
Network Attacks & Control

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/
March 16, 2017

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Answer” tells us the IP address associated
with eecs.mit.edu is 18.62.1.6 and we can
cache the result for 21,600 seconds

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

In general, a single Resource Record (RR) like this
includes, left-to-right, a DNS name, a time-to-live, a
family (IN for our purposes - ignore), a type (A here,
which stands for “Address”), and an associated value

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Authority” tells us the name servers responsible for
the answer. Each RR gives the hostname of a different
name server (“NS”) for names in mit.edu. We should
cache each record for 11,088 seconds.

If the “Answer” had been empty, then the resolver’s
next step would be to send the original query to one of
these name servers.

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Additional” provides extra information to save us from
making separate lookups for it, or helps with bootstrapping.

Here, it tells us the IP addresses for the hostnames of the
name servers. We add these to our cache.

DNS Protocol
Lightweight exchange

of query and reply
messages, both
with same message
format

Primarily uses UDP

for its transport
protocol, which is
what we’ll assume

Frequently, both

clients and servers
use port 53

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

 SRC port DST port

checksum length

16 bits 16 bits

UDP Payload

UDP Header

DNS
Query

or
Reply

IP Header

DNS Protocol
Lightweight exchange

of query and reply
messages, both
with same message
format

Primarily uses UDP

for its transport
protocol, which is
what we’ll assume

Frequently, both

clients and servers
use port 53

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

 SRC=53 DST=53

checksum length

16 bits 16 bits

UDP Payload

UDP Header

DNS
Query

or
Reply

IP Header

DNS Protocol, con’t

Message header:
•  Identification: 16 bit # for

query, reply to query uses
same #

•  Along with repeating the
Question and providing
Answer(s), replies can include
“Authority” (name server
responsible for answer) and
“Additional” (info client is
likely to look up soon anyway)

•  Each Resource Record has a
Time To Live (in seconds) for
caching (not shown)

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

IP Header

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

What if the mit.edu server
is untrustworthy? Could its
operator steal, say, all of our
web surfing to Facebook?

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Let’s look at a flaw in the
original DNS design

(since fixed)

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.facebook.com.

;; ADDITIONAL SECTION:
www.facebook.com 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

What could happen if the mit.edu
server returns the following to us

instead?

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.facebook.com.

;; ADDITIONAL SECTION:
www.facebook.com 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

We’d dutifully store in our cache a mapping of
www.facebook.com	to an IP address under
MIT’s control. (It could have been any IP
address they wanted, not just one of theirs.)

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.facebook.com.

;; ADDITIONAL SECTION:
www.facebook.com 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

In this case they chose to make the
mapping disappear after 30 seconds.
They could have made it persist for
weeks, or disappear even quicker.

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.facebook.com.

;; ADDITIONAL SECTION:
www.facebook.com 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Next time one of our clients starts to
connect to www.facebook.com, it will ask
our resolver for the corresponding IP
address. The resolver will find the answer
in its cache and return 18.6.6.6 😧

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.facebook.com.

;; ADDITIONAL SECTION:
www.facebook.com 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

How do we fix such cache poisoning?

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.facebook.com.

;; ADDITIONAL SECTION:
www.facebook.com 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Don’t accept Additional records unless
they’re for the domain of the name server
we queried

E.g., contacting a name server for mit.edu ⇒
only accept additional records from *.mit.edu	

	
No extra risk in accepting these since server could
return them to us directly in an Answer anyway.

=

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.facebook.com.

;; ADDITIONAL SECTION:
www.facebook.com 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Don’t accept Additional records unless
they’re for the domain of the name server
we queried

E.g., contacting a name server for mit.edu ⇒
only accept additional records from *.mit.edu	

	
No extra risk in accepting these since server could
return them to us directly in an Answer anyway.

This is called “bailiwick checking”.

