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“Security is economics.” 











What	is	this	program	able	to	do?	

Can	it	leak	your	files	elsewhere?	
Can	it	delete	all	of	your	files?	
Can	it	send	spam?	
Can	it	add	a	new	executable	
			to	your	search	path?	

YES.		Why?	



What	does	this	program	need	to	be	able	to	do?	

Maybe:	
		access	screen	
		manage	a	directory	of	downloaded	files	
		access	config	&	documentaIon	files	
		open	connecIons	for	a	given	set	of	protocols	
		receive	connecIons	as	a	server	



“Least privilege.” 



Check for Understanding 

•  We’ve seen that laptop/desktop platforms grant 
applications a lot of privileges 

•  Quiz: Name a platform that does a better job of 
least privilege 





Thinking About Least Privilege 

•  When assessing the security of a system’s design, 
identify the Trusted Computing Base (TCB). 
–  What components does security rely upon? 

•  Security requires that the TCB: 
–  Is correct 
–  Is complete (can’t be bypassed) 
–  Is itself secure (can’t be tampered with) 

•  Best way to be assured of correctness and its security? 
–  KISS = Keep It Simple, Stupid! 
–  Generally, Simple = Small 

•  One powerful design approach: privilege separation 
–  Isolate privileged operations to as small a component as possible 



Web browser 

file to an entire instance of the rendering engine, even
when that privilege is only needed by a single security
origin.

The architecture does not prevent an attacker who compro-
mises the rendering engine from attacking other web sites
(for example, by reading their cookies). Instead, the archi-
tecture aims to prevent an attacker from reading or writing
the user’s file system, helping protect the user from a drive-
by malware installation.

To evaluate the security of Chromium’s architecture, we
examine the disclosed browser vulnerabilities in Internet Ex-
plorer, Firefox, and Safari from the preceding year. For
each vulnerability, we determine which module would have
been a↵ected by the vulnerability, had the vulnerability been
present in Chromium. We find that 67.4% (87 of 129) of the
vulnerabilities would have occurred in the rendering engine,
suggesting that the rendering engine accounts for a signifi-
cant fraction of the browser’s complexity.

Not all rendering engine vulnerabilities would have been
mitigated by Chromium’s architecture. Chromium’s archi-
tecture is designed to mitigate the most severe vulnerabili-
ties, namely those vulnerabilities that let an attacker execute
arbitrary code. If an attacker exploits such a vulnerability in
the rendering engine, Chromium’s architecture aims to re-
strict the attacker to using the browser kernel interface. We
find that 38 of the 87 rendering engine vulnerabilities al-
lowed an attacker to execute arbitrary code and would have
been mitigated by Chromium’s architecture. These account
for 70.4% (38 of 54) of all disclosed vulnerabilities that allow
arbitrary code execution.

To evaluate the security benefits of sandboxing additional
browser components, we examined the arbitrary code execu-
tion vulnerabilities that would have occurred in the browser
kernel. We find that 72.7% (8 of 11) of the vulnerabilities
result from insu�cient validation of system calls and would
not have been mitigated by additional sandboxing. For ex-
ample, one such vulnerability involved the browser improp-
erly escaping a parameter to ShellExecute when handling
external protocols. Although counting vulnerabilities is an
imperfect security metric [24], these observations lead us to
believe that Chromium’s architecture suitably divides the
various browser components between the browser kernel and
the rendering engine.

By separating the browser into two protection domains,
one representing the user and another representing the web,
Chromium’s security architecture mitigates approximately
70% of critical browser vulnerabilities that let an attacker
execute arbitrary code. The remaining vulnerabilities are
di�cult to mitigate with additional sandboxing, leading us
to conclude that the architecture extracts most of the secu-
rity benefits of sandboxing while maintaining performance
and compatibility with existing web content.

We took a three-pronged approach to evaluating the com-
patibility of Chromium’s architecture. First, our implemen-
tation of the architecture passes 99% of 10,115 compatibility
tests from the WebKit project. The tests our implementa-
tion does not pass are due to implementation details and
are not due to architectural limiations. Second, we man-
ually visited each of the 500 most popular web sites and
fixed any incompatibilities we found. Third, we deploy our
implementation to millions of users world-wide.
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Figure 1: The browser kernel treats the rendering
engine as a black box that parses web content and
emits bitmaps of the rendered document.

Organization. Section 2 defines a threat model for browser
exploits. Section 3 details Chromium’s architecture. Sec-
tion 4 describes the sandbox used to confine the rendering
engine. Section 5 explains the browser kernel API used by
the sandboxed rendering engine. Section 6 evaluates the se-
curity properties of the architecture. Section 7 compares
Chromium’s architecture with other browser architectures.
Section 8 concludes.

