Integrity and Authentication

CS 161: Computer Security Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula, David Fifield, Mia Gil Epner, David Hahn, Warren He, Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic, Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/

February 28, 2017

RSA Public-Key Encryption

- 1. Generate random primes p, q
- 2. Compute $n = p \cdot q$
- Compute φ(n) = (p-1)(q-1)
 Important: if Eve sees n, she can't deduce φ(n)
 unless she can factor n into p and q
- 4. Choose $2 < e < \varphi(n)$, where e and $\varphi(n)$ are relatively prime Could be something simple like e=3, if rel. prime.
- 5. Public key $K_E = \{ n, e \}$. Both are Well Known.
- 6. Compute $d = e^{-1} \mod \varphi(n)$

d is *multiplicative inverse* of e, modulo $\varphi(n)$ easy to find if you know $\varphi(n)$

(believed) HARD to compute if you don't know p, q

7. Private key $K_D = \{ d \}$

RSA Encryption/Decryption

 Let M be a message interpreted as an unsigned integer with M < n

(We'll deal with $M \ge n$ in a minute ...)

- $E(M, K_E) = E_{\{n, e\}}(M) = M^e \mod n$
- $D(C, K_D) = D_{\{d\}}(C) = C^d \mod n$
 - = (M^e)^d mod n
 - $= M^{e \cdot d} \mod n$

= ...

= $(M^{e \cdot d - 1}) \cdot M \mod n$

Note: taking modular roots is believed to be **computationally intractable**: otherwise Eve would just extract the eth root of the ciphertext to recover M

RSA Encryption/Decryption, con't

- So we have: $D(C, K_D) = (M^{e \cdot d-1}) \cdot M \mod n$
- Now recall that d is the multiplicative inverse of e, modulo φ(n), and thus:

 $e d = 1 \mod \varphi(n)$ (by definition)

- $e \cdot d 1 = k \cdot \varphi(n)$ for some k
- Therefore $D(C, K_D) = (M^{e \cdot d-1}) \cdot M \mod n$
 - $= (M^{k\phi(n)}) \cdot M \mod n$
 - $= [(M^{\phi(n)})^k] \cdot M \mod n$
 - = (1^k)·M mod n by Euler's Theorem
 - = M mod n = M

(believed) Eve can recover M from C *iff* Eve can factor $n=p \cdot q$

Some Considerations for Public-Key Encryption

- Suppose Eve knows message is one of "Buy!" or "Sell". Problem?
 - Eve can just try encrypting each using {n, e} to see which yields the observed ciphertext
 - C = ("Buy!")^e mod n? C = ("Sell")^e mod n?
 - Solution: encrypt Encode(M), where Encode adds a random IV (and also adjusts M for some corner-cases that are easy to invert)
 - Encode is well-known, easy to invert

Some Considerations for Public-Key Encryption, con't

• What if $M \ge n$?

- Decryption D(C, K_D) = (M^{e·d-1})·M mod n \Rightarrow can't recover M

- Solution: use Public-Key encryption to encrypt a random AES key K*; encrypt M using AES(M, K*)
 - Indeed, this is how public-key encryption is routinely used because public key operations *so much slower* than block cipher operations

Integrity & Message Authentication

Integrity and Authentication

- Integrity: Bob can confirm that what he's received is exactly the message M that was originally sent
- Authentication: Bob can confirm that what he's received was indeed generated by Alice
- Reminder: for either, confidentiality may-or-may-not matter
 - E.g. conf. not needed when Mozilla distributes a new Firefox binary

Encryption Does Not Provide Integrity

- Simple example: Consider a stream cipher SC_K that uses a cryptographically strong sequence of pseudo-random bytes, R_i.
 - Split message M into plaintext bytes P_i . $C_i = P_i \oplus R_i$

