
Key Management 

CS 161: Computer Security 
Prof. Vern Paxson 

 
TAs: Paul Bramsen, Apoorva Dornadula, 

David Fifield, Mia Gil Epner, David Hahn, Warren He, 
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic, 

Rishabh Poddar, Rebecca Portnoff, Nate Wang 

http://inst.eecs.berkeley.edu/~cs161/ 
March 2, 2017 



Digital	Signatures	

•  Idea:	as	with	public-key	encryp6on,	leverage	a	
func6on	that’s	easy	to	compute	but	intractable	
to	invert	…	unless	one	possesses	some	private	
informa6on	
– But	instead,	do	this	for	a	func6on	that’s	hard	to	
compute	without	private	info,	but	easy	to	invert	

• One	way	to	produce	such	a	func6on:	use	the	
inverse	of	a	public-key	encryp6on	func6on	

•  For	example,	consider	RSA	...	



RSA	Digital	Signatures	
•  Alice	generates	public/private	key	pair,	{n',	e'}	and	{d'}	

–  Prudent:	≠	her	public/private	keys	for	encryp6on	
•  …	chooses,	makes	public	a	secure	hash	func6on	H	
•  To	sign	a	message	M,	she	computes	

	S	=	SIGNd'(M)	=	H(M)d'	mod	n'	
•  Anyone	(not	just	recipient	Bob)	can	verify	her	signature	
on	{M,	S}	via	

	VERIFYn',e'(M,	S)	=	true		iff		H(M)	=	Se'	mod	n'	
•  This	follows	from	(H(M)d')e'	=	(H(M)e')d'	=	H(M)	mod	n'	
	(by	previous	analysis	of	RSA)	



Considera3ons	for	Digital	Signatures	

•  Any	change	to	M	will	alter	H(M),	and	therefore	the	
computed	S
–  Thus,	detectable	⇒	provides	integrity	

•  Security	rests	on	difficulty	of	finding	inverse	of	e,	
along	with	H	being	cryptographically	strong	

•  Because	anyone	can	confirm	signature	validity	if	
Alice’s	public	signature	key	is	well-known,	provides	
non-repudia3on	



Considera3ons	for	Digital	Signatures,	con’t	

•  Non-repudia6on:	
– Alice	can’t	deny	to	a	third	party	that	she	signed	M	
(unless	argues	her	private	key	was	stolen)	

– Similar	to	a	handwri[en	signature,	but	in	fact	be7er	
since	can’t	be	“digi6zed”	and	pasted	into	another	
document	M*	

•  Because	{M*,	S}	won’t	validate	
•  Per	previous	example,	to	sign	Firefox	binaries	
Mozilla	could	simply	just	once	publish	a	public	
key,	and	then	“use	it”	to	sign	each	release	



Agreeing	on	Secret	Keys	
Without	Prior	Arrangement	



Diffie-Hellman	Key	Exchange	
•  While	we	have	powerful	symmetric-key	technology,	it	
requires	Alice	&	Bob	to	agree	on	a	secret	key	ahead	of	
3me	

•  What	if	instead	they	can	somehow	generate	such	a	key	
when	needed?	

•  Seems	impossible	in	the	presence	of	Eve	observing	all	of	
their	communica6on	…	
–  How	can	they	exchange	a	key	without	her	learning	it?	

•  But:	actually	is	possible	using	public-key	technology	
–  Requires	that	Alice	&	Bob	know	that	their	messages	will	reach	
one	another	without	any	meddling	

–  So	works	for	Eve-the-eavesdropper,	but	not	Mallory-the-MITM	
–  Protocol:	Diffie-Hellman	Key	Exchange	(DHE)	



Alice Bob 

Eve 

1. Everyone	agrees	in	advance	on	a	
well-known	(large)	prime	p	and	a	
corresponding	g:	1	<	g	<	p-1	

p, g 

p, g 

p, g 

Diffie-Hellman 
Key Exchange 



Alice Bob 

Eve 

2. Alice	picks	random	secret	‘a’:	1	<	a	<	p-1	
	

3. Bob	picks	random	secret	‘b’:	1	<	b	<	p-1	

p, g 

p, g 

p, g 

a b 

a? b? Diffie-Hellman 
Key Exchange 



Alice Bob 

Eve 

4.  Alice	sends	A	=	ga	mod	p	to	Bob	

5.  Bob	sends	B	=	gb	mod	p	to	Alice	
	
Eve	sees	these	

p, g 

p, g 

p, g 

a b 

a? b? 