=

Computer
Science 161 Fall
2016

Popa and
Weaver

.
Authority Server
(the “root”)

User’s ISP’s
Recursive Resolver

? A www.isc.org

? A www.isc.org
? A www.isc.org
Answers:
Authority:
org. NS a0.afilias-nst.info
Additional:
a0.afilias-nst.info A 199.19.56.1

The Many Moving Pieces
In a DNS Lookup of www.isc.org	

Name Type Value TTL

… … … …

Resolver’s	cache	

Computer
Science 161 Fall
2016

Popa and
Weaver

User’s ISP’s
Recursive Resolver

The Many Moving Pieces
In a DNS Lookup of www.isc.org	

Name Type Value TTL

org. NS a0.afilias-
nst.info 172800

a0.afilias-
nst.info. A 199.19.56.1 172800

… … … …

Resolver’s	cache	

? A www.isc.org
Answers:
Authority:
org. NS a0.afilias-nst.info
Additional:
a0.afilias-nst.info A 199.19.56.1

.
Authority Server
(the “root”)

Computer
Science 161 Fall
2016

Popa and
Weaver

org.
Authority Server

User’s ISP’s
Recursive Resolver

? A www.isc.org
Answers:
Authority:
isc.org. NS sfba.sns-pb.isc.org.
isc.org. NS ns.isc.afilias-nst.info.
Additional:
sfba.sns-pb.isc.org. A 199.6.1.30
ns.isc.afilias-nst.info. A 199.254.63.254

? A www.isc.org

The Many Moving Pieces
In a DNS Lookup of www.isc.org	

Name Type Value TTL

org. NS a0.afilias-
nst.info 172800

a0.afilias-
nst.info. A 199.19.56.1 172800

… … … …

Resolver’s	cache	

Computer
Science 161 Fall
2016

Popa and
Weaver

isc.org.
Authority Server

User’s ISP’s
Recursive Resolver

? A www.isc.org
Answers:
www.isc.org. A 149.20.64.42
Authority:
isc.org. NS sfba.sns-pb.isc.org.
isc.org. NS ns.isc.afilias-nst.info.
Additional:
sfba.sns-pb.isc.org. A 199.6.1.30
ns.isc.afilias-nst.info. A 199.254.63.254

? A www.isc.org

The Many Moving Pieces
In a DNS Lookup of www.isc.org	

Name Type Value TTL

org. NS a0.afilias-
nst.info 172800

a0.afilias-
nst.info. A 199.19.56.1 172800

isc.org. NS sfba.sns-
pb.isc.org. 86400

isc.org. NS ns.isc.afilias-
net.info. 86400

sfbay.sns-
pb.isc.org. A 199.6.1.30 86400

… … … …

Resolver’s	cache	

Computer
Science 161 Fall
2016

Popa and
Weaver

The Many Moving Pieces
In a DNS Lookup of www.isc.org	

User’s ISP’s
Recursive Resolver

? A www.isc.org
Answers: www.isc.org A 149.20.64.42

Name Type Value TTL

org. NS a0.afilias-
nst.info 172800

a0.afilias-
nst.info. A 199.19.56.1 172800

isc.org. NS sfba.sns-
pb.isc.org. 86400

isc.org. NS ns.isc.afilias-
net.info. 86400

sfbay.sns-
pb.isc.org. A 199.6.1.30 86400

www.isc.org A 149.20.64.42 600
… … … …

Resolver’s	cache	

DNS Threats, con’t

What about blind spoofing?

•  Say we look up
mail.google.com; how can an
off-path attacker feed us a
bogus A answer before the
legitimate server replies?

•  How can such a remote
attacker even know we are
looking up mail.google.com?

...	...	

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

 Suppose, e.g., we visit a web
page under their control:

DNS Threats, con’t

What about blind spoofing?

•  Say we look up
mail.google.com; how can an
off-path attacker feed us a
bogus A answer before the
legitimate server replies?

•  How can such an attacker
even know we are looking up
mail.google.com?
Suppose, e.g., we visit a web
page under their control:

...	...	

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

This HTML snippet causes our
browser to try to fetch an image from
mail.google.com. To do that, our
browser first has to look up the IP
address associated with that name.

