a != NULL */
int sum(int a[], size t n) {
int total = @; ‘)
for (size t i=0; i<n; i++) )
/* requires: @ <=1 && 1 < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?



/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 0; v
for (size t i=0; i<n; i++)
/* requires: @ <=1 && 1 < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?



/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 0; v
for (size t i=0; i<n; i++)
/* requires: O <= 1 & & i < size(a) */
total += a[i];
return total;

}

The @ <= 1i partis clear, so let's focus for now on the rest.



/* requires: a != NULL */
int sum(int a[], size t n) { I
int total = 0; y
for (size t i=0; i<n; i++)
/* requires: 1 < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?



/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 9; )
for (size t i=0; i<n; i++) ’
/* invariant?: i < n & n <= size(a) */
/* requires: 1 < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?



/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 9; )
for (size t i=0; i<n; i++) ’
/* invariant?: i < n & n <= size(a) */
/* requires: 1 < size(a) */
total += a[i];
return total;

}

How to prove our candidate invariant?
n <= size(a) is straightforward because n never changes.



/* requires: a != NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 9; ‘)
for (size t i=0; i<n; i++) ’
/* invariant?: i < n & & n <= size(a) */
/* requires: i < size(a) */
total += a[i];
return total;

}



/* requires: a != NULL & & n <= size(a) */
int sum(int a[], size t n) {
int total = 9; ‘)
for (size t i=0; i<n; i++) )
/* invariant?: i < n & & n <= size(a) */
/* requires: i < size(a) */
total += a[i];
return total;

}

What about 1 < n ? That follows from the loop condition.



/* requires: a != NULL & & n <= size(a) */
int sum(int a[], size t n) {
int total = 9; ‘)
for (size t i=0; i<n; i++) )
/* invariant?: i < n & & n <= size(a) */
/* requires: i < size(a) */
total += a[i];
return total;

}

At this point we know the proposed invariant will always hold...



/* requires: a != NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 9;
for (size t i=0; i<n; i++)
/* dinvariant: a != NULL &&
O <=1 && 1 < n && n <= size(a) */
total += a[i];
return total;

}

... and we’re done!



/* requires: a != NULL & n <= size(a) */
int sum(int a[], size t n) {
int total = 9;
for (size t i=0; i<n; i++)
/* invariant: a != NULL &&
O <=1 && 1 < n && n <= size(a) */
total += a[i];
return total;

}

A more complicated loop might need us to use induction:
Base case: first entrance into loop.

Induction: show that postcondition of last statement of
loop, plus loop test condition, implies invariant.



/* requires: a != NULL &&
size(a) >= n &&
PP

int sumderef(int *a[], size t n) {

int total = ©;

for (size t 1i=0; i<n; i++)

total += *(al[i]);
return total;

*/



/* requires: a != NULL &&
size(a) >= n &&

for all j in ©0..n-1, a[j] != NULL */
int sumderef(int *a[], size t n) {

int total = ©;

for (size t 1i=0; i<n; i++)

total += *(al[i]);
return total;



char *tbl[N]; /* N > @, has type int */

int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

}

bool search(char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}



char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

}




char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h 7% N;

}

bool search(char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}



char *tbl[N];

/* ensures: 0 <= retval & & retval < N

int hash(char *s) {
int h = 17; /* 0 <=
while (*s) /* 0 <=
h = 257*h + (*s++) + 3; /* 0 <=
return h % N; /* 0 <= retval < N */
}

bool search(char *s) {
int i = hash(s);

return tbl[i] && (strcmp(tbl[i], s)=

}

*/

n */
n */

n */

=0);



char *tbl[N];

/* ensures: 0 <= retval & & retval < N */
int hash(char *s) {
int h = 17; /* @ <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3; /*N */
return h % N; /* 0 <= retval < N */
}

bool search(char *s) {

int i = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}



char *tbl[N];

/* ensures: 0 <= retval & & retval < N */
int hash(char *s) {
int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */

h = 257%h + (¥s++) + 35 /< e */

return h % N; /* © tval < N */
}

bool search(char *s) {

int i = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}



char *tbl[N];

/* ensures: x’cval && retval < N */
int hash(char *s)

int h = 17; /* @ <= h */
while (*s) /* 0 <= h */

h = 257*h + (*s++) + 35 /*N */

return h % N; /* © tval < N */
}

bool search(char *s) {

int i = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}



char *tbl[N];

/* ensures: }g’cval && retval < N */
int hash(char *s)

int h = 17; /* @ <= h */
while (*s) /¥ 0 <= h */
h = 257*h + (*s++) + 3; /*N */

return h % N; /* Mcval < N */

}




char *tbl[N];

/* ensures: }g’cval && retval < N */
int hash(char *s)

int h = 17; /* @ <= h */
while (*s) /¥ 0 <= h */

h = 257*h + (*s++) + 35 /< e */

return h % N; /* © tval < N */
}

bool search(char *s) {
int i = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

} Fix?.




char *tbl[N];

