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Inside a Modern HIDS (“AV”) 
•  URL/Web access blocking: 

–  Prevent users from going to known bad locations 

•  Protocol scanning of network traffic (esp. HTTP) 
–  Detect & block known attacks 
–  Detect & block known malware communication 

•  Payload scanning 
–  Detect & block known malware 

•  (Auto-update of signatures for these) 
•  Cloud queries regarding reputation 

–  Who else has run this executable and with what results? 
–  What’s known about the remote host / domain / URL? 



Inside a Modern HIDS, con’t 
•  Sandbox execution 

–  Run selected executables in constrained/monitored 
environment 

–  Analyze: 
•  System calls 
•  Changes to files / registry 
•  Self-modifying code (polymorphism/metamorphism) 

•  File scanning 
–  Look for known malware that installs itself on disk 

•  Memory scanning 
–  Look for known malware that never appears on disk 

•  Runtime analysis 
–  Apply heuristics/signatures to execution behavior 



Inside a Modern NIDS 
•  Deployment inside network as well as at border 

–  Greater visibility, including tracking of user identity 
•  Full protocol analysis 

–  Including extraction of complex embedded objects 
–  In some systems, 100s of known protocols 

•  Signature analysis (also behavioral) 
–  Known attacks/vulnerabilities, malware communication, 

blacklisted hosts/domains 
–  Known malicious payloads 
–  Sequences/patterns of activity 

•  Shadow execution (e.g., Flash, PDF programs) 
•  Extensive logging (in support of forensics) 
•  Auto-update of signatures, blacklists; cloud queries 



Malware 



The Problem of Malware 
•  Malware = malicious code that runs on a victim’s 

system 
•  How does it manage to run? 

–  Attacks a network-accessible vulnerable service 
–  Vulnerable client connects to remote system that sends 

over an attack (a driveby) 
–  Social engineering: trick user into running/installing 
–  “Autorun” functionality (esp. from plugging in USB device) 
–  Slipped into a system component (at manufacture; 

compromise of software provider; substituted via MITM) 
–  Attacker with local access downloads/runs it directly 

•  Might include using a local “privilege escalation” exploit 



What Can Malware Do? 
•  Pretty much anything 

–  Payload generally decoupled from how manages to run 
–  Only subject to permissions under which it runs 

•  Examples: 
–  Brag or exhort or extort (pop up a message/display) 
–  Trash files (just to be nasty) 
–  Damage hardware (!) 
–  Launch external activity (spam, click fraud, DoS; banking) 
–  Steal information (exfiltrate) 
–  Keylogging; screen / audio / camera capture 
–  Encrypt files (ransomware) 

•  Possibly delayed until condition occurs 
–  “time bomb” / “logic bomb” 



Malware That Automatically Propagates 
•  Virus = code that propagates (replicates) across 

systems by arranging to have itself eventually 
executed, creating a new additional instance 
–  Generally infects by altering stored code 

•  Worm = code that self-propagates/replicates 
across systems by arranging to have itself 
immediately executed (creating new addl. instance) 
–  Generally infects by altering running code 
–  No user intervention required 

•  (Note: line between these isn’t always so crisp; 
plus some malware incorporates both approaches) 



The Problem of Viruses 
•  Opportunistic = code will eventually execute 

–  Generally due to user action 
•  Running an app, booting their system, opening an attachment 

•  Separate notions: how it propagates vs. what else 
it does when executed (payload) 

•  General infection strategy: 
find some code lying around, 
alter it to include the virus 

•  Have been around for decades … 
– … resulting arms race has heavily 

influenced evolution of modern malware 



Propagation 
•  When virus runs, it looks for an opportunity to infect 

additional systems 
•  One approach: look for USB-attached thumb drive, 

alter any executables it holds to include the virus 
–  Strategy: when drive later attached to another system & 

altered executable runs, it locates and infects 
executables on new system’s hard drive 

•  Or: when user sends email w/ attachment, virus 
alters attachment to add a copy of itself 
–  Works for attachment types that include programmability 
–  E.g., Word documents (macros) 
–  Virus can also send out such email proactively, using 

user’s address book + enticing subject (“I Love You”) 

autorun is 
handy here! 
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Original program 
instructions can be: 

•  Application the 
user runs 

•  Run-time library / 
routines resident 
in memory 

•  Disk blocks used 
to boot OS 

•  Autorun file on 
USB device 

• … 

Other variants are 
possible; whatever 
manages to get the 
virus code executed 



Detecting Viruses 
•  Signature-based detection 

–  Look for bytes corresponding to injected virus code 
–  High utility due to replicating nature 

•  If you capture a virus V on one system, by its nature the virus will 
be trying to infect many other systems 

•  Can protect those other systems by installing recognizer for V 

•  Drove development of multi-billion $$ AV industry 
(AV = “antivirus”) 
–  So many endemic viruses that detecting well-known 

ones becomes a “checklist item” for security audits 
•  Using signature-based detection also has de facto 

utility for (glib) marketing 
–  Companies compete on number of signatures … 

•  … rather than their quality (harder for customer to assess) 





Virus Writer / AV Arms Race 
•  If you are a virus writer and your beautiful 

new creations don’t get very far because 
each time you write one, the AV companies 
quickly push out a signature for it …. 
– …. What are you going to do? 

