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Side Channel Attacks



Side Channels

● Security systems are implemented in software or 
hardware on physical devices, which interact with their 
environment.

● Sometimes, attackers can monitor or affect these physical 
interactions, leaking useful “side channel” information.

● Side channel attacks use this information.

Note: Hard to identify due to abstractions.





Attacking Password Checker

/* Tenex (old OS) system call to check if submitted password is correct. */

bool CheckPassword(char* submitted_password, char* user){
char* real_password = GetUserPassword(user);
for (int i = 0; submitted_password[i] && real_password[i]; ++i) {

if (submitted_password[i] != real_password[i])
return False;

}
/* Ensures both strings are same len. */
return submitted_password[i] == real_password[i]; 

}



Attacking Password Checker

/* Tenex (old OS) system call to check if submitted password is correct. */

bool CheckPassword(char* submitted_password, char* user){
char* real_password = GetUserPassword(user);
for (int i = 0; submitted_password[i] && real_password[i]; ++i) {

if (submitted_password[i] != real_password[i])
return False;

}
/* Ensures both strings are same len. */
return submitted_password[i] == real_password[i]; 

}



Attacking Password Checker

/* Tenex (old OS) system call to check if submitted password is correct. */

bool CheckPassword(char* submitted_password, char* user){
char* real_password = GetUserPassword(user);
for (int i = 0; submitted_password[i] && real_password[i]; ++i) {

if (submitted_password[i] != real_password[i])
return False;

}
/* Ensures both strings are same len. */
return submitted_password[i] == real_password[i]; 

}



Attacking Password Checker

/* Tenex (old OS) system call to check if submitted password is correct. */

bool CheckPassword(char* submitted_password, char* user){
char* real_password = GetUserPassword(user);
for (int i = 0; submitted_password[i] && real_password[i]; ++i) {

if (submitted_password[i] != real_password[i])
return False;

}
/* Ensures both strings are same len. */
return submitted_password[i] == real_password[i]; 

}

Say passwords are only alphanumeric. 
To brute force a 10-character 
password, requires guessing:

6210 = 8.39*1017 possible passwords.



Better “Side Channel” Attack

Leverage memory layout of the submitted password, by 
spreading it out across multiple pages.

W i l d g u e s s 

Page out (or unmap) this page
If password doesn’t start with ‘W’, CheckPassword returns 
immediately (loop exits after 1 iteration).

If password DOES start with ‘W’, CheckPassword looks for 
second character of submitted password, and page faults!



Better “Side Channel” Attack
Page faults are slow, timing side channel! (Seg faults also visible)

Real password: cs161rocks
 a  a a a a a a a a a
 b  a a a a a a a a a
 c  a a a a a a a a a

 c a a a a a a a a a
…...

 c s a a a a a a a a

No Page Fault

No Page Fault

Page 
Fault

No Page Fault

Page 
FaultNeed ≤ 62 * 10 guesses



Potential Fixes?

Fix 1: Always check entire password.

- Might still leak password length based on how long the 
check takes!

Fix 2: Assume a max length for password. Always loop that 
many times, even if password is shorter.

- Constant time algorithm: Eliminates timing side channel, 
but now caps password length and has worse 
performance.



RSA decryption: M = Cd mod N
Common algorithm for exponentiation is “square and multiply”.

def exponentiate(base C, exponent d):
V = 1
For each bit b in d (most to least significant):

V = V^2 mod N
If b==1: V = V*C mod N

return V

Ex: d=1010 in binary = 10 in decimal. 
 Old V = 1

Power Analysis on RSA
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V = 1
For each bit b in d (most to least significant):
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return V
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Power Analysis on RSA



RSA decryption: M = Cd mod N
Common algorithm for exponentiation is “square and multiply”.

def exponentiate(base C, exponent d):
V = 1
For each bit b in d (most to least significant):

V = V^2 mod N
If b==1: V = V*C mod N

return V

Ex: d=1010 in binary = 10 in decimal. 
 Old V = C, New V = C2 (bit is 0)

