Detecting Attacks, Part 1

CS 161: Computer Security

Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,
David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

https://inst.eecs.berkeley.edu/~cs161/

Summary of TLS & DNSSEC Technologies

« TLS: provides for communication
over TCP (confidentiality, integrity, authentication)

— Client & server agree on crypto, session keys

— Underlying security dependent on trust in Certificate
Authorities (as well as implementors)

« DNSSEC.: provides for DNS results

— Just integrity & authentication, not confidentiality
— No client/server setup “dialog”
— Tailored to be caching-friendly

— Underlying security dependent on trust in Root Name
Server’s key ...

— ... plus support provided by every level of DNS hierarchy
from Root to final name server... and local resolver!

TaoSecurity

Richard Bejtlich's blog on digital security, strategic thought, and military history.

Tuesday, September 25, 2012
Unrealistic "Security Advice"

I just read a blog post (no need to direct traffic
there with a link) that included the following
content:

This week, I had the opportunity to interview the
hacking teams that used zero-day vulnerabilities
and clever exploitation techniques to compromise
fully patched iPhone 4S and Android 4.0.4
(Samsung S3) and the big message from these
hackers was simple: Do not use your mobile
device for *anything* of value, especially
for work e-mail or the transfer of sensitive
business documents.

For many, this is not practical advice. After all,
your mobile device is seen as an extension of the

We would be much better served if we accepted that
prevention eventually fails, so we need detection,
response, and containment for the incidents that will occur.

The Problem of Detecting Attacks

« Given a choice, we'd like our systems to be airtight-secure

« But often we don’t have that choice
— #1 reason why not: cost (in different dimensions)

* A (messy) alternative: detect misuse rather than build a
system that can’t be misused
— Upon detection: clean up damage, maybe incipient “intrusion”

— Note: prudent for us to do this even if we think system is solid -
defense in depth

— Note: “misuse” might be about policy rather than security
« E.g. your own employees shouldn’t be using file-sharing apps
* Problem space:
— Lacks principles

— Has many dimensions (where to monitor, how to look for problems,
how much accuracy required, what can attackers due to elude us)

— Is messy and in practice also very useful

Example Scenario

« Suppose you've been hired to provide computer
security for FooCorp. They offer web-based
services via backend programs invoked via URLSs:
— http://foocorp.com/amazeme.exe?profile=info/luser.txt

— Script makes sure that “profile” arg. is a relative
filename

Structure of

FooCorp Web Services

[L]
| [FHL]

Internet

FooCorp’s
border router

Remote client

0. http://foocorp/amazeme.exe?profile=xxx
1. GET /amazeme.exe?profile=xxx

J— ‘
2. GET /amazeme.exe?profile=xxx |
% FooCorp
— Servers

3. GET /amazeme.exe?profile=xxx L%l

i

Front-end web server

4, amazeme.exe?
profile=xxx

1 4

A 4

5. binfamazeme -p xxx

Structure of

FooCorp Web Services

[L]
| [FHL]

8.200 OK

Output of binf/amazeme

-

-

Internet

FooCorp’s

border router

Remote client

9.200 OK
Output of binf/amazeme

10. Browser renders output

% FooCorp
- Servers

7.200 OK

Output of binf/amazeme ‘EI

i

Front-end web server

6. Output of bin/amazeme sent back T

5. binfamazeme -p xxx

Example Scenario

« Suppose you've been hired to provide computer
security for FooCorp. They offer web-based
services via backend programs invoked via URLs:
— http://foocorp.com/amazeme.exe?profile=info/luser.txt
— Script makes sure that “profile” arg. is a relative

filename

* Due to installed base issues, you can't alter
backend components like amazeme.exe

* One of the zillion of attacks you're worried about is
iInformation leakage via directory traversal.

— E.g. GET /amazeme.exe?profile=../../../../../etc/passwd

Problem with accessing the AmazeMe Foocorp service

Error parsing profile: ../../../../. Jetc/passwd
Can't find foreground/background color preferences in:

root:fo8bXK3L6x1:0:0: Administrator:/:/bin/sh
flash:pR.33HwJa2c:51:51:Flash User:/flash:/bin/false
nobody:*:99:99:Nobody:/:

jluser:1T9q23cjwVs:500:503:Jerome L. User:/home/jlusr:/bin/tcsh
hefalump:bKKdz92sk1b:501:503:Mr. Hef:/home/hef:/bin/bash
backdoor:9aBz331dDel:0:0:Emergency Access:/:/bin/sh
ncsd:$1GnYOsAS552:505:505:NSCD Daemon:/ncsd:/sbin/nologin

Please correct the profile entries and resubmit.

