
Detecting Attacks, Part 1

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

https://inst.eecs.berkeley.edu/~cs161/
April 13, 2017

Summary of TLS & DNSSEC Technologies
•  TLS: provides channel security for communication

over TCP (confidentiality, integrity, authentication)
–  Client & server agree on crypto, session keys
–  Underlying security dependent on trust in Certificate

Authorities (as well as implementors)
•  DNSSEC: provides object security for DNS results

–  Just integrity & authentication, not confidentiality
–  No client/server setup “dialog”
–  Tailored to be caching-friendly
–  Underlying security dependent on trust in Root Name

Server’s key …
– … plus support provided by every level of DNS hierarchy

from Root to final name server… and local resolver!

The Problem of Detecting Attacks
•  Given a choice, we’d like our systems to be airtight-secure
•  But often we don’t have that choice

–  #1 reason why not: cost (in different dimensions)
•  A (messy) alternative: detect misuse rather than build a

system that can’t be misused
–  Upon detection: clean up damage, maybe block incipient “intrusion”
–  Note: prudent for us to do this even if we think system is solid -

defense in depth
–  Note: “misuse” might be about policy rather than security

•  E.g. your own employees shouldn’t be using file-sharing apps

•  Problem space:
–  Lacks principles
–  Has many dimensions (where to monitor, how to look for problems,

how much accuracy required, what can attackers due to elude us)
–  Is messy and in practice also very useful

Example Scenario
•  Suppose you’ve been hired to provide computer

security for FooCorp. They offer web-based
services via backend programs invoked via URLs:
–  http://foocorp.com/amazeme.exe?profile=info/luser.txt
–  Script makes sure that “profile” arg. is a relative

filename

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

4. amazeme.exe?
profile=xxx

5. bin/amazeme -p xxx 0. http://foocorp/amazeme.exe?profile=xxx
1. GET /amazeme.exe?profile=xxx

3. GET /amazeme.exe?profile=xxx

2. GET /amazeme.exe?profile=xxx

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

5. bin/amazeme -p xxx

7. 200 OK
 Output of bin/amazeme

6. Output of bin/amazeme sent back

8. 200 OK
 Output of bin/amazeme

9. 200 OK
 Output of bin/amazeme

10. Browser renders output

Example Scenario
•  Suppose you’ve been hired to provide computer

security for FooCorp. They offer web-based
services via backend programs invoked via URLs:
–  http://foocorp.com/amazeme.exe?profile=info/luser.txt
–  Script makes sure that “profile” arg. is a relative

filename
•  Due to installed base issues, you can’t alter

backend components like amazeme.exe
•  One of the zillion of attacks you’re worried about is

information leakage via directory traversal:
–  E.g. GET /amazeme.exe?profile=../../../../../etc/passwd

Helpful error message
returns contents of
profile that appeared
mis-formed, revealing
the raw password file

Example Scenario
•  Suppose you’ve been hired to provide computer

security for FooCorp. They offer web-based
services via backend programs invoked via URLs:
–  http://foocorp.com/amazeme.exe?profile=info/luser.txt
–  Script makes sure that “profile” arg. is a relative

filename
•  Due to installed base issues, you can’t alter

backend components like amazeme.exe
•  One of the zillion of attacks you’re worried about is

information leakage via directory traversal:
–  E.g. GET /amazeme.exe?profile=../../../../../etc/passwd

•  What different approaches could detect this attack?

Detecting the Attack:
Where & How?

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

5. bin/amazeme -p xxx

Detecting the Attack: Where & How?
•  Devise an intrusion detection system

– An IDS: “eye-dee-ess”
•  Approach #1: look at the network traffic

–  (a “NIDS”: rhymes with “kids”)
– Scan HTTP requests
– Look for “/etc/passwd” and/or “../../”

Detecting the Attack:
Where & How?

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

NIDS

Monitor sees a copy
of incoming/outgoing
HTTP traffic

8. 200 OK
 Output of bin/amazeme

Detecting the Attack: Where & How?
•  Devise an intrusion detection system

– An IDS: “eye-dee-ess”
•  Approach #1: look at the network traffic

–  (a “NIDS”: rhymes with “kids”)
– Scan HTTP requests
– Look for “/etc/passwd” and/or “../../”

•  Pros:
– No need to touch or trust end systems

•  Can “bolt on” security
– Cheap: cover many systems w/ single monitor
– Cheap: centralized management

Network-Based Detection

•  Issues?
– Scan for “/etc/passwd”?

•  What about other sensitive files?
– Scan for “../../”?

•  Sometimes seen in legit. requests (= false positive)
•  What about “%2e%2e%2f%2e%2e%2f”? (= evasion)

– Okay, need to do full HTTP parsing
•  What about “..///.///..////”?

– Okay, need to understand Unix filename semantics too!

– What if it’s HTTPS and not HTTP?
•  Need access to decrypted text / session key - yuck!