Power Analysis on RSA



RSA decryption: M = Cd mod N
Common algorithm for exponentiation is “square and multiply”.

def exponentiate(base C, exponent d):
V = 1
For each bit b in d (most to least significant):

V = V^2 mod N
If b==1: V = V*C mod N

return V

Ex: d=1010 in binary = 10 in decimal. 
 Old V = C2, New V = C2*2 * C = C5 (bit is 1)

Power Analysis on RSA



RSA decryption: M = Cd mod N
Common algorithm for exponentiation is “square and multiply”.

def exponentiate(base C, exponent d):
V = 1
For each bit b in d (most to least significant):

V = V^2 mod N
If b==1: V = V*C mod N

return V

Ex: d=1010 in binary = 10 in decimal. 
 Old V = C5, New V = C10 (bit is 0), as expected!

Power Analysis on RSA



Power Analysis on RSA
RSA decryption: M = Cd mod N
Common algorithm for exponentiation is “square and multiply”.

Square + multiply computation produces different power 
usage profile than just squaring! Can distinguish between a 0 
or 1 bit in secret key based on power usage!



AES Cache Timing Attack

AES’s computation accesses tables of values. Which indices are 
accessed is based on the secret key.

If these tables are stored in memory shared by the attacker and 
victim process (e.g. memory deduplication), attacker can load the 
tables into cache, except for one index. Later attacker can load that 
missing index.

● Cache miss = slower, victim didn’t use the missing index
● Cache hit = faster, victim used the missing index

Can learn the secret key based on indices accessed.

Did not cover 
in lecture, just 
for reference!



Other side channels used for attacks

● Timing
● Cache hits
● Power usage
● Data remanence (“deleted” but uncleared memory)
● Row Hammer (change off-limit memory by accessing 

adjacent memory)
● Network side channels (recall global IP ID scanning from 

Homework 4)

● Electromagnetic radiation
● Acoustics
● Optical



Backpage and Bitcoin: 
Uncovering Human 

Traffickers



Bitcoin

● Bitcoin ownership is pseudonymous
○ Exchange bitcoin using pseudonyms
○ Pseudonyms are public keys, tied to private key the user owns
○ Sign out-going transactions with private key



Blockchain

● Public, distributed, peer-to-peer, hash-chained audit log of all 
transactions 
○ Hash chain is public, broadcasted on peer-to-peer network, and 

append-only



Blockchain cont’d
● How do you get bitcoin?

○ Mining
■ Append block to most recent/longest version of blockchain

○ Buy it



Sex Trafficking and the Internet

● Internet has opened new ways for traffickers to advertise and 
find victims

● Broader goal : use computer science tools/techniques to fight 
sex trafficking and slavery

● Detect traffickers from advertisements they pay for and post



Problem Statement

● Can I distinguish traffickers from independent sex workers on 
classified ad sites?
○ Too much data



Backpage

● 2nd largest online classified ad site in the US
● 80% percent of the market for online sex ads in USA
● Running since 2004, listings all over the world
● Used by traffickers to advertise their victims
● Two forms of payment for adult entertainment listings

○ Bitcoin
○ Check/money order sent via regular mail 



Sex Ad Flow



Goal

● Develop techniques to cluster sex ads by owner
○ Current best clustering is via hard-link; unreliable 



Results
● Two different methodologies that combine the classifier, linking 

technique and existing hard identifiers to group ads by owner
○ Stylometry classifier that distinguishes between sex ads posted 

by the same vs. different authors with 90% TPR and 1% FPR
○ Side channel attack that takes advantage of leakages from the 

Bitcoin blockchain and sex ad site to link a subset of sex ads to 
Bitcoin public wallets and transactions

● Analyzed 4-weeks of scraped sex ads from Backpage
○ Rebuild the price of each Backpage sex ad, and analyze the 

output of the two different methodologies



Stylometry model



Backpage Payment Flow



Timing Side Channel Attack

● Backpage posts ad onto its site one minute after payment 
appears on Bitcoin mempool