Thank you for using FooCorp.

Example Scenario

Suppose you've been hired to provide computer
security for FooCorp. They offer web-based
services via backend programs invoked via URLSs:
— http://foocorp.com/amazeme.exe?profile=info/luser.txt

— Script makes sure that “profile” arg. is a relative
filename

Due to installed base issues, you can't alter
backend components like amazeme.exe

One of the zillion of attacks you're worried about is
iInformation leakage via directory traversal.

— E.g. GET /amazeme.exe?profile=../../../../../letc/passwd
What different approaches could detect this attack?

Detecting the Attack:

Where & How?

{17
1T

FooCorp’s
border router

Remote client

FooCorp
Servers

| (1]

‘§|

i

Front-end web server

|

5. binfamazeme -p xxx

Detecting the Attack: Where & How?

* Devise an intrusion detection system
— An IDS: “eye-dee-ess”
* Approach #1: look at the network traffic
— (a “NIDS”: rhymes with “kids™)
— Scan HTTP requests
— Look for “/etc/passwd’™ and/or “../../"

Detecting the Attack:
Where & How?

Remote client

| (1]

= |

2. GET /amazeme.exe?profile=xxx
8. 200 OK -
Output of binf/amazeme
Monitor sees a copy FooCorp
FooCorp’s of incoming/outgoing %
PS LTTP traffic Servers
border router J =
_E—:% - | 4 ‘§
| | Front-end web server
] J AJILQ

n 3@

|| ||-I!'
0]l Ll
SFmpt!
e
B

NIDS

I

bin/amazeme -p xxx

Detecting the Attack: Where & How?

* Devise an intrusion detection system
— An IDS: “eye-dee-ess”

* Approach #1: look at the network traffic
—(a “NIDS”: rhymes with “kids™)
— Scan HTTP requests
— Look for “/etc/passwd’ and/or “../..I"

 Pros:

— No need to touch or frust end systems
 Can “bolt on” security

— Cheap: cover many systems w/ single monitor
— Cheap: centralized management

Network-Based Detection

e |ssues?

— Scan for “/etc/passwd”?
* What about other sensitive files?

— Scan for “../..["7

« Sometimes seen in legit. requests (= false positive)

« What about “%2e%2e%2f%2e%2e%2f"? (= evasion)
— Okay, need to do full HTTP parsing

« What about “..//1.I11.11II"7?

— Okay, need to understand Unix filename semantics too!

—What if its HTTPS and not HTTP?

* Need access to decrypted text / session key - yuck!

Detecting the Attack, con’t

* Approach #2: instrument the web server

— Host-based IDS (sometimes called “HIDS™)

— Scan ?7arguments sent to back-end programs
* Look for “/etc/passwd” and/or “../../"

Detecting the Attack:
Where & How?

FooCorp’s
border router

A

FooCorp
Servers
e

Front-end web server

profile=xxx
I 4

Remote client
6. Output of bin/amazeme sent back

4. amazeme.exe? T
A 4

bin/famazeme -p xxx

Detecting the Attack, con’t

* Approach #2: instrument the web server
— Host-based IDS (sometimes called “HIDS™)
— Scan ?arguments sent to back-end programs
* Look for “/etc/passwd” and/or “../../"
* Pros:
— No problems with HTTP complexities like %-escapes
— Works for encrypted HTTPS!

e |ssues?

— Have to add code to each (possibly different) web server
« And that effort only helps with detecting web server attacks

— Still have to consider Unix filename semantics (“..////.1I")
— Still have to consider other sensitive files

Detecting the Attack, con’t

« Approach #3: each night, script runs to analyze
generated by web servers

— Again scan ?arguments sent to back-end programs

Detecting the Attack:
Where & How?