A = ga mod p A 

A 

gb mod p = B B 

B 

Diffie-Hellman 
Key Exchange 



Alice Bob 

Eve 

6.  Alice	knows	{a,	A,	B},	computes	
K	=	Ba	mod	p	=	(gb)a	=	gba	mod	p	

7.  Bob	knows	{b,	A,	B},	computes	
K	=	Ab	mod	p	=	(ga)b	=	gab	mod	p	

8.  K	is	now	the	shared	secret	key.	

p, g 

p, g 

p, g 

a b 

a? b? 

A = ga mod p A 

A 

gb mod p = B B 

B 

A 
B 

K K 

Diffie-Hellman 
Key Exchange 



Alice Bob 

Eve 

While	Eve	knows	{p,	g,	ga	mod	p,	gb	mod	p},	believed	to	be	
computa2onally	infeasible	for	her	to	then	deduce	K	=	gab	mod	p.	

She	can	easily	construct	A·B	=	ga·gb	mod	p	=	ga+b	mod	p.		
But	compu6ng	gab	requires	ability	to	take	discrete	logarithms	mod	p.	

p, g 

p, g 

p, g 

a b 

a? b? 

A = ga mod p A 

A 

gb mod p = B B 

B 

A 
B 

K K 

K? 

Diffie-Hellman 
Key Exchange 



Alice Bob 

What	happens	if	instead	of	Eve	
watching,	Alice	&	Bob	face	the	
threat	of	a	hidden	Mallory	(MITM)?	

p, g 

p, g 

p, g 
Mallory 

Attack on DHE 



Alice Bob 

p, g 

p, g 

p, g 
Mallory 

What	happens	if	instead	of	Eve	
watching,	Alice	&	Bob	face	the	
threat	of	a	hidden	Mallory	(MITM)?	

Attack on DHE 



Alice Bob 

p, g 

p, g 

p, g 
Mallory 

2. Alice	picks	random	secret	‘a’:	1	<	a	<	p-1	
	

3. Bob	picks	random	secret	‘b’:	1	<	b	<	p-1	

a b 

a? b? Attack on DHE 



Alice Bob 

p, g 

p, g 

p, g 
Mallory 

a b 

a? b? 

4.  Alice	sends	A	=	ga	mod	p	to	Bob	

5. Mallory	prevents	Bob	from	
receiving	A	

A = ga mod p A 

A 

Attack on DHE 



Alice Bob 

p, g 

p, g 

p, g 
Mallory 

a b 

a? b? 

6.  Mallory	generates	her	own	a',	b'	

7.  Mallory	sends	A'	=	ga'	mod	p	to	Bob	

A = ga mod p A 

A, A' 
a', b' 

A' = ga' mod p A' 

Attack on DHE 



Alice Bob 

p, g 

p, g 

p, g 
Mallory 

a b 

a? b? 

8.  The	same	happens	for	Bob	and	B/B'	

A = ga mod p A 

A, B, A', B' 
a', b' 

A' = ga' mod p A' 

gb mod p = B 
A' 
B 

B’ = gb' mod p B' 

Attack on DHE 



Alice Bob 

p, g 

p, g 

p, g 
Mallory 

a b 

a? b? 