Detecting the Attack, con’t
•  Approach #2: instrument the web server

– Host-based IDS (sometimes called “HIDS”)
– Scan ?arguments sent to back-end programs

•  Look for “/etc/passwd” and/or “../../”

Detecting the Attack:
Where & How?

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

4. amazeme.exe?
profile=xxx

bin/amazeme -p xxx

HIDS instrumentation
added inside here

6. Output of bin/amazeme sent back

Detecting the Attack, con’t
•  Approach #2: instrument the web server

–  Host-based IDS (sometimes called “HIDS”)
–  Scan ?arguments sent to back-end programs

•  Look for “/etc/passwd” and/or “../../”

•  Pros:
–  No problems with HTTP complexities like %-escapes
–  Works for encrypted HTTPS!

•  Issues?
–  Have to add code to each (possibly different) web server

•  And that effort only helps with detecting web server attacks
–  Still have to consider Unix filename semantics (“..////.//”)
–  Still have to consider other sensitive files

Detecting the Attack, con’t
•  Approach #3: each night, script runs to analyze log

files generated by web servers
–  Again scan ?arguments sent to back-end programs

Detecting the Attack:
Where & How?

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 bin/amazeme -p xxx

Nightly job runs on this
system, analyzing logs

Detecting the Attack, con’t
•  Approach #3: each night, script runs to analyze log

files generated by web servers
–  Again scan ?arguments sent to back-end programs

•  Pros:
–  Cheap: web servers generally already have such logging

facilities built into them
•  Can “bolt on” security

–  No problems like %-escapes, encrypted HTTPS
•  Issues?

–  Again must consider filename tricks, other sensitive files
–  Can’t block attacks & prevent from happening
–  Detection delayed, so attack damage may compound
–  If the attack is a compromise, then malware might be

able to alter the logs before they’re analyzed
•  (Not a problem for directory traversal information leak example)

Detecting the Attack, con’t
•  Approach #4: monitor system call activity of

backend processes
– Look for access to /etc/passwd

Detecting the Attack:
Where & How?

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 5. bin/amazeme -p xxx

Real-time monitoring of
system calls accessing files

Detecting the Attack, con’t
•  Approach #4: monitor system call activity of

backend processes
–  Look for access to /etc/passwd

•  Pros:
–  No issues with any HTTP complexities
–  Can avoid issues with filename tricks
–  Attack only leads to an “alert” if attack succeeded

•  Sensitive file was indeed accessed

•  Issues?
–  Might have to analyze a huge amount of data
–  Maybe other processes make legit accesses to the

sensitive files (false positives)
–  Maybe we’d like to detect attempts even if they fail?

•  “situational awareness”

Detecting the Attack, con’t
•  Only generates an “alert” if the attack succeeded

–  How does this work for other approaches?

•  Instrumenting web server:
–  Need to inspect bin/amazeme’s output
–  What do we look for?

•  Can’t just assume failure = empty output from bin/amazeme …

With this version of the Not Found page, the
attack fails, but there’s still a full-fledged
web page. All that indicates failure is the
lack of the contents of the password file

Detecting the Attack, con’t
•  Only generates an “alert” if the attack succeeded

–  How does this work for other approaches?

•  Instrumenting web server:
–  Need to inspect bin/amazeme’s output
–  What do we look for?

•  Can’t just assume failure = empty output from bin/amazeme …

•  Monitoring log files
–  Same, but only works if servers log details about output

they generate
•  Network-based

–  Same, but have to worry about encoding issues
•  E.g., what if server reply is gzip-compressed?

NIDS vs. HIDS
•  NIDS benefits:

–  Can cover a lot of systems with single deployment
•  Much simpler management

–  Easy to “bolt on” / no need to touch end systems
–  Doesn’t consume production resources on end systems
–  Harder for an attacker to subvert / less to trust

•  HIDS benefits:
–  Can have direct access to semantics of activity

•  Better positioned to block (prevent) attacks
•  Harder to evade

–  Can protect against non-network threats
–  Visibility into encrypted activity
–  Performance scales much more readily (no chokepoint)

•  No issues with “dropped” packets

5 Minute Break

Questions Before We Proceed?

An Alternative Paradigm
•  Idea: rather than detect attacks, launch them yourself!
•  Vulnerability scanning: use a tool to probe your own systems

with a wide range of attacks, fix any that succeed
•  Pros?

–  Accurate: if your scanning tool is good, it finds real problems
–  Proactive: can prevent future misuse
–  Intelligence: can ignore later IDS alarms that you know can’t succeed

•  Issues?
–  Can take a lot of work
–  Not so helpful for systems you can’t modify
–  Dangerous for disruptive attacks

•  And you might not know which these are …

•  In practice, this approach is prudent and widely used today
–  Good complement to also running an IDS

Detection Accuracy
•  Two types of detector errors:

– False positive (FP): alerting about a problem
when in fact there was no problem

– False negative (FN): failing to alert about a
problem when in fact there was a problem

•  Detector accuracy is often assessed in terms
of rates at which these occur

Detection Accuracy, con’t
•  Define:

–  Ι to be the event of an instance of intrusive behavior
occurring (something we want to detect)

–  Α to be the event of detector generating an alert
–  False positive rate = P[Α | ¬ Ι]

•  “How often do we misclassify benign activity?”
–  False negative rate = P[¬Α | Ι]

•  “How often do we misclassify malicious activity?”