Timing & Price Side Channel Attack

● Backpage’s pricing algorithm takes ad posting frequency and 
location as variables, and can be reverse engineered



Persistent Bitcoin Identity Methodology
● Goal: map each ad to its true owner wallet
● Persistent Bitcoin Identity: any wallet that sends the change 

from each of its transactions back into itself, and has one exact 
match
○ Use stylometry model to distinguish non-exact match
○ All ads that match to this wallet are clustered under this PBI



4-week case study
● 26 ‘ground truth’ test ads

○ 25 required payment, 1 free
○ Placed from Dec 12th, 2016 to Dec 24th, 2016
○ Price range from $2 to $20
○ Posted in 27 distinct US regions

● Scraped all the sex ads in every US location every hour, for 4 
weeks

● 741,443 unique ads scraped
○ 151,482 required payment
○ Placed from Dec 10th, 2016 to Jan 9th, 2017
○ Price range from $1 to >$100
○ Posted in 60 distinct US regions



4-week case study: PBI

● 11 ground truth ads paid using a PBI
○ 8 transactions were exact match for correct ad
○ 3 transactions matched two ads, one of which was the correct ad

● 249 PBI’s total
● 90 of those PBI’s had at least one exact match
● Results:

○ Links between hard identifiers
○ Evidence of networks across multiple locations
○ Owners of sex ad clusters spending a lot of money on ads



Conclusion

● Promising! 
● First work to try to link specific purchases to specific 

transactions on the Blockchain
● Lots of work left to be done
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Attacks	&	Defenses	on	Password	Authentication
• Often	worry	about	3	classes	of	attacks	(threat	models)

1. Online	guessing
2. Server	compromise	(“offline	guessing”)
3. Client	password	compromise



Attacks	&	Defenses	on	Password	Authentication
• Often	worry	about	3	classes	of	attacks	(threat	models)

1. Online	guessing
2. Server	compromise	(“offline	guessing”)
3. Client	password	compromise

• We’ll	just	focus	on	the	last	two	threat	models	b/c	of	time	constraints



Threat	Model	1:	
Server	Compromise

Attacker	breaks	into	server	and	steals	password	database

(also	called	“offline	guessing	attacks”)



Threat	Model	#1:	Server	Compromised	

• Attacker	breaks	into	server	and	steals	password	database

• Happens	all	the	time	L



Threat	Model	#1:	Server	Compromised	

• Insecure	Defense:	Server	stores	encrypted	passwords	in	its	database

• But	server	needs	easy	access	to	secret	key	in	order	to	verify	users	when	they	
login
• So,	if	Mallory	breaks	into	the	server,	then	she	can	just	steal	secret	key	too!

Encrypting passwords	is	not a	secure	solution



Secure	Password	Storage
• Server	should	store	salted	+	hashed	passwords	(Section	6,	Problem	#1)
• Setup

1. During	account	registration,	server	generates	random	number	(salt)
2. Server	computes	h =	hash(salt,	password)
3. Server	stores	(username,	salt,	h)	and	deletes	user’s	password

• Authentication
• User’s	browser	sends	{username,	password}	to	server
• Server	computes	hash(salt,	password)	and	checks	if	it	matches	h

username salt h =	hash(salt,	password)
Alice 235545235 Hash(Alice’s	pwd,	235545235)

Bob 678632523 Hash(Alice’s	pwd,	678632523)



Secure	Password	Storage
• Secure	Defense:	Server	should	store	salted	+	hashed	passwords

username salt h =	hash(salt,	password)
Alice 235545235 Hash(Alice’s	pwd,	235545235)

Bob 678632523 Hash(Alice’s	pwd,	678632523)

• Attacker	steals	password	database,	but:
• Only	sees	salts	&	h’s:	salt	is	random	&	secure	hash	functions	are	one-way.
• Attacker	can	still	compute	big	table	of	guesses	for	Alice	&	check	for	matching	h:

‘123456’ Hash(‘123456’,	235545235)
‘password’ Hash(‘password’,	235545235)

‘aaaaaaaa’ Hash(‘aaaaaaa’,	235545235)

… …

But	salting forces	attacker	to	
re-compute	table	for	each	user	and	
prevents	pre-computation.