9.  Alice	and	Bob	now	compute	keys	they	share	with	…	Mallory!	

10. Mallory	can	relay	encrypted	traffic	between	the	two	...	

10'.	Modifying	it	or	making	stuff	up	however	she	wishes	

A = ga mod p A 

A, B, A', B' 
a', b' 

A' = ga' mod p A' 

gb mod p = B 
A' 
B 

B' = gb' mod p 
B' 

K'1	=	(B')a	mod	p	
						=	(gb')a	=	gb'a	mod	p	

K'2	=	(A')b	mod	p	
						=	(ga')b	=	ga'b	mod	p	

K'1	=	Ab'	mod	p	=	gab'	mod	p	
K'2	=	Ba'	mod	p	=	gba'	mod	p	

Attack on DHE 



Distribu3ng	Public	Keys	



Mi 

Alice Bob 

Bob

My	Pub	Key:	B	

B 

Mi 

Ci	=	E(Mi,	B)	
b 

B 



Mi 

M*
i 

Alice Bob 

Mallory 

Bob

My	Pub	Key:	B	

Mi 

Ci	=	E(Mi,	B*)	

Bob

My	Pub	Key:	B*	

b 

B* 

Ha	ha	ha!		😹😼
That’s	so	lame!	

C*i	=	E(M*
i,	B)	

b* 



Alice Bob 

Bob

My	Pub	Key:	B	

B 

Mi 

Ci	=	E(Mi,	B), S(Mi,	a)	
b a 

Mallory 

For simplicity, assume 
Alice uses same key for 
encryption & signing 

Valid(S,	Mi,	Alice)?	

b* 



Alice Bob 

Bob

My	Pub	Key:	B	

B 

Mi 

Ci	=	E(Mi,	B), S(Mi,	a)	
b a 

Mallory 

Valid(S,	Mi,	Alice)?	

My	Pub	Key:	A	A 

✔︎ 

b* 



Alice Bob 

Bob

My	Pub	Key:	B	

Mi 

Ci	=	E(Mi,	B), S(Mi,	a)	
b a 

Mallory 

Valid(S*,	M*
i,	Alice)?	

My	Pub	Key:	A	

A* 

M

My	Pub	Key:	A*	

C*i	=	E(M*
i,	B), S*(M*

i,	a*)	

b* a*, 

✔︎ 

Bob

My	Pub	Key:	B*	

B* 



M*
i 

Alice Bob 

Bob

My	Pub	Key:	B	

Mi 

b a 
Mallory 

My	Pub	Key:	A	

A* 

M

My	Pub	Key:	A*	

C*i	=	E(M*
i,	B), S*(M*

i,	a*)	

b* a*, 

Bob

My	Pub	Key:	B*	

B* 



How	Can	We	Communicate	With	
Someone	New?	

•  Public-key	crypto	gives	us	amazing	capabili6es	
to	achieve	confiden6ality,	integrity	&	
authen6ca6on	without	shared	secrets	…	

•  But	how	do	we	solve	MITM	a[acks?	
•  How	can	we	trust	we	have	the	true	public	key	
for	someone	we	want	to	communicate	with?	

•  Ideas?	



Trusted	Authori3es	
•  Suppose	there’s	a	party	that	everyone	agrees	
to	trust	to	confirm	each	individual’s	public	key	
– Say	the	Governor	of	California	

•  Issues	with	this	approach?	
– How	can	everyone	agree	to	trust	them?	
– Scaling:	huge	amount	of	work;	single	point	of	
failure	…	

•  ...	and	thus	Denial-of-Service	concerns	
– How	do	you	know	you’re	talking	to	the	right	
authority??	



Trust	Anchors	
•  Suppose	the	trusted	party	distributes	their	key	
so	everyone	has	it	…	

	







Trust	Anchors	
•  Suppose	the	trusted	party	distributes	their	key	
so	everyone	has	it	…	

•  We	can	then	use	this	to	bootstrap	trust	
– As	long	as	we	have	confidence	in	the	decisions	
that	that	party	makes	



Digital	Cer3ficates	
•  Cer6ficate	(“cert”)	=	signed	claim	about	someone’s	
key	
– More	broadly:	a	signed	a7esta3on	about	some	claim	

•  Nota6on:	
	{	M	}K	=	“message	M	encrypted	with	public	key	k”	
	{	M	}K-1	=	“message	M	signed	w/	private	key	for	K”	

•  E.g.	M	=	“Grant’s	public	key	is	KGrant	=	0xF32A99B...”	
Cert:	M,	

				{	“Grant’s	public	key	…	0xF32A99B...”	}K	-1Jerry		 	=	0x923AB95E12...9772F	



Jerry Brown hearby asserts:���
Grant’s public key is KGrant = 0xF32A99B...