•  Another common framework (ML-based classifiers):
–  Precision = P[Ι | Α]

•  “If we get an alert, how often is it relevant?”
•  Varies with proportion of attacks-vs-non-attacks

–  Recall = P[Α | Ι]
•  “How often do we get alerts when we would expect to?

 = 1 - False negative rate (= True positive rate)

Perfect Detection
•  Is it possible to build a detector for our example

with a false negative rate of 0%?
•  Algorithm to detect bad URLs with 0% FN rate:

void	my_detector_that_never_misses(char	*URL)	
{	
				printf("yep,	it's	an	attack!\n");	
}	

–  In fact, it works for detecting any bad activity with no
false negatives! Woo-hoo!

•  Wow, so what about a detector for bad URLs that
has NO FALSE POSITIVES?!
–  printf("nope,	not	an	attack\n");	

Detection Tradeoffs
•  The art of a good detector is achieving an

effective balance between FPs and FNs
•  Suppose our detector has an FP rate of

0.1% and an FN rate of 2%. Is it good
enough? Which is better, a very low FP rate
or a very low FN rate?
– Depends on the cost of each type of error …

•  E.g., FP might lead to paging a duty officer and
consuming hour of their time; FN might lead to $10K
cleaning up compromised system that was missed

– … but also critically depends on the rate at
which actual attacks occur in your environment

Base Rate Fallacy
•  Suppose our detector has a FP rate of 0.1% (!)

and a FN rate of 2% (not bad!)
•  Scenario #1: our server receives 1,000 URLs/day,

and 5 of them are attacks
–  Expected # FPs each day = 0.1% * 995 ≈ 1
–  Expected # FNs each day = 2% * 5 = 0.1 (< 1/week)
–  Pretty good!

•  Scenario #2: our server receives 10,000,000 URLs/
day, and 5 of them are attacks
–  Expected # FPs each day ≈ 10,000 :-(

•  Nothing changed about the detector; only our
environment changed
–  Accurate detection very challenging when base rate of activity

we want to detect is quite low

Same Scenarios, Precision/Recall
•  Detector: FP rate = 0.1% (!), FN rate = 2% (not bad!)
•  Scenario #1: 1,000 URLs/day, 5 are attacks

–  Expected # FPs each day = 0.1% * 995 ≈ 1
–  Expected # FNs each day = 2% * 5 = 0.1 (< 1/week)
–  Pretty good!
–  Precision = P[Ι | Α] = (0.98 * 5) / (0.98 * 5 + 0.1% * 995) ≈ 83%

•  About 5 out of every 6 alerts are relevant. Quite good.
–  Recall = P[Α | Ι] = (0.98 * 5) / (0.98 * 5 + 0.02 * 5) = 98%

•  (Equals 1 – FN rate. We detect nearly all the attacks, cool.)

•  Scenario #2: 107 URLs/day, 5 are attacks
–  Expected # FPs each day ≈ 10,000 :-(
–  Precision = P[Ι | Α] = (0.98 * 5) / (0.98 * 5 + 0.1% * (107-5))

 ≈ 0.05% (only about one alert in 2,000 is relevant – terrible!)
–  Recall = P[Α | Ι] = (0.98 * 5) / (0.98 * 5 + 0.02 * 5) = 98%

•  (doesn’t change, since only concerns false-vs-true negatives)

Detection vs. Blocking
•  If we can detect attacks, how about blocking them?
•  Issues:

–  Not a possibility for retrospective analysis (e.g., nightly
job that looks at logs)

–  Quite hard for detector that’s not in the data path
•  E.g. How can NIDS that passively monitors traffic block attacks?

–  Change firewall rules dynamically; forge RST packets
–  There’s a race though regarding what attacker does before blocked

Detection vs. Blocking
•  If we can detect attacks, how about blocking them?
•  Issues:

–  Not a possibility for retrospective analysis (e.g., nightly
job that looks at logs)

–  Quite hard for detector that’s not in the data path
•  E.g. How can NIDS that passively monitors traffic block attacks?

–  Change firewall rules dynamically; forge RST packets
–  There’s a race though regarding what attacker does before blocked

–  False positives get more expensive
•  You don’t just bug an operator, you damage production activity

•  Today’s technology/products pretty much all offer
blocking
–  Intrusion prevention systems (IPS - “eye-pee-ess”)

Can We Build An IPS
That Blocks All Attacks?

