Key Management

CS 161: Computer Security

Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,
David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/

Digital Signatures

* |dea: as with public-key encryption, leverage a
function that’s easy to compute but intractable
to invert ... unless one possesses some private
information

— But instead, do this for a function that’s hard to
compute without private info, but easy to invert

* One way to produce such a function: use the
inverse of a public-key encryption function

* For example, consider RSA ...

RSA Digital Signatures

Alice generates public/private key pair, {n', e'} and {d'}
— Prudent: # her public/private keys for encryption
... chooses, makes public a secure hash function H
To sign a message VI, she computes

S =SIGN (M) = H(M)¢ mod n'
Anyone (not just recipient Bob) can verify her signature
on {IM, S} via

VERIFY,, (M, S) = true iff H(M) = 5¢ mod n'
This follows from (H(M)?)e = (H(M)¢)¥ = H(M) mod n'
(by previous analysis of RSA)

Considerations for Digital Signatures

* Any change to M will alter H(IM), and therefore the
computed S

— Thus, detectable = provides integrity

* Security rests on difficulty of finding inverse of e,
along with H being cryptographically strong

* Because anyone can confirm signature validity if
Alice’s public signature key is well-known, provides
non-repudiation

Considerations for Digital Signatures, con’t

* Non-repudiation:

— Alice can’t that she signed VI
(unless argues her private key was stolen)

— Similar to a handwritten signature, but in fact better
since can’t be “digitized” and pasted into another
document M*

* Because {M*, S} won’t validate

* Per previous example, to sign Firefox binaries

Mozilla could simply just once publish a public
key, and then “use it” to sign each release

Agreeing on Secret Keys
Without Prior Arrangement

Diffie-Hellman Key Exchange

While we have powerful symmetric-key technology, it
requires Alice & Bob to agree on a secret key ahead of
time

What if instead they can somehow generate such a key
when needed?

Seems impossible in the presence of Eve observing all of
their communication ...
— How can they exchange a key without her learning it?

But: actually is possible using public-key technology

— Requires that Alice & Bob know that their messages will reach
one another without any meddling

— So works for Eve-the-eavesdropper, but not Mallory-the-MITM
— Protocol: Diffie-Hellman Key Exchange (DHE)

Alice

Bob

P g

P g

Alice Bob

P g

o >

P g

Eve

Alice Bob

A=g?mod p
g°mod p=B

P g

A
B
P9
Eve
b
K
Alice Bob
A=g?mod p A

g°mod p=B

P g

A
B
P9
Eve
b
K
Alice Bob
A=g?mod p A

g°mod p=B

Alice

Bob

P g

Alice

Bob

P g

P g

Alice Bob

P g

Alice Bob

A=g?mod p

Alice

A=g?mod p

Alice

A=g?mod p

P, 9
A, B,A' B’
a', b’ b, g
Malloy b
A'=g@ mod p Bob
B'=g” modp A’
g°modp=B

AttackonDHE p.g

A B,A", B
a', b’ 0. g
« . < b
Alice A' = g% mod p Bob
A=g?modp B'=g" mod p A’
B’ K', = A" mod p = g% mod p g°modp=B

', =B? mod p = g"* mod , ,
K'; =(B') mod p K,=B"modp=g P K',=(A")" mod p

=(g”)?=g"?mod p =(g¥)° =g®* mod p

Distributing Public Keys

S

v

. C = E(M,, B)
Alice Bob

PROFESSIONAL
FREELANCE
WRITER

cowTacts

Get the

insight into A

my skills A

and talents: o S

A

Alice

Get the
insight into
my skills
and talents:

b*

. £

ﬂ Mallory
a ‘ - b
B Ci = E(Mi) B)I S(Mi) a)

Alice Bob

% Valid(S, M,, Alice)?

b*

. £

Mallory

C = E(M, B), S(M, a)
Alice Bob

Valid(S, M, Alice)? ¢/

Mallory

: b

Ci = E(Nliu:m(M(MB)a)S*(M*V a*) A*

Alice Bob

A

Valid(S*, M, Alice)? ¢/

Alice

A

Mallory

[
-

C' . =E(M,

P

B), S'(M", a

Get the
insight into
my skills
and talents:

»
»

)

How Can We Communicate With

Someone New?

Public-key crypto gives us amazing capabilities
to achieve confidentiality, integrity &
authentication without shared secrets ...

But how do we solve MITM attacks?

How can we trust we have the true public key
for someone we want to communicate with?

|deas?

Trusted Authorities

e Suppose there’s a party that everyone agrees
to trust to confirm each individual’s public key

— Say the Governor of California Zﬂ_

* |ssues with this approach?
— How can everyone agree to trust them?

— Scaling: huge amount of work; single point of
failure ...
... and thus Denial-of-Service concerns

— How do you know you’re talking to the right
authority??

CALIFORNIA REPUBLIC

Trust Anchors

* Suppose the trusted party distributes their key
so everyone has it ...

