Symmetric-Key Cryptography

CS 161: Computer Security Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula, David Fifield, Mia Gil Epner, David Hahn, Warren He, Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic, Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/

February 21, 2017

Demo: Phishing via Browser Tab Manipulation Sneakiness

The Problem of Phishing

- Arises due to mismatch between reality & user's:
 - Perception of how to assess legitimacy
 - Mental model of what attackers can control
 - Both Email and Web
- Coupled with:
 - Deficiencies in how web sites authenticate
 - In particular, "replayable" authentication that is vulnerable to theft
- Attackers have many angles ...

- 1. Text and left-side pixels fully under attacker control
- 2. Domain name cannot be altered (but can be misleading!)
- 3. Path after the domain name fully under attacker control
- 4. All pixels fully under attacker control

Homograph Attacks

- International domain names can use international character set
 - E.g., Chinese contains characters that look like / . ? =
- Attack: Legitimately register var.cn ...
- ... buy legitimate set of HTTPS certificates for it ...
- ... and then create a subdomain:

www.pnc.com/webapp/unsec/homepage/var.cn

This is one subdomain

Check for a padlock?

🗆 📄 erenxi.com 🔿	
Log in to your PayPal account	+
PayPal	
Email	
Password	
Log in	
Forgot your email or password?	
Sign Up	
	I
About Account Types Fees Privacy Security Contact Legal Developers	I
Copyright © 1999-2017 PavPal. All rights reserved.	

Check for "green glow" in address bar?

Check for Everything?

"Browser in Browser"

Why does phishing work?

Why does phishing work?

• User mental model vs. reality

– Browser security model too hard to understand!

- The easy path is insecure; the secure path takes extra effort
- Risks are rare
- Users tend not to suspect malice; they find benign interpretations and have been *acclimated to failure*

Questions?

Cryptography:

Secure communication over insecure paths (and/or: Secure data storage on insecure servers)

Three main goals

 Confidentiality: preventing adversaries from reading our private data

– Data = message or document

- Integrity: preventing attackers from altering our data
 - Data itself *might or might not be private*
- Authentication: determining who created a given message or document
 - Generally implies/requires integrity

Special guests

(sender of messages)

(receiver of messges)

- The attackers
 - Eve: "eavesdropper"
 - Mallory: "manipulator"

Eve

Confidentiality

The Ideal Contest

- Attacker's goal: any knowledge of M_i beyond an upper bound on its length
 - Slightly better than 50% probability at guessing a single bit: attacker wins!
 - Any notion of how M_i relates to M_i: attacker wins!
- Defender's goal: ensure attacker has no reason to think any M' ∈ {0,1}ⁿ is more likely than any other
 (for M_i of length n)

Eve's Capabilities/Foreknowledge

No knowledge of K

- We assume K is selected by a truly random process
- For b-bit key, any $K \in \{0,1\}^{b}$ is equally likely
- Recognition of success: Eve can generally tell if she has correctly and fully recovered M_i
 - But: Eve cannot recognize anything about partial solutions, such as whether she has correctly identified a particular bit in M_i
 - Does not apply to scenarios where Eve exhaustively examines every possible $M_i' \in \{0,1\}^n$

Eve's Available Information

1. Ciphertext-only attack:

- Eve gets to see every instance of C_i
- Variant: Eve may also have partial information about M_i
 - "It's probably English text"
 - Bob is Alice's stockbroker, so it's either "Buy!" or "Sell"

2. Known plaintext:

- Eve knows part of M_i and/or entire other M_i 's
- How could this happen?
 - E.g. encrypted HTTP request: starts with "GET"
 - E.g. Eve sees earlier message she knows Alice will send to Bob
 - E.g. Alice transmits in the clear and then resends encrypted

Eve's Available Information, con't

3. Chosen plaintext

- Eve gets Alice to send M_i's of Eve's choosing
- Example: Eve sends Alice an email spoofed from Alice's boss saying "Please securely forward this to Bob"

4. Chosen ciphertext:

- Eve tricks Bob into decrypting some C_j' of her choice and he reveals something about the result
- How could this happen?
 - E.g. repeatedly send ciphertext to a web server that will send back different-sized messages depending on whether ciphertext decrypts into something well-formatted

- Or: measure *how long* it takes Bob to decrypt & validate

Eve's Available Information, con't

5. Combinations of the above

- Ideally, we'd like to defend against this last, the most powerful attacker
- And: we can!, so we'll mainly focus on this attacker when discussing different considerations

Designing Ciphers

- Clearly, the whole trick is in the design of E(M,K) and D(C,K)
- One very simple approach:

 $E(M,K) = ROT_{K}(M); D(C,K) = ROT_{-K}(C)$

i.e., take each letter in M and "rotate" it K positions (with wrap-around) through the alphabet

- E.g., M_i = "DOG", K = 3 C_i = E(M_i,K) = ROT₃("DOG") = "GRJ" D(C_i,K) = ROT₋₃("GRJ") = "DOG"
 - DG"

• "Caesar cipher"

- Brute force: try every possible value of K
 - Work involved?
 - At most 26 "steps"

- Brute force: try every possible value of K
 - Work involved?
 - At most 26 "steps"
- Deduction:
 - Analyze letter frequencies ("ETAOIN SHRDLU")
 - Known plaintext / guess possible words & confirm
 - E.g. "JCKN ECGUCT" =?