Using a PRNG to Build a Stream Cipher

Encryption Does Not Provide Integrity

- Simple example: Consider a stream cipher SC_K that uses a cryptographically strong sequence of pseudo-random bytes, R_i.
 - Split message M into plaintext bytes P_i . $C_i = P_i \oplus R_i$
- Suppose Mallory knows that Alice sends to Bob "Pay Mal \$100". Mallory intercepts corresponding C, IV

Mallory the Manipulator

- Mallory is an *active attacker*
 - Can introduce new messages (ciphertext)
 - Can "replay" previous ciphertexts
 - Can cause messages to be reordered or discarded
- A "*Man in the Middle*" (MITM) attacker
 - Can be *much more powerful* than just eavesdropping

Encryption Does Not Provide Integrity

 Simple example: Consider a stream cipher SC_K that uses a cryptographically strong sequence of pseudo-random bytes, R_i.

- Split message M into plaintext bytes P_i . $C_i = P_i \oplus R_i$

 Suppose Mallory knows that Alice sends to Bob "Pay Mal \$100". Mallory intercepts corresponding C, IV

— M = "Pay Mal \$100". C = "r4ZC#jj8qThM"

$$- M_{10..12} = "100". C_{10..12} = "ThM"$$

$$-R_{10..12}=?$$

Encryption Does Not Provide Integrity

- R_{10..12} = ?
- Mallory computes
 - $\beta = ("100" \oplus "999") \oplus C_{10..12}$ = ("100" \oplus "999") \oplus "ThM" = ("100" \oplus "999") \oplus ("100" \oplus R_{10..12}) = ("999" \oplus R_{10..12}) \oplus ("100" \oplus "100") = "999" \oplus R_{10..12}
- Mallory constructs C' = "r4ZC#jj8q $\beta_1\beta_2\beta_3$ ". Sends it and IV to Bob.
- Bob decrypts. SC_K with IV yields same R_i.
 M' = "Pay Mal \$999" ... even though Mallory doesn't know K
- More general attack: Mallory recovers **all** of $R_i = C_i \oplus M_i$
 - Now can construct valid C' for any desired M' via C'_i = $R_i \oplus M'_i$

Integrity and Authentication

- Integrity: Bob can confirm that what he's received is exactly the message M that was originally sent
- Authentication: Bob can confirm that what he's received was indeed generated by Alice
- Reminder: for either, confidentiality may-or-may-not matter
 - E.g. conf. not needed when Mozilla distributes a new Firefox binary
- Approach using symmetric-key cryptography:
 - Integrity via MACs (which use a shared secret key K)
 - Authentication arises due to confidence that only Alice & Bob have K
- Approach using public-key cryptography:
 - "Digital signatures" provide both integrity & authentication together
- Key building block: *cryptographically strong hash functions*

Hash Functions

- Properties
 - Variable input size
 - Fixed output size (e.g., 512 bits)
 - Efficient to compute
 - Pseudo-random (mixes up input extremely well)
- Provides a "fingerprint" of a document
 - E.g. "shasum -a 256 <exams/mt1-solutions.pdf" prints
 0843b3802601c848f73ccb5013afa2d5c4d424a6ef
 477890ebf8db9bc4f7d13d

Cryptographically Strong Hash Functions

A *collision* occurs if x≠y but Hash(x) = Hash(y)
 — Since input size > output size, collisions do happen

- A cryptographically strong Hash(x) provides three properties:
 - 1. One-way: h = Hash(x) easy to compute, but not to invert. (Vivid image: Hash(cow) = hamburger 5.)
 - Intractable to <u>find</u> any x' s.t. Hash(x') = h, for a given h
 - Also termed "preimage resistant"

Cryptographically Strong Hash Functions

- The other two properties of a cryptographically strong Hash(x):
 - Second preimage resistant: given x, intractable to find x' s.t. Hash(x) = Hash(x')
 - Collision resistant: intractable to find any x, y s.t.
 Hash(x) = Hash(y)
- Collision resistant \Rightarrow Second preimage resistant
 - We consider them separately because given Hash might differ in how well it resists each
 - Also, the Birthday Paradox means that for n-bit Hash, finding x-y pair takes only ≈ 2^{n/2} pairs
 - Vs. potentially 2^n tries for x': Hash(x) = Hash(x') for given x