The signature for this statement using ���
K-1

Jerry
 is 0x923AB95E12...9772F	

	
	

This	



Jerry Brown hearby asserts:���
Grant’s public key is KGrant = 0xF32A99B...

The signature for this statement using ���
K-1

Jerry
 is 0x923AB95E12...9772F	

	
	

is	computed	over	all	of	this	



Jerry Brown hearby asserts:���
Grant’s public key is KGrant = 0xF32A99B...

The signature for this statement using ���
K-1

Jerry
 is 0x923AB95E12...9772F	

	
	 and	can	be	

validated	using:	



Jerry Brown hearby asserts:���
Grant’s public key is KGrant = 0xF32A99B...

The signature for this statement using ���
K-1

Jerry
 is 0x923AB95E12...9772F	

	
	

This:	



If	We	Find	This	Cert		
Shoved	Under	Our	Door	…	

•  What	can	we	figure	out?	
–  If	we	know	Jerry’s	key,	then	whether	he	indeed	
signed	the	statement	

–  If	we	trust	Jerry’s	decisions,	then	we	have	
confidence	we	really	have	Grant’s	key	

•  Trust	=	?	
–  Jerry	won’t	willy-nilly	sign	such	statements	
–  Jerry	won’t	let	his	private	key	be	stolen	



Analyzing	Certs	Shoved	Under	Doors	…	

•  How	we	get	the	cert	doesn’t	affect	its	u6lity	
•  Who	gives	us	the	cert	doesn’t	ma[er	

– They’re	not	any	more	or	less	trustworthy	because	
they	did	

– Possessing	a	cert	doesn’t	establish	any	iden6ty!	
•  However:	if	someone	demonstrates	they	can	
decrypt	data	encrypted	with	KGrant,	then	we	
have	high	confidence	they	possess	K-1Grant	
– Same	for	if	they	show	they	can	sign	“using”	KGrant	



Scaling	Digital	Cer3ficates	
•  How	can	this	possibly	scale?		Surely	Jerry	can’t	
sign	everyone’s	public	key!	

•  Approach	#1:	Introduce	hierarchy	via	
delega6on	
–  {	“Janet	Napolitano’s	public	key	is	0x...	and	I	trust	
her	to	vouch	for	UC”	}K	-1Jerry	

–  {	“Nicholas	Dirk’s	public	key	is	0x...	and	I	trust	him	
to	vouch	for	UCB”	}K	-1Janet	

–  {	“Jitendra	Malik’s	public	key	is	0x...	and	I	trust	him	
to	vouch	for	EECS”	}K	-1Nick	

–  {	“Grant	Ho’s	public	key	is	0x...”	}K	-1Jitendra	



Scaling	Digital	Cer3ficates,	con’t	
•  Grant	puts	this	last	on	his	web	page	

–  (or	shoves	it	under	your	door)	
•  Anyone	who	can	gather	the	intermediary	keys	
can	validate	the	chain	
– They	can	get	these	(other	than	Jerry’s)	from	
anywhere	because	they	can	validate	them,	too	

•  Approach	#2:	have	mul6ple	trusted	par6es	who	
are	in	the	business	of	signing	certs	…	
–  (The	certs	might	also	be	hierarchical,	per	Approach	#1)	



Cer3ficate	Authori3es	
•  CAs	are	trusted	par6es	in	a	Public	Key	
Infrastructure	(PKI)	

•  They	can	operate	offline	
– They	sign	(“cut”)	certs	when	convenient,	not	on-
the-fly	(…	though	see	below	...)	