/* ensures: 0 <= retval & & retval < N

unsigned int hash(char *s) {
unsigned int h = 17; /* 0 <=
while (*s) /* 0 <=
h = 257*h + (*s++) + 3; /* 0 <=
return h % N; /* 0 <= retval < N */
}

bool search(char *s) {
unsigned int i = hash(s);

return tbl[i] && (strcmp(tbl[i], s)=

}

*/

n */
n */

n */

=0);



Class Ideas: Approaches for
Building Secure Software/Systems

* Write less code
— Diminishes attack surface
— However: may not be practical for a given system
— Also: could lead to dense/hard-to-understand code

* Write clear documentation
— Bring AP clarity to how to correctly use libraries
— Takes time
— Now there are two things to keep consistent
— Helps attackers learn about system



Class ldeas, con’t

* Regular tests
— Ensure unit integrity

— Potentially automate validation of pre/post
conditions

— But: costs time, may be incomplete, which
may lead to a false sense of security

« Use a memory-safe language like Java
— May diminish performance
— May be incompatible with the installed base

— Could increase attack surface (difficult to
gauge)



Class ldeas, con’t

 Make things crash

— i.e., alter code so if potential integrity issue, it leads
to a crash rather than possible code execution

— A better outcome than “pwnage”
— Creates a denial-of-service vulnerability

* Use open source
— Can enable better assessment of risk ...
— ... though this might not be practical given code size
— Easier for attacker to assess vulnerabilities

— May not be practical (availability of needed
functionality)

— Possibly the open-source system becomes a juicy
attacker target



Class ldeas, con’t

* Hire people to break into your systems
— Penetration testers, aka “pen-testers”

— Can also consider “bounties” paid to those
who find vulnerabilities (need non-destructive
rules-of-engagement)

— Can gain detailed understanding of threats
— Can cost quite bit

* Regular code reviews

— Can be very effective
— Costs considerable time & money



Class Ideas, con’t

» Sandboxing
— Run code in isolated envorinments

— A way to achieve privilege separation /
minimizes TCB

— Can require significant effort to implement

— Problem might not naturally fit into such
partitioning

— Adds communication overhead



Why does software have
vulnerabilities?

* Programmers are humans.
And humans make mistakes.

— Use tools.

* Programmers often aren’t security-aware.
— Learn about common types of security flaws.

* Programming languages aren’t designed well
for security.
— Use better languages (Java, Python, ...).



Testing for Software Security Issues

« What makes testing a program for security problems
difficult?
— We need to test for the absence of something

« Security is a negative property!
— “nothing bad happens, even in really unusual circumstances”

— Normal inputs rarely stress security-vulnerable code

« How can we test more thoroughly?
— Random inputs (fuzz testing)




Testing for Software Security Issues

What makes testing a program for security problems
difficult?

— We need to test for the absence of something
« Security is a negative property!
— “nothing bad happens, even in really unusual circumstances”

— Normal inputs rarely stress security-vulnerable code

How can we test more thoroughly?

— Random inputs (fuzz testing)

— Mutation

— Spec-driven

How do we tell when we've found a problem?

— Crash or other deviant behavior; now enable expensive checks

How do we tell that we’ve tested enough?
— Hard: but code coverage tools can help



Working Towards Secure Systems

* Along with securing individual components, we
need to keep them up to date ...

* What's hard about patching?
— Can require restarting production systems
— Can break crucial functionality



; Threat Level: ;‘ﬂ‘.‘;‘l--- Storm Center Tools |

ISC Diary

Refresh Latest Diaries

Oracle quitely releases Java 7ul3 early

Published: 2013-02-01,
Last Updated: 2013-02-01 21:59:59 UTC

by Jim Clausing (Version: 2) (® | F Recommend (O n) ¥ Tweet M | +1 i

2 comment(s)

First off, a huge thank you to readers Ken and Paul for pointing out that Oracle has released Java 7ul3. As the CPU (Critical
Patch Update) bulletin points out, the release was originally scheduled for 19 Feb, but was moved up due to the active
exploitation of one of the critical vulnerabilities in the wild. Their Risk Matrix lists 50 CVEs, 49 of which can be remotely

exploitable without authentication. As Rob discussed in his diary 2 weeks ago, now is a great opportunity to determine if you
really need Java installed (if not, remove it) and, if you do, take additional steps to protect the systems that do still require it. |
haven't seen jusched pull this one down on my personal laptop yet, but if you have Java installed you might want to do this one
manually right away. On a side note, we've had reports of folks who installed Java 7ull and had it silently (and unexpectedly)
remove Java 6 from the system thus breaking some legacy applications, so that is something else you might want to be on the
lookout for if you do apply this update.