Cryptographically Strong Hash Functions, con't

- Some contemporary hash functions
 - MD5: 128 bits broken lack of collision resistance
 - SHA-1: 160 bits broken (as of last week!)
 - SHA-256: 256 bits at least not currently broken
- Provide a handy way to unambiguously refer to large documents
 - If hash can be securely communicated, provides integrity
 - E.g. Mozilla securely publishes SHA-256(new FF binary)
 - Anyone who fetches binary can use "cat binary | shasum -a 256" to confirm it's the right one, untampered
- Not enough by themselves for integrity, since functions are completely known – Mallory can just compute revised hash value to go with altered message

Message Authentication Codes (MACs)

- Symmetric-key approach for integrity
 - Uses a shared (secret) key K
- Goal: when Bob receives a message, can confidently determine it hasn't been altered
 - In addition, whomever sent it *must have possessed* K
 (⇒ message authentication)
- Conceptual approach:
 - Alice sends $\{M, T\}$ to Bob, with tag T = F(K, M)
 - Note, M could instead be $C = E_{K'}(M)$, but not required
 - When Bob receives $\{M', T'\}$, Bob checks whether T' = F(K, M')
 - If so, Bob concludes message untampered, came from Alice
 - If not, Bob discards message as tampered/corrupted

Requirements for Secure MAC Functions

- Suppose MITM attacker Mallory intercepts Alice's {M, T} transmission ...
 - and wants to replace M with altered M*
 - ... but doesn't know secret key K
- We have secure integrity if MAC function
 T = F(M, K) has two properties:
 - 1. Mallory can't compute $T^* = F(M^*, K)$
 - Otherwise, could send Bob {M*, T*} and fool him
 - 2. Mallory can't find M^{**} such that $F(M^{**}, K) = T$
 - Otherwise, could send Bob {M**, T} and fool him
- These need to hold even if Mallory can observe many {M_i, T_i} pairs, including for M_i's she chose

HMAC: Building a MAC Out of a secure hash function

- For a given secret key K & message M, let:
 - H be a cryptographically strong hash function
 - Pad_i, Pad_o = well-known strings
 - $K^* = a$ lightly adjusted version of K (padded if K too short)
- HMAC(M, K) = H[(K* \oplus Pad_o) || H((K* \oplus Pad_i) || M)]
- Most widely used MAC on the Internet
- Currently believed to be safe even if underlying hash function is somewhat flawed (e.g., SHA-1)

though of course not prudent to bet on that continuing ...

AES-EMAC: Building a MAC out of a secure block cipher

Considerations when using MACs

- Along with messages, can use for data at rest
 - E.g. laptop left in hotel, providing you don't store the key on the laptop
 - Can build an efficient data structure for this that doesn't require re-MAC'ing over entire disk image when just a few files change
- MACs in general provide *no promise not to leak* info about message
 - Though the ones we've seen don't
 - Compute MAC on ciphertext if this matters

Considerations when using MACs, con't

• If also encrypting, do not use the same key to encrypt and for the MAC

- some MACs can then leak info about crypto stages

• If confidentiality doesn't matter, fine to send the computed MAC in the clear

Digital Signatures

The Problem with *Digitized* Signatures

Goal: demonstrate that author produced/endorsed document

Problem: attacker can copy Alice's sig from one doc to another

Digital Signatures

Solution: make signature depend on document

Given signature S and document, need to be able to confirm that only Alice could have produced S using some verification function V(S, Alice). Discard as forgery/corrupted if not.

Digital Signatures, con't

- Idea: as with public-key encryption, leverage a function that's easy to compute but intractable to invert ... unless one possesses some private information
 - But instead, do this for a function that's hard to compute without private info, but easy to invert
- One way to produce such a function: use the inverse of a public-key encryption function
- For example, consider RSA ...