•  Suppose	Alice	wants	to	communicate	
confiden6ally	w/	Bob:	
– Bob	gets	a	CA	to	issue	{Bob’s	public	key	is	B}	K	-1CA	– Alice	gets	Bob’s	cert	any	old	way	
– Alice	uses	her	known	value	of	KCA	to	verify	cert’s	
signature	

– Alice	extracts	B,	sends	{M}B	to	Bob	



Bob 

b 

CA 

B 

Is	this	
really	
Bob?	

{Bob: B}K-1CA 



Bob 

b 
B 

Alice 

Mi 

{Bob: B}K-1CA 

I’d	like	to	talk	
privately	with	
Bob	



Bob 

b 
B 

Alice 

Mi 

{Bob: B}K-1CA Does	CA’s	
signature	on	
B	validate?	

Mi 

Ci	=	E(Mi,	B)	



Bob 

b* 

CA 

B* 

Is	this	
really	
Bob?	

Mallory 

X 



Bob 

CA 

Is	this	
really	
Mal?	

{Mal: B*}K-1CA 

b* 

Mallory 

B* 



Bob Alice 

Mi 

{Mal: B*}K-1CA 

b* 

B* 

Mallory 

I’d	like	to	talk	
privately	with	
Bob	



Bob Alice 

Mi 

{Mal: B*}K-1CA Wait,	I	want	
to	talk	to	Bob,	
not	Mallory!	

b* 

B* 

Mallory 

X 



Revoca3on	

•  What	do	we	do	if	a	CA	screws	up	and	issues	a	
cert	in	Bob’s	name	to	Mallory?	



Bob Alice 

Mi 

{Bob: B*}K-1CA 

b* 

B* 

Mallory 

I’d	like	to	talk	
privately	with	
Bob	

{Bob: B*}K-1CA 



Revoca3on	

•  What	do	we	do	if	a	CA	screws	up	and	issues	a	
cert	in	Bob’s	name	to	Mallory?	
– E.g.	Verisign	issued	a	Microsoft.com	cert	to	a	
Random	Joe	

–  (Related	problem:	Bob	realizes	b	has	been	stolen)	
•  How	do	we	recover	from	the	error?	
•  Approach	#1:	expira6on	dates	

– Mi6gates	possible	damage	
– But	adds	management	burden	

•  Benign	failures	to	renew	will	
break	normal	opera6on	

{Bob: B,	Good til:	
3/31/17}K-1CA 



Revoca3on,	con’t	
•  Approach	#2:	announce	revoked	certs	

– Users	periodically	download	cert	revoca3on	list	(CRL)	



Bob Alice 

b* 

B* 

Mallory 

Time	for	my	
weekly	revoked	
cert	download	

CA 

Revoked
Certs ���

…

{Bob: B*}K-1CA 

…CRL = Certificate 
Revocation List 



Bob Alice 

b* 

B* 

Mallory 

Oof!	

CA 

Revoked
Certs ���

…

{Bob: B*}K-1CA 

…

CRL = Certificate 
Revocation List 



Revoca3on,	con’t	
•  Approach	#2:	announce	revoked	certs	

– Users	periodically	download	cert	revoca3on	list	(CRL)	
•  Issues?	

– Lists	can	get	large	
– Need	to	authen3cate	the	list	itself	–	how?	



Bob Alice 

b* 

B* 

Mallory 

Time	for	my	
weekly	revoked	
cert	download	

CA 

Revoked
Certs ���

…

{Bob: B*}K-1CA 

…CRL = Certificate 
Revocation List 

K
-1

CA 



Revoca3on,	con’t	
•  Approach	#2:	announce	revoked	certs	

– Users	periodically	download	cert	revoca3on	list	(CRL)	
•  Issues?	

– Lists	can	get	large	
– Need	to	authen6cate	the	list	itself	–	how?		Sign	it!	
– Mallory	can	exploit	download	lag	
– What	does	Alice	do	if	can’t	reach	CA	for	download?	

1. Assume	all	certs	are	invalid	(fail-safe	defaults)	
– Wow,	what	an	unhappy	failure	mode!	

2. Use	old	list:	widens	exploita6on	window	if	Mallory	can	
“DoS”	CA		(DoS	=	denial-of-service)	