- Brute force: try every possible value of K
 - Work involved?
 - At most 26 "steps"

• Deduction:

- Analyze letter frequencies ("ETAOIN SHRDLU")
- Known plaintext / guess possible words & confirm
 - E.g. "JCKN ECGUCT" =? "HAIL CAESAR"

- Brute force: try every possible value of K
 - Work involved?
 - At most 26 "steps"

• Deduction:

- Analyze letter frequencies ("ETAOIN SHRDLU")
- Known plaintext / guess possible words & confirm
 - E.g. "JCKN ECGUCT" =? "HAIL CAESAR" ⇒ K=2
- Chosen plaintext
 - E.g. get a general to send "ALL QUIET", observe "YJJ OSGCR" ⇒ K=24

5 Minute Break

Questions Before We Proceed?

Kerckhoffs' Principle

- Cryptosystems should remain secure even when attacker knows all internal details

 Don't rely on security-by-obscurity
- Key should be only thing that must stay secret
- It should be easy to change keys

Better Versions of Rot-K?

- Consider $E(M,K) = Rot \{K_1, K_2, ..., K_n\}(M)$
 - i.e., rotate first character by K₁, second character by K₂, up through nth character. Then start over with K₁, ...
 K = { K₁, K₂, ..., K_n }
- How well do previous attacks work now?
 - Brute force: key space is factor of 26⁽ⁿ⁻¹⁾ larger
 - E.g., n = 7 \Rightarrow 300 million times as much work
 - Letter frequencies: need more ciphertext to reason about
 - Known/chosen plaintext: works just fine
- Can go further with "chaining", e.g., 2nd rotation depends on K₂ and first character of ciphertext

– We just described 2,000 years of cryptography

One-Time Pad

- Idea #1: use a different key for each message M
 - Different = completely independent
 - So: known plaintext, chosen plaintext, etc., don't help attacker
- Idea #2: make the key as long as M
- $E(M,K) = M \oplus K \quad (\oplus = XOR)$

$$\begin{array}{c} X \oplus 0 = X \\ X \oplus X = 0 \\ X \oplus Y = Y \oplus X \\ X \oplus (Y \oplus Z) = (X \oplus Y) \oplus Z \end{array}$$

One-Time Pad

- Idea #1: use a different key for each message M
 - Different = completely independent
 - So: known plaintext, chosen plaintext, etc., don't help attacker
- Idea #2: make the key as long as M
- $E(M,K) = M \oplus K \quad (\oplus = XOR)$ $D(C,K) = C \oplus K$ $= M \oplus K \oplus K = M \oplus 0 = M$

$$\begin{array}{l} X \oplus 0 = X \\ X \oplus X = 0 \\ X \oplus Y = Y \oplus X \\ X \oplus (Y \oplus Z) = (X \oplus Y) \oplus Z \end{array}$$

One-Time Pad: Provably Secure!

- Let's assume Eve has partial information about M
- We want to show: from C, she does not gain any further information
- Formalization: supposed Alice sends either M' or M"
 Eve doesn't know which; tries to guess based on C
- Proof:
 - For random, independent K, all possible bit-patterns for C are equally likely
 - This holds regardless of whether Alice chose M' or M"
 - Thus, observing a given C does not help Eve narrow down the possibilities in any way

One-Time Pad: Provably Impractical!

- Problem #1: key generation

 Need truly random, independent keys
- Problem #2: key distribution
 - Need to share keys as long as all possible communication
 - If we have a secure way to establish such keys, just use that for communication in the first place!

Two-Time Pad?

- What if we reuse a key K jeeeest once?
- Alice sends C = E(M, K) and C' = E(M', K)
- Eve observes $M \oplus K$ and $M' \oplus K$
 - Can she learn anything about M and/or M'?
- Eve computes $C \oplus C' = (M \oplus K) \oplus (M' \oplus K)$

Two-Time Pad?

- What if we reuse a key K jeeeest once?
- Alice sends C = E(M, K) and C' = E(M', K)
- Eve observes $M \oplus K$ and $M' \oplus K$
 - Can she learn anything about M and/or M' ?
- Eve computes $C \oplus C' = (M \oplus K) \oplus (M' \oplus K)$
 - $= (\mathsf{M} \oplus \mathsf{M'}) \oplus (\mathsf{K} \oplus \mathsf{K})$
 - $= (M \oplus M') \oplus 0$
 - $= M \oplus M'$
- Now she knows which bits in M match bits in M'
- And if Eve already knew M, now she knows M' !

Modern Symmetric-Key Encryption: Block Ciphers

Block cipher

A function E : $\{0, 1\}^b \times \{0, 1\}^k \rightarrow \{0, 1\}^b$. Once we fix the key K (of size k bits), we get:

- $$\begin{split} \mathsf{E}_{\mathsf{K}}: \{0,1\}^{\mathsf{b}} & \to \{0,1\}^{\mathsf{b}} \quad \text{denoted by } \mathsf{E}_{\mathsf{K}}(\mathsf{M}) = \mathsf{E}(\mathsf{M},\mathsf{K}).\\ (\text{and also } \mathsf{D}(\mathsf{C},\mathsf{K}), \, \mathsf{E}(\mathsf{M},\mathsf{K})\text{'s inverse}) \end{split}$$
- Three properties:
 - Correctness:
 - $E_{K}(M)$ is a permutation (bijective function) on b-bit strings
 - Bijective \Rightarrow invertible
 - Efficiency: computable in μ sec's
 - Security:
 - For unknown K, "behaves" like a random permutation
- Provides a *building block* for more extensive encryption