CALIFORNIA REPUBLIC

RTY

LIBE

JOHN
MUIR

w -4 '/:’/,,

py YOSEMITE
VALLEY

CALIFORNIA REPUBLIC

Trust Anchors

* Suppose the trusted party distributes their key
so everyone has it ...
 We can then use this to bootstrap trust

— As long as we have confidence in the decisions
that that party makes

Digital Certificates

e Certificate (“cert”) = signed claim about someone’s
key

— More broadly: a signed about some claim

* Notation:

{M } = “message M encrypted with public key k”
{M }1="message M signed w/ private key for K”

* E.g. M =“Grant’s public key is K., = @©XF32A99B...”
Cert: M,
{ “Grant’s public key ... 9xF32A99B...” }, -1
= 0x923AB95E12. ..9772F ey

/

OxF32A99B
ing

rts:
cK:(jmm' =
1s statement us

4

(A

A
S
=

Q

S N
S o
fn,w
S
S 8
Q

1s Ox923AB95E12...9772F

signature for th

Jerry
Grant’s
g1

OxXF32A99B...

rts:
chmm' =

4

15

A
S
=

K

~
S8

= O
=
Q
3

Qa

is ©x923AB95E12...9772F

ture

j]erry
Grant’s
igna

‘l'ﬁe S
K—l

/

OxF32A998B...
ing

rts:
QQMmt:
tatement us

15 §

A
S
=

(U

~ N

S8

= O
e
()

3

Q

(A

4

nature for th
is Ox923AB95E12...9772F

Jerry
Grant’s
g

‘l'ﬁe S
K—l

VAN Vivy
»0«0/4,2.,,,_.. oY) R\\

¥ YOSEMIT
VALLEY

*
*

asserts

g T

iss

Y

[ic Eey is
Ox923AB95|/,

(A

/

]?uB
nature for th

Brown hearb

M) erry
Grant’s

The si
I(_l

Y
Jerry

i NNTAT 2NN
NS/

If We Find This Cert
Shoved Under Our Door ...

 What can we figure out?

— If we know Jerry’s key, then whether he indeed
signed the statement

— If we trust Jerry’s decisions, then we have
confidence we really have Grant’s key

* Trust="
— Jerry won’t willy-nilly sign such statements
— Jerry won’t let his private key be stolen

Analyzing Certs Shoved Under Doors ...

* How we get the cert its utility

* Who gives us the cert

— They’re not any more or less trustworthy because
they did

— Possessing a cert doesn’t establish any identity!

* However: if someone demonstrates they can

decrypt data encrypted with K. ., then we
have high confidence they possess K™

— Same for if they show they can sign “using” K¢,

Scaling Digital Certificates

* How can this possibly scale? Surely Jerry can’t
sign everyone’s public key!

* Approach #1: Introduce hierarchy via
delegation

— { “Janet Napolitano’s public key is ©x... and | trust
her to vouch for UC” }, -1

Jerry

— { “Nicholas Dirk’s public key is ©x... and | trust him
to vouch for UCB” }K-lJ :
ane

— { “Jitendra Malik’s public key is ©x... and | trust him
to vouch for EECS” }K-lN,)
IC

—{ “Grant Ho's public key is ©x...” }, -1

Jitendra

Scaling Digital Certificates, con’t

* Grant puts this last on his web page
— (or shoves it under your door)

 Anyone who can gather the intermediary keys
can validate the chain

— They can get these (other than Jerry’s) from
anywhere because they can validate them, too

* Approach #2: have multiple trusted parties who
are in the business of signing certs ...
— (The certs might also be hierarchical, per Approach #1)

Certificate Authorities

* CAs are trusted parties in a Public Key
Infrastructure (PKI)
* They can operate offline

— They sign (“cut”) certs when convenient, not on-
the-fly (... though see below ...)

* Suppose Alice wants to communicate
confidentially w/ Bob:

— Bob gets a CA to issue {Bob’s public key is B} -1
— Alice gets Bob’s cert any old way

— Alice uses her known value of K., to verify cert’s
signature

— Alice extracts B, sends {M}; to Bob

CA

Bob

Cotificate P |

Bob: B} "' |

Bob

v

Bob

@mme ®

Bob

DAY

Gortificate

 {Mal: B*}, . .

S,

Alice Bob

Revocation

* What do we do if a CA screws up and issues a
cert in Bob’s name to Mallory?

Bob

Gortificate

Bob: B*}, L}

Revocation

* What do we do if a CA screws up and issues a
cert in Bob’s name to Mallory?

— E.g. Verisign issued a Microsoft.com certtoa
Random Joe

— (Related problem: Bob realizes b has been stolen)

* Approach #1: expiration dates
— Mitigates possible damage

— But adds management burden

* Benign failures to renew will
break normal operation

Certificate :

Bob: B, Good ti
! 3/31/17% ., |

2\
7 N NS/ IN IR
WSS NSNS TN

Revocation, con’t

* Approach #2: announce revoked certs
— Users periodically download cert revocation list (CRL)

Alice ‘ —— ‘

o]]

Revocation, con’t

* Approach #2: announce revoked certs
— Users periodically download cert revocation list (CRL)

e |ssues?
— Lists can get large
— Need to authenticate the list itself — how?

Alice Bob

Revocation, con’t

* Approach #2: announce revoked certs
— Users periodically download cert revocation list (CRL)

* [ssues?
— Lists can get large
— Need to authenticate the list itself — how? Sign it!
— Mallory can exploit download lag

— What does Alice do if can’t reach CA for download?

1. Assume all certs are invalid (fail-safe defaults)
— Wow, what an unhappy failure mode!

2. Use old list: widens exploitation window if Mallory can
“DoS” CA (DoS = denial-of-service)