Secure	Password	Storage
• Secure	Defense:	Server	should	store	salted +	securely hash passwords

• The	secure	hash	function	should	also	be	slow to	compute
• Usually	we	want	fast	crypto	for	performance
• But	here	we	want	attacker	to	wait… and	wait… and	wait… for	guessing	to	succeed.
• Examples:	Argon,	bcrypt,	scrypt

• Conceptually,	Slow-Hash(x)	=	hash(hash(hash(hash(…(hash(x)))))
• where	hash	is	a	regular	secure	hash	(e.g.,	SHA-256	or	HMAC)

• If	Slow-Hash	is	1,000	times	slower,	attack	that	previously	took	1	day	now	
takes	~3	years



Threat	Model	2:	
Client	Password	Compromise

Attacker	obtains	Alice’s	password
• Phishing
• Surveillance	camera	(airport,	cafe,	etc.)	records	Alice	typing	

password
• …



Threat	Model	#2:	Password	Compromise

• Defense:	Two-factor	authentication	(2FA)
1. Something	you	knows	(password)
2. Something	you	have	(smartphone/authentication	device)
3. Something	you	are	(fingerprints/iris	scanner)
• Require	2	methods	from	above

• Most	common	2FA:	password	+	authentication	device
• User	enters	password	at	login
• If	password	correct,	user	then	needs	to	use	authentication	device

• Let’s	examine	some	2FA	designs	for	the	authentication	device



Common	2FA	Designs
1. Text	message:	server	generates	random	number	&	texts	it	to	you

• Least	secure	form	of	2FA:	
• Hijack	phone	number
• Mobile	malware	or	any	app	w/	text	message	permissions	(e.g.	Tinder, Uber,	etc.)
• …



Common	2FA	Designs

1. Text	message:	server	generates	random	number	&	texts	it	to	you
• Least	secure:	hijack	phone	number	or	hack	telephone	company	(e.g.,	nation	state)

2. Authenticator	apps	(more	secure)
• Google	Authenticator,	Duo,	etc.
• Protocols:

• S/KEY
• TOTP
• Push	notification



The	S/Key	Protocol:	Setup

Client	gets:
(1) k

(2) n	(total	#	codes)

Server	stores:
Only	vk

k,	n
vk =
H(n)(k)

1. Server	generates	n =	#	of	2FA	codes	(e.g.,	10,000)	
and	a	random	value	k

2. 2FA	app	(client)	obtains	n	and	k	(e.g.,	scanning	
QR	code)

3. Server	computes	&	stores	vk =	H(n) (k)	and	then	
deletes k	&	n

H(n) (k)	=	H(H(H(…(H(k)))),	hash	for	n	times



The	S/Key	Protocol:	Authenticating	to	Server

Client	stores:
(1) k

(2) n	(total	#	codes)
(3) j	(#	total	logins)

Server	stores:
Only	vk

k,	n,	j H(n-1)(k) H(n)(k)

vk starts	here

H(n-2)(k)H(k)

sk #1sk #2

1. Client	computes	&	sends	sk =	H(n-j)(k)
2. Server	checks	if	H(sk)	=	vk
3. Server	updates	vk =	sk
4. Repeat	1-3

Secure	even	if	attacker	breaks	into	server	and	
steals	vk for	each	user!

vk after	login	#1vk after	login	#2



Common	2FA	Designs

1. Text	message:	server	generates	random	number	&	texts	it	to	you
• Least	secure:	hijack	phone	number	or	hack	telephone	company	(e.g.,	nation	state)

2. Authenticator	apps	(more	secure)
• Common	protocols:	S/KEY,	TOTP,	Push	notification
• Still	vulnerable	to	phishing!

1. Phishing	page	asks	for	user’s	password
2. Next,	phishing	page	asks	user	to	enter	2FA	code
3. Attacker	then	uses	both	to	login



