
Malware: Viruses

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

https://inst.eecs.berkeley.edu/~cs161/
April 20, 2017

Inside a Modern HIDS (“AV”)
•  URL/Web access blocking:

–  Prevent users from going to known bad locations

•  Protocol scanning of network traffic (esp. HTTP)
–  Detect & block known attacks
–  Detect & block known malware communication

•  Payload scanning
–  Detect & block known malware

•  (Auto-update of signatures for these)
•  Cloud queries regarding reputation

–  Who else has run this executable and with what results?
–  What’s known about the remote host / domain / URL?

Inside a Modern HIDS, con’t
•  Sandbox execution

–  Run selected executables in constrained/monitored
environment

–  Analyze:
•  System calls
•  Changes to files / registry
•  Self-modifying code (polymorphism/metamorphism)

•  File scanning
–  Look for known malware that installs itself on disk

•  Memory scanning
–  Look for known malware that never appears on disk

•  Runtime analysis
–  Apply heuristics/signatures to execution behavior

Inside a Modern NIDS
•  Deployment inside network as well as at border

–  Greater visibility, including tracking of user identity
•  Full protocol analysis

–  Including extraction of complex embedded objects
–  In some systems, 100s of known protocols

•  Signature analysis (also behavioral)
–  Known attacks/vulnerabilities, malware communication,

blacklisted hosts/domains
–  Known malicious payloads
–  Sequences/patterns of activity

•  Shadow execution (e.g., Flash, PDF programs)
•  Extensive logging (in support of forensics)
•  Auto-update of signatures, blacklists; cloud queries

Malware

The Problem of Malware
•  Malware = malicious code that runs on a victim’s

system
•  How does it manage to run?

–  Attacks a network-accessible vulnerable service
–  Vulnerable client connects to remote system that sends

over an attack (a driveby)
–  Social engineering: trick user into running/installing
–  “Autorun” functionality (esp. from plugging in USB device)
–  Slipped into a system component (at manufacture;

compromise of software provider; substituted via MITM)
–  Attacker with local access downloads/runs it directly

•  Might include using a local “privilege escalation” exploit

What Can Malware Do?
•  Pretty much anything

–  Payload generally decoupled from how manages to run
–  Only subject to permissions under which it runs

•  Examples:
–  Brag or exhort or extort (pop up a message/display)
–  Trash files (just to be nasty)
–  Damage hardware (!)
–  Launch external activity (spam, click fraud, DoS; banking)
–  Steal information (exfiltrate)
–  Keylogging; screen / audio / camera capture
–  Encrypt files (ransomware)

•  Possibly delayed until condition occurs
–  “time bomb” / “logic bomb”

Malware That Automatically Propagates
•  Virus = code that propagates (replicates) across

systems by arranging to have itself eventually
executed, creating a new additional instance
–  Generally infects by altering stored code

•  Worm = code that self-propagates/replicates
across systems by arranging to have itself
immediately executed (creating new addl. instance)
–  Generally infects by altering running code
–  No user intervention required

•  (Note: line between these isn’t always so crisp;
plus some malware incorporates both approaches)

The Problem of Viruses
•  Opportunistic = code will eventually execute

–  Generally due to user action
•  Running an app, booting their system, opening an attachment

•  Separate notions: how it propagates vs. what else
it does when executed (payload)

•  General infection strategy:
find some code lying around,
alter it to include the virus

•  Have been around for decades …
– … resulting arms race has heavily

influenced evolution of modern malware

Propagation
•  When virus runs, it looks for an opportunity to infect

additional systems
•  One approach: look for USB-attached thumb drive,

alter any executables it holds to include the virus
–  Strategy: when drive later attached to another system &

altered executable runs, it locates and infects
executables on new system’s hard drive

•  Or: when user sends email w/ attachment, virus
alters attachment to add a copy of itself
–  Works for attachment types that include programmability
–  E.g., Word documents (macros)
–  Virus can also send out such email proactively, using

user’s address book + enticing subject (“I Love You”)

autorun is
handy here!

Original Program Instructions
Entry point

Virus

Original Program Instructions
Entry point

1. Entry point

Original Program Instructions

Virus

2.	JMP

3.	JMP

Original program
instructions can be:

•  Application the
user runs

•  Run-time library /
routines resident
in memory

•  Disk blocks used
to boot OS

•  Autorun file on
USB device

• …

Other variants are
possible; whatever
manages to get the
virus code executed

Detecting Viruses
•  Signature-based detection

–  Look for bytes corresponding to injected virus code
–  High utility due to replicating nature

•  If you capture a virus V on one system, by its nature the virus will
be trying to infect many other systems

•  Can protect those other systems by installing recognizer for V

•  Drove development of multi-billion $$ AV industry
(AV = “antivirus”)
–  So many endemic viruses that detecting well-known

ones becomes a “checklist item” for security audits
•  Using signature-based detection also has de facto

utility for (glib) marketing
–  Companies compete on number of signatures …

•  … rather than their quality (harder for customer to assess)

Virus Writer / AV Arms Race
•  If you are a virus writer and your beautiful

new creations don’t get very far because
each time you write one, the AV companies
quickly push out a signature for it ….
– …. What are you going to do?

•  Need to keep changing your viruses …
– … or at least changing their appearance!

•  How can you mechanize the creation of new
instances of your viruses …
– … so that whenever your virus propagates, what

it injects as a copy of itself looks different?