; Threat Level: .‘E‘.‘;‘l--- Storm Center Tools |

ISC Diary

Refresh Latest Diaries

Oracle quitely releases Java 7ul3 early

Published: 2013-02-01,
Last Updated: 2013-02-01 21:59:59 UTC

by Jim Clausing (Version: 2) (® | F Recommend (@ n) ¥ Tweet M | +1 i B

2 comment(s)

First off, a huge thank you to readers Ken and Paul for pointing out that Oracle has released Java 7ul3. As the CPU (Critical
Patch Update) bulletin points out, the release was originally scheduled for 19 Feb, but was moved up due to the active
exploitation of one of the critical vulnerabilities in the wild. Their Risk Matrix lists 50 CVEs, 49 of which can be remotely
exploitable without authentication. As Rob discussed in his diary 2 weeks ago, now is a great opportunity to determine if you
really need Java installed (if not, remove it) and, if you do, take additional steps to protect the systems that do still require it. |
haven't seen jusched pull this one down on my personal laptop yet, but if you have Java installed you might want to do this one
manually right away. On a side note, we've had reports of folks who installed Java 7ull and had it silently (and unexpectedly)
remove Java 6 from the system thus breaking some legacy applications, so that is something else you might want to be on the
lookout for if you do apply this update.




Working Towards Secure Systems

* Along with securing individual components, we
need to keep them up to date ...

* What's hard about patching?
— Can require restarting production systems
— Can break crucial functionality

— Management burden:
* It never stops (the “patch treadmill”) ...



linfo security|

NeWS STRATEGY /// INSIGHT /// TECHNIGQUE

IT administrators give thanks for
light Patch Tuesday

07 November 2011

Microsoft is giving IT administrators a break for
Thanksgiving, with only four security bulletins
for this month’s Patch Tuesday.

Only one of the bulletins is rated criticaiby Microsoft, which
addresses a flaw that could result in remote code execution
attacks for the newer operating systems — Windows Vista,
Windows 7, and Windows 2008 Server R2.

The critical bulletin has an exploitability rating of 3, suggesting"



(Stopped here in lecture)



Working Towards Secure Systems

* Along with securing individual components, we
need to keep them up to date ...

* What's hard about patching?
— Can require restarting production systems
— Can break crucial functionality

— Management burden:
* It never stops (the “patch treadmill”) ...
... and can be difficult to track just what's needed where

* Other (complementary) approaches?

— Vulnerability scanning: probe your systems/networks
for known flaws

— Penetration testing (“pen-testing”): pay someone to
break into your systems ...

... provided they take excellent notes about how they did it!



RISK ASSESSMENT - SECURITY & HACKTIVISM

Extremely critical Ruby on Rails bug
threatens more than 200,000 sites

Servers that run the framework are by default vulnerable to remote code attacks.

by Dan Goodin - Jan 8 2013, 4:35pm PST

HaRoeNinG § 38 |

Hundreds of thousands of websites are potentially at risk following the discovery of an extremely
critical vulnerability in the Ruby on Rails framework that gives remote attackers the ability to execute
malicious code on the underlying servers.

The bug is present in Rails versions spanning the past six years and in default configurations gives
hackers a simple and reliable way to pilfer database contents, run system commands, and cause
websites to crash, according to Ben Murphy, one of the developers who has confirmed the
vulnerability. As of last week, the framework was used by more than 240,000 websites, including
Github, Hulu, and Basecamp, underscoring the seriousness of the threat.

"It is quite bad,” Murphy told Ars. "An attack can send a request to any Ruby on Rails sever and then
execute arbitrary commands. Even though it's complex, it's reliable, so it will work 100 percent of the
time."

Murphy said the bug leaves open the possibility of attacks that cause one site running rails to seek
out and infect others, creating a worm that infects large swaths of the Internet. Developers with the
Metasploit framework for hackers and penetration testers are in the process of creating a module
that can scan the Internet for vulnerable sites and exploit the bug, said HD Moore, the CSO of
Rapid7 and chief architect of Metasploit.

Maintainers of the Rails framework are@s to update their systems as soon as possible_to

arstechnica



Some Approaches for
Building Secure Software/Systems

* Run-time checks
— Automatic bounds-checking (overhead)
— What do you do if check fails?
« Address randomization
— Make it hard for attacker to determine layout
— But they might get lucky / sneaky
* Non-executable stack, heap
— May break legacy code
— See also Return-Oriented Programming (ROP)

* Monitor code for run-time misbehavior
— E.qg., illegal calling sequences
— But again: what do you if detected?



Approaches for Secure Software, con’t

Program in checks / “defensive programming”

— E.g., check for null pointer even though sure pointer
will be valid

— Relies on programmer discipline

Use safe libraries

— E.g. strlcpy, not strcpy; snprintf, not sprintf
— Relies on discipline or tools ...

Bug-finding tools

— Excellent resource as long as not many false
positives

Code review
— Can be very effective ... but expensive



Approaches for Secure Software, con’t

« Use a safe language
— E.g., Java, Python, C#

— Safe = memory safety, strong typing, hardened
libraries

— Installed base?
— Performance?

» Structure user input

— Constrain how untrusted sources can interact with
the system

— Perhaps by implementing a reference monitor
« Contain potential damage

— E.g., run system components in jails or VMs
— Think about privilege separation