Common	2FA	Designs

1. Text	message:	server	generates	random	number	&	texts	it	to	you
• Least	secure:	hijack	phone	number	or	hack	telephone	company	(e.g.,	nation	state)

2. Authenticator	app	(more	secure)
• Push	notification,	S/KEY,	TOTP
• Still	vulnerable	to	phishing!

3. Hardware	tokens:	challenge-response	(most	secure)
• Hardware	device	that’s	plugged	into	laptop
• Can	protect	against	phishing	attacks



Challenge-Response	(General)

• General	protocols	for	authentication
• A	“prover”	wants	to	authenticate	to	a	“challenger”

• E.g.,	a	user	(prover)	wants	to	login	to	Gmail	(challenger)	as	Alice

ChallengerProver
1)	Challenger	sends	a	challenge	msg (e.g.,	username	and	pwd?)

2)	Prover	sends	response	that	only	real	prover	can	generate

(e.g.,	username:	“alice”,	password:	“RFaIVD@#TSDVI*!!F”)



2FA	Challenge-Response
• Hardware	2FA	token	has	a	public	&	private	key	pair	embedded	in	device

A. Setup
1. Alice’s	browser	gets	K =	2FA	token’s	public	key	and	sends	K to	server
2. Server	stores	(username,	K)	in	its	2FA	database

B. Authentication

1a)	Server	sends	random	N1b)	Browser	fwd’s N	to	token

2)	Token	signs	{N}!"#

3)	User	taps	on	token,	which	
then	fwd’s {N}!"# to	browser

3b)	Browser	sends	{N}!"#

4)	Server	checks	that	N	
matches	1a)	and	verifies	
signature	on	{N}!"#



Adding	Phishing	Resistance

2)	Token	signs	{N,	D}!"#

1b)	Browser	fwd’s N	to	token

AND	it	includes	D	=	domain	of	
actual	webpage	in	browser

3)	User	taps	on	token,	which	
then	fwd’s {N,	D}!"# to	browser

1a)	Server	sends	random	number	N

3b)	Browser	sends	{N,	D}!"#

4)	Server	checks:
• Dmatches	its	domain
• N	matches	what	it	sent
• Valid	signature	on	{N,	D}!"#



Phishing	Attack	Now	Fails!

• During	phishing	attack,	browser	will	be	at	website	w/	domain	
D’	=	gmai1.com,	instead	of	real	domain	D	=	gmail.com



Phishing	Attack	Now	Fails!

1b)	Browser	fwd’s N	to	token

AND	it	includes	D’ =	domain	
of	actual	webpage	in	browser

2)	Token	signs	{N,	D’}!"#

3)	User	taps	on	token,	which	
then	fwd’s {N,	D’}!"# to	browser

1a)	Gmail	sends	random	number	N

3b)	Browser	sends	{N,	D’}!"#

4)	Gmail	checks:
• N	matches	what	it	sent
• Valid	signature	on	{N,	D’}!"#

• But	D’ doesn’t	match	its	domain!

• During	phishing	attack,	browser	will	be	at	website	w/	domain	D’	=	gmai1.com,	
instead	of	real	domain	D	=	gmail.com



Practical	Advice	for	Future	Security	Engineers

Applicable	to	your	users	and	your	employees:

1. Use	HTTPS	(prevent	MITM	from	seeing	passwords)

2. Securely	store	passwords	(Threat	Model	#1)

3. Enable	2FA,	ideally	hardware	tokens	(Threat	Model	#2)

4. Securely	check	passwords	&	rate	limit	(not	covered	b/c	of	time)

5. Incorporate	detection	systems	if	you	can	(not	covered	b/c	of	time)
1. Access	logging
2. Spearphishing detection
3. Honey	accounts/Tripwire
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Many decisions are made on 
private data

• User data (e.g. email, social)
• Medical data 
• Financial data
• Location data

Data stored unencrypted in order to allow 
applications to compute queries / make decisions

Defense: try to build walls around the data (e.g. 
access control, firewalls, IDS, etc.)