DNS Blind Spoofing, con’t

So this will be k+1

They observe ID k here 	
	

Originally, identification field
incremented by 1 for each
request. How does attacker
guess it?

Once they know we’re looking
it up, they just have to guess
the Identification field, and
reply before legit server.

How hard is that?

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Fix?

Unless attacker can send
1000s of replies before legit
arrives, we’re likely safe -
phew!

DNS Blind Spoofing, con’t

Attacker can send lots of replies,
not just one …

However: once a reply from legit
server arrives (with correct
Identification), it’s cached and
no more opportunity to poison it.
Victim is innoculated!

Once we randomize the
Identification, attacker has a
1/65536 chance of guessing it
correctly.
Are we pretty much safe?

?

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

DNS Blind Spoofing (Kaminsky 2008)

•  Two key ideas:
– Spoof uses Additional field (rather than Answer)
– Attacker can get around caching of legit replies by

generating a series of different name lookups:

	
	
	

...	
	

;; QUESTION SECTION:
;randomk.google.com. IN A

;; ANSWER SECTION:
randomk.google.com 21600 IN A doesn’t	matter

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

For each lookup of randomk.google.com,
attacker spoofs a bunch of records like this,

each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com …

Kaminsky Blind Spoofing, con’t

;; QUESTION SECTION:
;randomk.google.com. IN A

;; ANSWER SECTION:
randomk.google.com 21600 IN A doesn’t	matter

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing, con’t
For each lookup of randomk.google.com,
attacker spoofs a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com … but also the cached NS record for
google.com’s name server - so any future
X.google.com lookups go through the attacker’s machine

Defending Against Blind Spoofing

Central problem: all that tells a
client they should accept a
response is that it matches the
Identification field.

With only 16 bits, it lacks
sufficient entropy: even if truly
random, the search space an
attacker must brute force is too
small.

Where can we get more
entropy? Additional information

(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Defending Against Blind Spoofing

Central problem: all that tells a
client they should accept a
response is that it matches the
Identification field.

With only 16 bits, it lacks
sufficient entropy: even if truly
random, the search space an
attacker must brute force is too
small.

Where can we get more
entropy? (Without requiring a
protocol change.)

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits For requestor to receive DNS
reply, needs both correct
Identification and correct ports.

On a request, DST port = 53.
SRC port usually also 53 - but not
fundamental, just convenient.

Total entropy: 16 bits

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=rnd

checksum length

16 bits 16 bits

Total entropy: ? bits
“Fix”: client uses random
source port ⇒ attacker doesn’t
know correct dest. port to use in
reply

Defending Against Blind Spoofing
“Fix”: client uses random
source port ⇒ attacker doesn’t
know correct dest. port to use in
reply

32 bits of entropy makes it
orders of magnitude harder for
attacker to guess all the
necessary fields and dupe victim
into accepting spoof response.

Total entropy: 32 bits

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=rnd

checksum length

16 bits 16 bits

Defending Against Blind Spoofing
“Fix”: client uses random
source port ⇒ attacker doesn’t
know correct dest. port to use in
reply

32 bits of entropy makes it
orders of magnitude harder for
attacker to guess all the
necessary fields and dupe victim
into accepting spoof response.

This is what primarily “secures”
DNS against blind spoofing
today. (Note: not all resolvers
have implemented random
source ports!)

Total entropy: 32 bits

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=rnd

checksum length

16 bits 16 bits

•  DNS threats highlight:
–  Attackers can attack opportunistically rather than

eavesdropping
o Cache poisoning only required victim to look up some name

under attacker’s control (has been fixed)
–  Attackers can often manipulate victims into vulnerable

activity
o  E.g., IMG	SRC in web page to force DNS lookups

–  Crucial for identifiers associated with communication
to have sufficient entropy (= a lot of bits of
unpredictability)

–  “Attacks only get better”: threats that appears
technically remote can become practical due to
unforeseen cleverness

Summary of DNS Security Issues