__
——
|
| ST |
I
[—

FooCorp’s
border router

A

Remote client

FooCorp
Servers

L1 1FE

o TS

Front-end web server

I

bin/amazeme -p xxx

Detecting the Attack, con’t

* Approach #3: each night, script runs to analyze log
files generated by web servers

— Again scan ?arguments sent to back-end programs
* Pros:

— Cheap: web servers generally already have such logging
facilities built into them

« Can “bolt on” security

— No problems like %-escapes, encrypted HTTPS
* Issues?
— Again must consider filename tricks, other sensitive files
— Can’t block attacks & prevent from happening
— Detection delayed, so attack damage may compound

— If the attack is a compromise, then malware might be
able to alter the logs before they're analyzed

* (Not a problem for directory traversal information leak example)

Detecting the Attack, con’t

* Approach #4: monitor
backend processes

— Look for access to /etc/passwd

of

Detecting the Attack:

Where & How?

__
s
|
| ST |
I
[—

FooCorp’s
border router

Remote client

FooCorp
Servers

|

o TS

Front-end web server

I

5. bin/amazeme -p xxx

Detecting the Attack, con’t

* Approach #4: monitor system call activity of
backend processes

— Look for access to /etc/passwd
* Pros:

— No issues with any HTTP complexities
— Can avoid issues with filename tricks

— Attack only leads to an “alert” if attack succeeded
» Sensitive file was indeed accessed

e |ssues?

— Might have to analyze a huge amount of data

— Maybe other processes make legit accesses to the
sensitive files (false positives)

— Maybe we’d like to detect attempts even if they fail?
- “situational awareness”

Detecting the Attack, con’t

* Only generates an “alert” if the attack succeeded
— How does this work for other approaches?

 Instrumenting web server:

— Need to inspect bin/amazeme’s output

— What do we look for?
« Can'’t just assume failure = empty output from bin/amazeme ...

Problem with accessing the AmazeMe Foocorp service

Error parsing profile: ./././././etc/passwd
Can't find foreground/background color preferences.

Please correct the profile entries and resubmit.

Thank you for using FooCorp.

With this version of the Not Found page, the
attack fails, but there’s still a full-fledged
web page. All that indicates failure is the
lack of the contents of the password file

Detecting the Attack, con’t

Only generates an “alert” if the attack succeeded
— How does this work for other approaches?
Instrumenting web server:

— Need to inspect bin/amazeme’s output

— What do we look for?
« Can'’t just assume failure = empty output from bin/amazeme ...

Monitoring log files

— Same, but only works if servers log details about output
they generate

Network-based

— Same, but have to worry about encoding issues
« E.g., what if server reply is gzip-compressed?

NIDS vs. HIDS

* NIDS benefits:

— Can with single deployment
* Much simpler management

— Easy to “bolton” /
— Doesn’t consume production resources on end systems
— Harder for an attacker to subvert / less to trust

« HIDS benefits:

— Can have of activity
» Better positioned to block (prevent) attacks
» Harder to evade

— Can protect against non-network threats

— Visibility into encrypted activity

— Performance scales much more readily (no chokepoint)
« No issues with “dropped” packets

5 Minute Break

Questions Before We Proceed?

An Alternative Paradigm

|dea: rather than detect attacks,

Vulnerability scanning: use a tool to probe your own systems
with a wide range of attacks, fix any that succeed

Pros?

— Accurate: if your scanning tool is good, it finds real problems

— Proactive: can prevent future misuse

— Intelligence: can ignore later IDS alarms that you know can’t succeed

Issues?
— Can take a lot of work
— Not so helpful for systems you can’t modify
— Dangerous for disruptive attacks
* And you might not know which these are ...
In practice, this approach is and widely used today
— Good complement to also running an IDS

Detection Accuracy

» Two types of detector errors:

— False positive (FP): alerting about a problem
when in fact there was no problem

— False negative (FN): failing to alert about a
problem when in fact there was a problem

» Detector accuracy is often assessed in terms
of rates at which these occur

Detection Accuracy, con’t

 Define:

— I to be the event of an instance of intrusive behavior
occurring (something we want to detect)

— A to be the event of detector generating an alert
— False positive rate = P[A | 7 1]
» “How often do we misclassify benign activity?”
— False negative rate = P[7A | 1]
* “How often do we misclassify malicious activity?”
* Another common framework (ML-based classifiers):
- = P[] A]
» “If we get an alert, how often is it relevant?”
» Varies with proportion of attacks-vs-non-attacks

- = P[A]]]

* “How often do we get alerts when we would expect to?
= 1 - False negative rate (= True positive rate)

Perfect Detection

* |s it possible to build a detector for our example
with a false negative rate of 097

 Algorithm to detect bad URLs with 0% FN rate:

void my detector that never misses(char *URL)

{
¥

— In fact, it works for detecting any bad activity with no
false negatives! Woo-hoo!

printf("yep, it's an attack!\n");

 Wow, so what about a detector for bad URLSs that
has NO FALSE POSITIVES?!