Attackers eventually break 
into systems

• Sometimes, they even obtain root 
access or have admin privilege



How can we prevent attackers from obtaining the
data even if they gain access to the system?

The data should be encrypted at all times!
– Not just sometimes when the data is at rest (i.e. 

when no computations are being performed)

Problem: How does the server carry out its
service (i.e. perform computations on the data)
if the data is encrypted?



Two main approaches

1. Compute directly on encrypted data (uses 
specialized cryptography)

Which approach to use?
– Security: confidentiality / integrity 

guarantees
– Functionality: what computations can be 

supported
– Performance: how efficient is it to compute

2. Shielded computation on data (uses 
specialized hardware)



Approach #1: Computation on 
encrypted data



Computation on encrypted 
data

server

client
Secret

SecretResultResult

Secret

Server performs computations on the encrypted data 
without ever decrypting it



Computation on encrypted 
data

• Option #1: Property preserving encryption



Computation on encrypted 
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y	 then Enc(x)	=	Enc(y)



Computation on encrypted 
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y	 then Enc(x)	=	Enc(y)

Can compute queries such as:
SELECT * FROM table WHERE name = ‘Alice’



Computation on encrypted 
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y	 then Enc(x)	=	Enc(y)

Can compute queries such as:
SELECT * FROM table WHERE name = 0xfadc…



Computation on encrypted 
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y		then Enc(x)	=	Enc(y)

– Order preserving encryption:
If x	>	y then Enc(x)	>	Enc(y)

Can compute queries such as:
SELECT * FROM table WHERE name = 0xfadc…



Computation on encrypted 
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y		then Enc(x)	=	Enc(y)

– Order preserving encryption:
If x	>	y then Enc(x)	>	Enc(y)

Can compute queries such as:
SELECT * FROM table WHERE name = 0xfadc…

Can compute queries such as:
SELECT * FROM table WHERE age > 10



Computation on encrypted 
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y		then Enc(x)	=	Enc(y)

– Order preserving encryption:
If x	>	y then Enc(x)	>	Enc(y)

Can compute queries such as:
SELECT * FROM table WHERE name = 0xfadc…

Can compute queries such as:
SELECT * FROM table WHERE age > 0x1d3e…



Computation on encrypted 
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y		then Enc(x)	=	Enc(y)

– Order preserving encryption:
If x	>	y	then Enc(x)	>	Enc(y)

Can compute queries such as:
SELECT * FROM table WHERE name = 0xfadc…

Can compute queries such as:
SELECT * FROM table WHERE age > 0x1d3e…

Performance
• Nearly as fast as computing on plaintext

Security
• Leaks some information about the plaintexts 

(e.g. frequency distribution of values, or order of 
ciphertexts)

Functionality
• Very limited: e.g. only equality for deterministic 

encryption, range comparison for order 
preserving encryption



Computation on encrypted 
data

• Option #2: Partially homomorphic
encryption



Computation on encrypted 
data

• Option #2: Partially homomorphic
encryption

• ElGamal cryptosystem (enables multiplication
over ciphertexts)

Enc(x)	.	Enc(y)	=	Enc(x	.	y)



Computation on encrypted 
data

• Option #2: Partially homomorphic
encryption

• ElGamal cryptosystem (enables multiplication 
over ciphertexts)

Enc(x)	.	Enc(y)	=	Enc(x	.	y)
• Paillier cryptosystem (enables addition over 

ciphertexts)
Enc(x)	+	Enc(y)	=	Enc(x	+	y)



Computation on encrypted 
data

• Option #2: Partially homomorphic
encryption

Performance
• Reasonably efficient, but not as fast as 

computing on plaintext
Security

• Similar level of confidentiality guarantees as 
standard AES-based encryption

Functionality
• Very limited: only specific operations can be 

computed (i.e. can only add, or can only 
multiply; can’t do both)



Computation on encrypted 
data

• Option #3: Fully homomorphic encryption
– Enables arbitrary functions

F	(Enc(x),	Enc(y))	=	Enc(F	(x,	y))