Polymorphic Code
•  We’ve already seen technology for creating a

representation of data apparently completely
unrelated to the original: encryption!

•  Idea: every time your virus propagates, it inserts a
newly encrypted copy of itself
–  Clearly, encryption needs to vary

•  Either by using a different key each time
•  Or by including some random initial padding (like an IV)

–  Note: weak (but simple/fast) crypto algorithm works fine
•  No need for truly strong encryption, just obfuscation

•  When injected code runs, it decrypts itself to obtain
the original functionality

Virus

Original Program Instructions

D
ecryptor

Main Virus Code

K
ey

D
ecryptor

Encrypted Glob of Bits

K
ey

Original Program Instructions

}

Jmp	

Instead of this …

Virus has this
initial structure

When executed,
decryptor applies key
to decrypt the glob …

⇓
… and jumps to the
decrypted code once
stored in memory

D
ecryptor

Main Virus Code

K
ey

D
ecryptor

Encrypted Glob of Bits

K
ey

Jmp	

⇓
Once running, virus
uses an encryptor with
a new key to propagate

E
ncryptor

}

D
ecryptor

Different Encrypted Glob of Bits

K
ey2

⇓

Polymorphic Propagation

New virus instance
bears little resemblance
to original

Arms Race: Polymorphic Code
•  Given polymorphism, how might we then detect

viruses?
•  Idea #1: use narrow sig. that targets decryptor

–  Issues?
•  Less code to match against ⇒ more false positives
•  Virus writer spreads decryptor across existing code

•  Idea #2: execute (or statically analyze) suspect
code to see if it decrypts!
–  Issues?

•  Legitimate “packers” perform similar operations
(decompression)

•  How long do you let the new code execute?
–  If decryptor only acts after lengthy legit execution, difficult to spot

•  Virus-writer countermeasures?

Metamorphic Code
•  Idea: every time the virus propagates, generate

semantically different version of it!
–  Different semantics only at immediate level of execution;

higher-level semantics remain same
•  How could you do this?
•  Include with the virus a code rewriter:

–  Inspects its own code, generates random variant, e.g.:
•  Renumber registers
•  Change order of conditional code
•  Reorder operations not dependent on one another
•  Replace one low-level algorithm with another
•  Remove some do-nothing padding and replace with different do-

nothing padding (“chaff”)
–  Can be very complex, legit code … if it’s never called!

When ready to propagate,
virus invokes a randomized
rewriter to construct new
but semantically equivalent
code (including the rewriter)

}

ê

Metamorphic Propagation

Main Virus Code

R
ew

riter
}

ê

(Main Virus Code)'
R

ew
riter'

(Main Virus Code)''

R
ew

riter''

Detecting Metamorphic Viruses?
•  Need to analyze execution behavior

–  Shift from syntax (appearance of instructions) to
semantics (effect of instructions)

•  Two stages: (1) AV company analyzes new virus to find
behavioral signature; (2) AV software on end systems
analyze suspect code to test for match to signature

•  What countermeasures will the virus writer take?
–  Delay analysis by taking a long time to manifest behavior

•  Long time = await particular condition, or even simply clock time
–  Detect that execution occurs in an analyzed environment and if so

behave differently
•  E.g., test whether running inside a debugger, or in a Virtual Machine

•  Counter-countermeasure?
–  AV analysis looks for these tactics and skips over them

•  Note: attacker has edge as AV products supply an oracle

5 Minute Break

Questions Before We Proceed?

How Much Malware Is Out There?
•  A final consideration re polymorphism and

metamorphism:
–  Presence can lead to mis-counting a single virus

outbreak as instead reflecting 1,000s of seemingly
different viruses

•  Thus take care in interpreting vendor statistics on
malcode varieties
–  (Also note: public perception that huge malware

populations exist is in the vendors’ own interest)

Infection Cleanup
•  Once malware detected on a system, how do we get

rid of it?
•  May require restoring/repairing many files

–  This is part of what AV companies sell: per-specimen
disinfection procedures

•  What about if malware executed with adminstrator
privileges?
 “nuke the entire site from orbit. It’s the only way to be sure”

–  i.e., rebuild system from original media + data backups
•  Malware may include a rootkit: kernel patches to

hide its presence (its existence on disk, processes)

- Aliens

Infection Cleanup, con’t
•  If we have complete source code for system,

we could rebuild from that instead, couldn’t we?
•  No!
•  Suppose forensic analysis shows that virus

introduced a backdoor in /bin/login
executable
–  (Note: this threat isn’t specific to viruses; applies

to any malware)
•  Cleanup procedure: rebuild /bin/login from

source …

/bin/login	
source code

Compiler

/bin/login
executable

Regular compilation
process of building login
binary from source code

/bin/login	
source code

Compiler

/bin/login
executable

Infected compiler
recognizes when it’s
compiling /bin/login
source and inserts extra
back door when seen

No problem: first step,
rebuild the compiler so
it’s uninfected

Correct compiler	
source code

 Infected Compiler

Correct compiler
executable

Reflections on Trusting Trust
Turing-Award Lecture, Ken Thompson, 1983

No amount of careful source-code
scrutiny can prevent this problem.
And if the hardware has a back door …

 Infected Compiler

 Infected Compiler

Oops - infected compiler
recognizes when it’s
compiling its own source
and inserts the infection!

Correct compiler	
source code

X