- printf("nope, not an attack\n");

Detection Tradeoffs

* The art of a good detector is achieving an
between FPs and FNs

* Suppose our detector has an FP rate of
0.1% and an FN rate of 2%. Is it good
enough? Which is better, a very low FP rate
or a very low FN rate?

— Depends on the cost of each type of error ...

* E.g., FP might lead to paging a duty officer and
consuming hour of their time; FN might lead to $10K
cleaning up compromised system that was missed

— ... but also critically depends on the rate at
which actual attacks occur in your environment

Base Rate Fallacy

Suppose our detector has a FP rate of 0.1% (!)
and a FN rate of 2% (not bad!)

Scenario #1: our server receives 1,000 URLs/day,
and 5 of them are attacks

— Expected # FPs each day = 0.1% * 995 = 1

— Expected # FNs eachday = 2% *5=0.1 (< 1/week)

— Pretty good!

Scenario #2: our server receives 10,000,000 URLs/
day, and 5 of them are attacks
— Expected # FPs each day = 10,000 :-(

Nothing changed about the detector, only our
environment changed

— Accurate detection very challenging when of activity
we want to detect is quite low

Same Scenarios, Precision/Recall

* Detector: FP rate = 0.1% (!), FN rate = 2% (not bad!)

« Scenario #1: 1,000 URLs/day, 5 are attacks
— Expected # FPs each day = 0.1% * 995 = 1
— Expected # FNs each day =2% *5=0.1 (< 1/week)
— Pretty good!
— Precision = P[1 | A] =(0.98 *5)/(0.98 *5 + 0.1% * 995) = 83%
« About 5 out of every 6 alerts are relevant. Quite good.
— Recall =P[A|I] =(0.98*5)/(0.98 *5+0.02 * 5) = 98%
* (Equals 1 — FN rate. We detect nearly all the attacks, cool.)
« Scenario #2: 107 URLs/day, 5 are attacks
— Expected # FPs each day = 10,000 :-(
— Precision =P[I | A] =(0.98 *5)/(0.98 * 5 + 0.1% * (107-5))
= (0.05% (only about one alert in 2,000 is relevant — terrible!)
— Recall =P[A|I] =(0.98*5)/(0.98 *5+0.02 * 5) = 98%

» (doesn’t change, since only concerns false-vs-true negatives)

Detection vs. Blocking

* |If we can detect attacks, how about blocking them?

e |ssues:

— Not a possibility for retrospective analysis (e.g., nightly
job that looks at logs)

— Quite hard for detector that’s not in the data path

« E.g. How can NIDS that passively monitors traffic block attacks?
— Change firewall rules dynamically; forge RST packets
— There’s a race though regarding what attacker does before blocked

Detection vs. Blocking

 |f we can detect attacks, how about blocking them?

e |ssues:

— Not a possibility for retrospective analysis (e.g., nightly
job that looks at logs)

— Quite hard for detector that’s not in the data path

« E.g. How can NIDS that passively monitors traffic block attacks?
— Change firewall rules dynamically; forge RST packets
— There’s a race though regarding what attacker does before blocked

— False positives get more expensive
* You don't just bug an operator, you damage production activity
« Today’s technology/products pretty much all offer
blocking

— Intrusion prevention systems (IPS - “eye-pee-ess”)

Can We Build An IPS
That Blocks All Attacks?

The Ultimately Secure DEEP PACKET INSPECTION AND
APPLICATION SECURITY SYSTEM

Featuring signature-less anomaly detection and blocking
technology with application awareness and layer-7 state
tracking!!!

(Formerly: The Ultimately Secure INTRUSION PREVENTION SYSTEM
Featuring signature-less anomaly detection and blocking technology!!)