•  Need to keep changing your viruses … 
– … or at least changing their appearance! 

•  How can you mechanize the creation of new 
instances of your viruses … 
– … so that whenever your virus propagates, what 

it injects as a copy of itself looks different? 



Polymorphic Code 
•  We’ve already seen technology for creating a 

representation of data apparently completely 
unrelated to the original: encryption! 

•  Idea: every time your virus propagates, it inserts a 
newly encrypted copy of itself 
–  Clearly, encryption needs to vary 

•  Either by using a different key each time 
•  Or by including some random initial padding (like an IV) 

–  Note: weak (but simple/fast) crypto algorithm works fine 
•  No need for truly strong encryption, just obfuscation 

•  When injected code runs, it decrypts itself to obtain 
the original functionality 
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Arms Race: Polymorphic Code 
•  Given polymorphism, how might we then detect 

viruses? 
•  Idea #1: use narrow sig. that targets decryptor 

–  Issues? 
•  Less code to match against ⇒ more false positives 
•  Virus writer spreads decryptor across existing code 

•  Idea #2: execute (or statically analyze) suspect 
code to see if it decrypts! 
–  Issues? 

•  Legitimate “packers” perform similar operations 
(decompression) 

•  How long do you let the new code execute? 
–  If decryptor only acts after lengthy legit execution, difficult to spot 

•  Virus-writer countermeasures? 



Metamorphic Code 
•  Idea: every time the virus propagates, generate 

semantically different version of it! 
–  Different semantics only at immediate level of execution; 

higher-level semantics remain same 
•  How could you do this? 
•  Include with the virus a code rewriter: 

–  Inspects its own code, generates random variant, e.g.: 
•  Renumber registers 
•  Change order of conditional code 
•  Reorder operations not dependent on one another 
•  Replace one low-level algorithm with another 
•  Remove some do-nothing padding and replace with different do-

nothing padding (“chaff”) 
–  Can be very complex, legit code … if it’s never called! 
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Detecting Metamorphic Viruses? 
•  Need to analyze execution behavior 

–  Shift from syntax (appearance of instructions) to  
semantics (effect of instructions) 

•  Two stages: (1) AV company analyzes new virus to find 
behavioral signature; (2) AV software on end systems 
analyze suspect code to test for match to signature 

•  What countermeasures will the virus writer take? 
–  Delay analysis by taking a long time to manifest behavior 

•  Long time = await particular condition, or even simply clock time 
–  Detect that execution occurs in an analyzed environment and if so 

behave differently 
•  E.g., test whether running inside a debugger, or in a Virtual Machine 

•  Counter-countermeasure? 
–  AV analysis looks for these tactics and skips over them 

•  Note: attacker has edge as AV products supply an oracle 



5 Minute Break 

 
Questions Before We Proceed? 



How Much Malware Is Out There? 
•  A final consideration re polymorphism and 

metamorphism: 
–  Presence can lead to mis-counting a single virus 

outbreak as instead reflecting 1,000s of seemingly 
different viruses 

•  Thus take care in interpreting vendor statistics on 
malcode varieties 
–  (Also note: public perception that huge malware 

populations exist is in the vendors’ own interest) 





Infection Cleanup 
•  Once malware detected on a system, how do we get 

rid of it? 
•  May require restoring/repairing many files 

–  This is part of what AV companies sell: per-specimen 
disinfection procedures 

•  What about if malware executed with adminstrator 
privileges? 
  “nuke the entire site from orbit. It’s the only way to be sure” 

–  i.e., rebuild system from original media + data backups 
•  Malware may include a rootkit: kernel patches to 

hide its presence (its existence on disk, processes) 

- Aliens 



Infection Cleanup, con’t 
•  If we have complete source code for system, 

we could rebuild from that instead, couldn’t we? 
•  No! 
•  Suppose forensic analysis shows that virus 

introduced a backdoor in /bin/login 
executable 
–  (Note: this threat isn’t specific to viruses; applies 

to any malware) 
•  Cleanup procedure: rebuild /bin/login from 

source … 
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Infected compiler 
recognizes when it’s 
compiling /bin/login 
source and inserts extra 
back door when seen 



No problem: first step, 
rebuild the compiler so 
it’s uninfected 

Correct compiler	
source code 

 Infected Compiler 

Correct compiler 
executable 

Reflections on Trusting Trust 
Turing-Award Lecture, Ken Thompson, 1983 

No amount of careful source-code 
scrutiny can prevent this problem. 
And if the hardware has a back door … 
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Oops - infected compiler 
recognizes when it’s 
compiling its own source 
and inserts the infection! 

Correct compiler	
source code 
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