2. THREAT MODEL
In order to characterize the security properties of Chro-

mium’s architecture, we define a threat model by enumerat-
ing the attacker’s abilities and goals. The security architec-
ture seeks to prevent an attacker with these abilities from
reaching these goals. We can use this threat model to eval-
uate how e↵ectively Chromium’s architecture protects users
from attack.

Attacker Abilities. We consider an attacker who knows an
unpatched security vulnerability in the user’s browser and
is able to convince the user’s browser to render malicious
content. Typically, these abilities are su�cient to compro-
mise the user’s machine [20]. More specifically, we assume
the attacker has the following abilities:

1. The attacker owns a domain name, say attacker.com,
that has not yet been added to the browser’s malware
blacklist [19]. The attacker has a valid HTTPS cer-
tificate for the domain, and controls at least one host
on the network. These abilities can be purchased for
about $5.

2. The attacker is able to convince the user to visit his
or her web site. There are a number of techniques
for convincing the user to visit attacker.com, such as
sending out spam e-mail, hosting popular content, or
driving tra�c via advertising. It is di�cult to price
this ability, but, in a previous study, we were able to
attract a quarter of a million users for about $50 [1].
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“Ensure complete mediation.” 

For every requested action, 
check authenticity, integrity, 
authorization  



Ensuring Complete Mediation 

•  To secure access to some capability/resource, 
construct a reference monitor 

•  Single point through which all access must occur 
–  E.g.: a network firewall 

•  Desired properties: 
–  Un-bypassable (“complete mediation”) 
–  Tamper-proof (is itself secure) 
–  Verifiable (correct) 
–  (Note, just restatements of what we want for TCBs) 

•  One subtle form of reference monitor flaw 
concerns race conditions … 



	procedure	withdrawal(w)	
				//	contact	central	server	to	get	balance	
				1.	let	b	:=	balance	
					
				2.	if	b	<	w,	abort	
	
				//	contact	server	to	set	balance	
				3.	set	balance	:=	b	-	w	
	
				4.	dispense	$w	to	user	

TOCTTOU Vulnerability

TOCTTOU = Time of Check To Time of Use

Suppose that here an attacker 
arranges to suspend first call, 
and calls withdrawal again 
concurrently 



	public	void	buyItem(Account	buyer,	Item	item)	{	
	
				if	(item.cost	>	buyer.balance)	
						return;	/*	they	can’t	afford	it	*/	
					
				buyer.possessions.put(item);	/*	provide	item	*/	
	
				buyer.possessionsUpdated();	/*	freshen	screen	*/	
	
				buyer.balance	-=	item.cost;	/*	deduct	cost	*/	
	
				buyer.balanceUpdated();	/*	freshen	screen	*/	
	
		}	 What if an uncaught 

exception happens here? 









“Separation of responsibility.” 



Independent 
audit 



Summary: 
Notions Regarding Managing Privilege 

•  Least privilege 
– The notion of avoiding having unnecessary 

privileges 

•  Privilege separation 
– A way to achieve least privilege by isolating 

access to privileges to a small Trusted 
Computing Base (TCB) 

•  Separation of responsibility 
–  If you need to have a privilege, consider 

requiring multiple parties to work together 
(collude) to exercise it 





“Defense in depth.” 





“Company	policy:	passwords	must	be	at	least	10	
characters	long,	contain	at	least	2	digits,	1	
uppercase	character,		1	lowercase	character,	and	
1	special	character.”	





“Psychological acceptability.” 











What a piece of work is a man! how Noble in!
Reason! how infinite in faculty! in form and moving!
how express and admirable! in Action, how like an Angel!!
in apprehension, how like a God!!
     -- Hamlet Act II, Scene II 

“Humans are incapable of securely storing high-quality cryptographic
keys, and they have unacceptable speed and accuracy when performing
cryptographic operations. (They are also large, expensive to maintain,
difficult to manage, and they pollute the environment. It is astonishing
that these devices continue to be manufactured and deployed. But they
are sufficiently pervasive that we must design our protocols around
their limitations.)”

    -- Network Security: Private Communication in a Public World,�
       Charlie Kaufman, Radia Perlman, & Mike Speciner, 1995 



“Consider human factors.” 





Summary: 
Dealing with Users 

•  Psychological acceptability 
– Will users abide a security mechanism, or 

decide to subvert it?  

•  Consider human factors 
– Does a security mechanism assume 

something about human behavior when 
interacting with the system that might not hold, 
even in the absence of conscious decisions by 
the users to subvert 











“Only as secure as the weakest link.” 















“Don’t rely on security through 
obscurity.” 















“Trusted path.” 

User needs to know they’re talking w/ legit system. 
System needs to know it’s talking w/ legit user. 
These channels should be unspoofable & private. 


