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Digital Signatures

* |dea: as with public-key encryption, leverage a
function that’s easy to compute but intractable
to invert ... unless one possesses some private
information

— But instead, do this for a function that’s hard to
compute without private info, but easy to invert

* One way to produce such a function: use the
inverse of a public-key encryption function

* For example, consider RSA ...



RSA Digital Signatures

Alice generates public/private key pair, {n', e'} and {d'}
— Prudent: # her public/private keys for encryption
... chooses, makes public a secure hash function H
To sign a message VI, she computes

S =SIGN (M) = H(M)¢ mod n'
Anyone (not just recipient Bob) can verify her signature
on {IM, S} via

VERIFY,, (M, S) = true iff H(M) = 5¢ mod n'
This follows from (H(M)?)e = (H(M)¢)¥ = H(M) mod n'
(by previous analysis of RSA)



Considerations for Digital Signatures

* Any change to M will alter H(IM), and therefore the
computed S

— Thus, detectable = provides integrity

* Security rests on difficulty of finding inverse of e,
along with H being cryptographically strong

* Because anyone can confirm signature validity if
Alice’s public signature key is well-known, provides
non-repudiation



Considerations for Digital Signatures, con’t

* Non-repudiation:

— Alice can’t that she signed VI
(unless argues her private key was stolen)

— Similar to a handwritten signature, but in fact better
since can’t be “digitized” and pasted into another
document M*

* Because {M*, S} won’t validate

* Per previous example, to sign Firefox binaries

Mozilla could simply just once publish a public
key, and then “use it” to sign each release



Agreeing on Secret Keys
Without Prior Arrangement



Diffie-Hellman Key Exchange

While we have powerful symmetric-key technology, it
requires Alice & Bob to agree on a secret key ahead of
time

What if instead they can somehow generate such a key
when needed?

Seems impossible in the presence of Eve observing all of
their communication ...
— How can they exchange a key without her learning it?

But: actually is possible using public-key technology

— Requires that Alice & Bob know that their messages will reach
one another without any meddling

— So works for Eve-the-eavesdropper, but not Mallory-the-MITM
— Protocol: Diffie-Hellman Key Exchange (DHE)
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Distributing Public Keys
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How Can We Communicate With

Someone New?

Public-key crypto gives us amazing capabilities
to achieve confidentiality, integrity &
authentication without shared secrets ...

But how do we solve MITM attacks?

How can we trust we have the true public key
for someone we want to communicate with?

|deas?



Trusted Authorities

e Suppose there’s a party that everyone agrees
to trust to confirm each individual’s public key

— Say the Governor of California Zﬂ_

* |ssues with this approach?
— How can everyone agree to trust them?

— Scaling: huge amount of work; single point of
failure ...
... and thus Denial-of-Service concerns

— How do you know you’re talking to the right
authority??

CALIFORNIA REPUBLIC



Trust Anchors

* Suppose the trusted party distributes their key
so everyone has it ...
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Trust Anchors

* Suppose the trusted party distributes their key
so everyone has it ...
 We can then use this to bootstrap trust

— As long as we have confidence in the decisions
that that party makes



Digital Certificates

e Certificate (“cert”) = signed claim about someone’s
key

— More broadly: a signed about some claim

* Notation:

{M } = “message M encrypted with public key k”
{M }1="message M signed w/ private key for K”

* E.g. M =“Grant’s public key is K., = @©XF32A99B...”
Cert: M,
{ “Grant’s public key ... 9xF32A99B...” }, -1
= 0x923AB95E12. ..9772F ey
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If We Find This Cert
Shoved Under Our Door ...

 What can we figure out?

— If we know Jerry’s key, then whether he indeed
signed the statement

— If we trust Jerry’s decisions, then we have
confidence we really have Grant’s key

* Trust="
— Jerry won’t willy-nilly sign such statements
— Jerry won’t let his private key be stolen



Analyzing Certs Shoved Under Doors ...

* How we get the cert its utility

* Who gives us the cert

— They’re not any more or less trustworthy because
they did

— Possessing a cert doesn’t establish any identity!

* However: if someone demonstrates they can

decrypt data encrypted with K. ., then we
have high confidence they possess K™

— Same for if they show they can sign “using” K¢,



Scaling Digital Certificates

* How can this possibly scale? Surely Jerry can’t
sign everyone’s public key!

* Approach #1: Introduce hierarchy via
delegation

— { “Janet Napolitano’s public key is ©x... and | trust
her to vouch for UC” }, -1

Jerry

— { “Nicholas Dirk’s public key is ©x... and | trust him
to vouch for UCB” }K-lJ :
ane

— { “Jitendra Malik’s public key is ©x... and | trust him
to vouch for EECS” }K-lN, )
IC

—{ “Grant Ho's public key is ©x...” }, -1

Jitendra



Scaling Digital Certificates, con’t

* Grant puts this last on his web page
— (or shoves it under your door)

 Anyone who can gather the intermediary keys
can validate the chain

— They can get these (other than Jerry’s) from
anywhere because they can validate them, too

* Approach #2: have multiple trusted parties who
are in the business of signing certs ...
— (The certs might also be hierarchical, per Approach #1)



Certificate Authorities

* CAs are trusted parties in a Public Key
Infrastructure (PKI)
* They can operate offline

— They sign (“cut”) certs when convenient, not on-
the-fly (... though see below ...)

* Suppose Alice wants to communicate
confidentially w/ Bob:

— Bob gets a CA to issue {Bob’s public key is B} -1
— Alice gets Bob’s cert any old way

— Alice uses her known value of K., to verify cert’s
signature

— Alice extracts B, sends {M}; to Bob

CA
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Revocation

* What do we do if a CA screws up and issues a
cert in Bob’s name to Mallory?
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Revocation

* What do we do if a CA screws up and issues a
cert in Bob’s name to Mallory?

— E.g. Verisign issued a Microsoft.com certtoa
Random Joe

— (Related problem: Bob realizes b has been stolen)

* Approach #1: expiration dates
— Mitigates possible damage

— But adds management burden

* Benign failures to renew will
break normal operation
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Revocation, con’t

* Approach #2: announce revoked certs
— Users periodically download cert revocation list (CRL)
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Revocation, con’t

* Approach #2: announce revoked certs
— Users periodically download cert revocation list (CRL)

e |ssues?
— Lists can get large
— Need to authenticate the list itself — how?



Alice Bob




Revocation, con’t

* Approach #2: announce revoked certs
— Users periodically download cert revocation list (CRL)

* [ssues?
— Lists can get large
— Need to authenticate the list itself — how? Sign it!
— Mallory can exploit download lag

— What does Alice do if can’t reach CA for download?

1. Assume all certs are invalid (fail-safe defaults)
— Wow, what an unhappy failure mode!

2. Use old list: widens exploitation window if Mallory can
“DoS” CA (DoS = denial-of-service)