Computation on encrypted 
data

• Option #3: Fully homomorphic encryption
– Enables arbitrary functions

F	(Enc(x),	Enc(y))	=	Enc(F	(x,	y))

Performance
• Prohibitively slow (currently 6 orders of 

magnitude slower)
Security

• Similar level of confidentiality guarantees as 
standard AES-based encryption

Functionality
• Allows arbitrary computations



Approach #2: Shielded 
computation on data using 

Intel Software Guard 
Extensions (SGX) 

(Extensions to Intel processors)



Intel SGX

• Feature #1: Can run code in hardware-
protected containers (called enclaves)
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Intel SGX

• Feature #1: Can run code in hardware-
protected containers (called enclaves)
– Secure region of address space, protected by the 

processor from all external software access (even from the 
operating system)

– Code and data in enclave region of main memory always 
encrypted using processor specific keys

– Decrypted only within the CPU package (i.e. when loaded 
into registers / cache)

Code and data loaded into an enclave is isolated
from the rest of the system



CPU Package
System Memory

Enclave

Memory
Encryption
Engine (MEE)

Snooping

Access 
from OSEncrypted

code/data

Problem: How to verify correct code has been loaded?
• Enclave code allowed to access unencrypted data
• Malicious / tampered code in enclave could exfiltrate data (i.e. 

leak it to the attacker)

SGX: How enclaves work



Intel SGX

Extensions to Intel processors that support:
• Feature #2: Attestation
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Intel SGX

• Feature #2: Attestation
– Prove to local / remote system that the correct

code has been loaded into the enclave
(i.e. verify the integrity of the enclave using a 
hash measurement of the loaded code/data)

– Verify that measurement generated by an 
enclave running on the same platform (using a 
MAC)

– Uses a special quoting enclave for this purpose
that signs the measurement and sends it to the 
client for verification
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Target Enclave

Quoting 
Enclave

SGX
CPU

ClientServer

1. Request
2. Compute
measurement

MAC

Hash

SGX: How attestation works



• Can also establish a secure channel between client and 
the enclave by exchanging Diffie-Hellman keys as part of 
the attestation process
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Target Enclave

Quoting 
Enclave

SGX
CPU

ClientServer

1. Request
2. Compute
measurement

3. Send measurement

SGX: How attestation works
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Hash



• Can also establish a secure channel between client and 
the enclave by exchanging Diffie-Hellman keys as part of 
the attestation process
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Target Enclave
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Enclave

SGX
CPU

ClientServer

1. Request
2. Compute
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• Can also establish a secure channel between client and 
the enclave by exchanging Diffie-Hellman keys as part of 
the attestation process
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Target Enclave

Quoting 
Enclave

SGX
CPU

ClientServer

1. Request
2. Compute
measurement

3. Send measurement

4. Verify MAC

5. Sign with Intel’s key

SGX: How attestation works

MAC
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• Can also establish a secure channel between client and 
the enclave by exchanging Diffie-Hellman keys as part of 
the attestation process
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Target Enclave

Quoting 
Enclave

SGX
CPU

ClientServer

1. Request
2. Compute
measurement

3. Send measurement

6. Send signature

5. Sign with Intel’s key

SGX: How attestation works

MAC

Hash

4. Verify MAC
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Intel SGX

• Minimal TCB (trusted computing base):
– Only the processor + the code loaded into the 

enclave need to be trusted
– Nothing else (DRAM, peripherals, operating 

system, etc.) needs to be trusted

So even if an attacker manages to gain root access 
on the server, won’t be able to learn the data



Summary



Comparison
Computation with 
cryptography

Computation 
with SGX

No need to trust server-side 
hardware

Need to trust Intel’s processor

No need to trust server-side 
software

Software running in enclave can leak 
unencrypted data
No need to trust other privileged 
software (including the OS)

Can execute only a few simple 
functions efficiently

Runs arbitrary computation at 
processor speeds

Still vulnerable to side-channels Still vulnerable to side-channels



Thank you, and good luck!


